請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88760完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林忠緯 | zh_TW |
| dc.contributor.advisor | Chung-Wei Lin | en |
| dc.contributor.author | 賈本晧 | zh_TW |
| dc.contributor.author | Ben-Hau Chia | en |
| dc.date.accessioned | 2023-08-15T17:40:33Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-05 | - |
| dc.identifier.citation | [1] F. G. Abdulkadhim, Z. Yi, C. Tang, A. N. Onaizah, and B. Ahmed, “Design and development of a hybrid (SDN + SOM) approach for enhancing security in VANET,” Applied Nanoscience, vol. 13, no. 1, pp. 799–810, 2023.
[2] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): Part II,” IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006. [3] T. Brown, D. Man´e, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,” arXiv preprint arXiv:1712.09665, 2017. [4] Y. Cai and Y. Shen, “An integrated localization and control framework for multi-agent formation,” IEEE Transactions on Signal Processing, vol. 67, no. 7, pp. 1941–1956, 2019. [5] D. Droeschel and S. Behnke, “Efficient continuous-time SLAM for 3D lidarbased online mapping,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 5000–5007. IEEE, 2018. [6] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rend´on-Mancha, “Visual simultaneous localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 55–81, 2015. [7] M. Gario and A. Micheli, “PySMT: a solver-agnostic library for fast prototyping of SMT-based algorithms,” in SMT Workshop 2015, 2015. [8] S. Gezici, Z. Tian, G. Biannakis, H. Kobayashi, A. Molisch, V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70–84, 2005. [9] Z. Hong, Y. Petillot, and S. Wang, “Radarslam: Radar based large-scale slam in all weathers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5164–5170. IEEE, 2020. [10] S.-T. Hou, “Cooperative and secure multi-agent positioning based on satisfiability modulo theories,” Master’s thesis, National Taiwan University, 2021. [11] M. H. Ikram, S. Khaliq, M. L. Anjum, and W. Hussain, “Perceptual aliasing++: Adversarial attack for visual SLAM front-end and back-end,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4670–4677, 2022. [12] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, “Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions,” IEEE Communications Surveys & Tutorials, vol. 13, no. 4, pp. 584–616, 2011. [13] M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM—collaborative visual-inertial SLAM,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2762–2769, 2018. [14] R. Kaur, T. P. Singh, and V. Khajuria, “Security issues in vehicular ad-hoc network (VANET),” in International Conference on Trends in Electronics and Informatics (ICOEI), pp. 884–889, 2018. [15] S.-H. Kong and S.-Y. Jun, “Cooperative positioning technique with decentralized malicious vehicle detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 826–838, 2018. [16] M. Lee and T. Atkison, “Vanet applications: Past, present, and future,” Vehicular Communications, vol. 28, p. 100310, 2021. [17] S. Liu, D. He, Y. Xu, C. Zhang, S. Sun, and D. Ru, “Adaptive vehicle cooperative positioning system with uncertain GPS visibility and neural network-based improved approach,” in IEEE/CIC International Conference on Communications in China (ICCC Workshops), pp. 303–308, 2018. [18] M. J. N. Mahi, S. Chaki, S. Ahmed, M. Biswas, S. Kaiser, M. S. Islam, M. Sookhak, A. Barros, and M. Whaiduzzaman, “A review on VANET research: Perspective of recent emerging technologies,” IEEE Access, 2022. [19] J. Marques-Silva and I. Lynce, “On improving MUS extraction algorithms,” in Theory and Applications of Satisfiability Testing-SAT 2011: 14th International Conference, SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings 14, pp. 159 173. Springer, 2011. [20] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and F. Hlawatsch, “Distributed localization and tracking of mobile networks including noncooperative objects,” IEEE Transactions on Signal and Information Processing over Networks, vol. 2, no. 1, pp. 57–71, 2016. [21] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and accurate monocular SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015. [22] N. Patwari, J. Ash, S. Kyperountas, A. H. III, R. Moses, and N. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, 2005. [23] M. Poongodi, M. Hamdi, A. Sharma, M. Ma, and P. K. Singh, “DDoS detection mechanism using trust-based evaluation system in VANET,” IEEE Access, vol. 7, pp. 183 532–183 544, 2019. [24] D. Ramphull, A. Mungur, S. Armoogum, and S. Pudaruth, “A review of mobile ad hoc network (MANET) protocols and their applications,” in 2021 5th international conference on intelligent computing and control systems (ICICCS), pp. 204–211. IEEE, 2021. [25] L. Riazuelo, J. Civera, and J. M. Montiel, “C2TAM: A cloud framework for cooperative tracking and mapping,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 401–413, 2014. [26] F. Safari, S. Izabela, H. Kunze, and D. Gillis, “‘the diverse technology of MANETs: A survey of applications and challenges,” International Journal of Future Computer and Communication, vol. 12, no. 2, 2023. [27] P. Schmuck and M. Chli, “CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams,” Journal of Field Robotics, vol. 36, no. 4, pp. 763–781, 2019. [28] K. N. Tripathi, S. C. Sharma, and A. M. Yadav, “Analysis of various trust based security algorithm for the vehicular AD-HOC network,” in International Conference on Recent Innovations in Electrical, Electronics Communication Engineering (ICRIEECE), pp. 1546–1551, 2018. [29] P. Tyagi and D. Dembla, “Investigating the security threats in vehicular ad hoc networks (VANETs): Towards security engineering for safer on-road transportation,” in International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2084–2090, 2014. [30] M. Weber, B. Jin, G. Lederman, Y. Shoukry, E. A. Lee, S. Seshia, and A. Sangiovanni-Vincentelli, “Gordian: Formal reasoning-based outlier detection for secure localization,” ACM Transactions on Cyber-Physical Systems, vol. 4, no. 4, pp. 1–27, 2020. [31] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009. [32] B. Yu, C.-Z. Xu, and B. Xiao, “Detecting sybil attacks in VANETs,” Journal of Parallel and Distributed Computing, vol. 73, no. 6, pp. 746–756, 2013. [33] D. Zou and P. Tan, “CoSLAM: Collaborative visual SLAM in dynamic environments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 354–366, 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88760 | - |
| dc.description.abstract | 多智能體系統 (multi-agent system) 基於各智能體之間的溝通並合力解決問題,如智慧交通系統中的各項運輸工具,軍事系統中的各種軍事設備,機器人系統中的自主機器人等,這些智能體們在各系統中藉由合作達到單一智能體無法完成的任務。其中,定位在多智能體系統中是舉足輕重的工作之一,例如自駕車需要精準定位來達到自動駕駛。本論文考慮互聯多智能體系統的協同安全定位,並解決兩項主要問題:每個智能體有各自的定位誤差,且系統中存在刻意散佈錯誤資訊的攻擊者。針對以上問題,本論文基於可滿足性模組理論設計了建構性方法及破壞性方法,兩種方法皆嘗試使各智能體達成定位上的共識,並同時確認攻擊者存在之有無。實驗結果顯示,相較於一基準方法,建構性方法能提升攻擊者辨識的準確度,而破壞性方法可以加速取得定位共識所需時間。 | zh_TW |
| dc.description.abstract | Multi-agent systems are an emerging technology with a promising future, and positioning is a fundamental task supporting applications of multi-agent systems, with vehicles needing precise positioning to perform autonomous driving as a prime example. In this thesis, we consider cooperative positioning for connected multi-agent systems. In particular, we address the two following challenges: Each agent has its own positioning errors, and malicious agents within the group intentionally provide false information. Based on Satisfiability Modulo Theories (SMT), we design two approaches, a constructive approach and a destructive approach, to reach a positioning consensus among the agents and identify the set of potential attackers. Experimental results demonstrate that the proposed approaches improve the consensus accuracy and speed up the consensus process, respectively, compared with a baseline approach. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:40:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:40:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acceptance Certificate ii
Acknowledgements iii Abstract (Chinese) iv Abstract v List of Tables viii List of Figures ix Chapter 1. Introduction 1 1.1 Related Work 2 1.1.1 Global Positioning System (GPS) 2 1.1.2 Non-Satellite Based Positioning 3 1.1.3 Cooperative Positioning 3 1.1.4 Simultaneous Localization and Mapping (SLAM) 3 1.1.5 Vehicular Networking and Its Security 4 1.1.6 Mobile Ad-hoc Networks (MANETs) 5 1.1.7 Vehicular Ad-hoc Networks (VANETs) 5 1.2 Background: Satisfiability Modulo Theories 5 1.3 Contributions 7 1.4 Thesis Organization 7 Chapter 2. System Model and Problem Formulation 8 2.1 Elements 10 2.2 Positioning 11 2.3 Observation 11 2.4 Attacking Strategies 13 2.5 SMT Formulation 16 Chapter 3. Proposed Approaches 20 3.1 Broadcast Protocols 20 3.2 System Flow 21 3.3 Constructive Approach 22 3.4 Destructive Approach 24 Chapter 4. Experimental Results 28 4.1 Experimental Setting 28 4.1.1 Basic Setting 28 4.1.2 Broadcast Positions Sampling 29 4.1.3 Attacker Generation 29 4.1.4 Baseline Approach 29 4.1.5 Evaluation Metrics 30 4.2 Experiments without Attackers 31 4.3 Experiments with Attackers 32 4.3.1 Different Number of Attackers and Different Da 32 4.3.2 Different T 33 4.3.3 Different M and N 34 4.4 Discussion 35 Chapter 5. Conclusions 38 Bibliography 39 Appendix 44 | - |
| dc.language.iso | en | - |
| dc.subject | 可滿足性模組理論 | zh_TW |
| dc.subject | 安全定位系統 | zh_TW |
| dc.subject | 協同定位 | zh_TW |
| dc.subject | 多智能體系統 | zh_TW |
| dc.subject | Multi-Agent System | en |
| dc.subject | Cooperative Positioning | en |
| dc.subject | Secure Positioning System | en |
| dc.subject | Satisfiability Modulo Theories | en |
| dc.title | 基於可滿足性模組理論之實數平面多智能體協同安全定位 | zh_TW |
| dc.title | Cooperative and Secure Multi-Agent Positioning on Real Coordinates Based on Satisfiability Modulo Theories | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江介宏;蕭旭君;陳尚澤 | zh_TW |
| dc.contributor.oralexamcommittee | Jie-Hong Roland Jiang;Hsu-Chun Hsiao;Shang-Tse Chen | en |
| dc.subject.keyword | 協同定位,多智能體系統,安全定位系統,可滿足性模組理論, | zh_TW |
| dc.subject.keyword | Cooperative Positioning,Multi-Agent System,Secure Positioning System,Satisfiability Modulo Theories, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202302956 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
