請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88755完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝馬利歐 | zh_TW |
| dc.contributor.advisor | Mario Hofmann | en |
| dc.contributor.author | 王耀緯 | zh_TW |
| dc.contributor.author | Yao-Wei Wang | en |
| dc.date.accessioned | 2023-08-15T17:39:19Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-03 | - |
| dc.identifier.citation | 1. Schirhagl, R., et al., Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem, 2014. 65: p. 83-105.
2. Liu, X., et al., Energy transfer from a single nitrogen-vacancy center in nanodiamond to a graphene monolayer. Applied Physics Letters, 2012. 101(23). 3. Optical studies of the 1.945 eV vibronic band in diamond. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1997. 348(1653): p. 285-298. 4. Kraus, H., et al., Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide. Sci Rep, 2014. 4: p. 5303. 5. <Quantum imaging of current flow in graphene(20230428).pdf>. 6. Resch-Genger, U., et al., Quantum dots versus organic dyes as fluorescent labels. Nat Methods, 2008. 5(9): p. 763-75. 7. Childress, L. and R. Hanson, Diamond NV centers for quantum computing and quantum networks. MRS Bulletin, 2013. 38(2): p. 134-138. 8. Segawa, T.F. and R. Igarashi, Nanoscale quantum sensing with Nitrogen-Vacancy centers in nanodiamonds - A magnetic resonance perspective. Prog Nucl Magn Reson Spectrosc, 2023. 134-135: p. 20-38. 9. Brenneis, A., et al., Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. Nat Nanotechnol, 2015. 10(2): p. 135-9. 10. Zeng, H., et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep, 2013. 3: p. 1608. 11. Li, D., et al., Facile fabrication of a single-particle platform with high throughput via substrate surface potential regulated large-spacing nanoparticle assembly. Nano Research, 2022. 15(7): p. 6713-6720. 12. Shvidchenko, A., et al., Colloids of detonation nanodiamond particles for advanced applications. Advances in Colloid and Interface Science, 2019. 268: p. 64-81. 13. <NUCLEAR MOTION COUPLED TO ELECTRONIC TRANSITION1.pdf>. 14. Abobeih, M.H., et al., Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature, 2019. 576(7787): p. 411-415. 15. Pham, L.M., et al., Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond. Physical Review B, 2012. 86(12). 16. Doherty, M.W., et al., The nitrogen-vacancy colour centre in diamond. Physics Reports, 2013. 528(1): p. 1-45. 17. Zhang, S.-C., et al., Thermal-demagnetization-enhanced hybrid fiber-based thermometer coupled with nitrogen-vacancy centers. Optical Materials Express, 2019. 9(12). 18. Jacques, V., et al., Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys Rev Lett, 2009. 102(5): p. 057403. 19. Zhu, B., et al., Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc Natl Acad Sci U S A, 2014. 111(32): p. 11606-11. 20. Lin, W.H., et al., Nearly 90% Circularly Polarized Emission in Monolayer WS(2) Single Crystals by Chemical Vapor Deposition. ACS Nano, 2020. 14(2): p. 1350-1359. 21. Clapp, A.R., I.L. Medintz, and H. Mattoussi, Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem, 2006. 7(1): p. 47-57. 22. Jares-Erijman, E.A. and T.M. Jovin, FRET imaging. Nat Biotechnol, 2003. 21(11): p. 1387-95. 23. Puchert, R.P., et al., Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs. Nat Nanotechnol, 2017. 12(7): p. 637-641. 24. Jones, R.R., et al., Raman Techniques: Fundamentals and Frontiers. Nanoscale Res Lett, 2019. 14(1): p. 231. 25. <Bright Fluorescent Nanodiamonds No Photobleaching and Low Cytotoxicity.pdf>. 26. Chang, Y.R., et al., Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol, 2008. 3(5): p. 284-8. 27. Opaluch, O.R., et al., Optimized Planar Microwave Antenna for Nitrogen Vacancy Center Based Sensing Applications. Nanomaterials (Basel), 2021. 11(8). 28. <RS, Siretta ECHO14-0.1M-UFL-S-S-15 PCB Multiband Antenna with UFL Connector, 2G, 3G, 4G.pdf>. 29. <Comparing Coax Launcher and Wafer Probe Excitation for 10mil Conductor Back CPW with Via Holes and Airbridge(20230718).pdf>. 30. Yang, M., et al., Controlling of the electronic properties of WS2 and graphene oxide heterostructures from first-principles calculations. Journal of Materials Chemistry C, 2017. 5(1): p. 201-207. 31. Ye, Z., D. Sun, and T.F. Heinz, Optical manipulation of valley pseudospin. Nature Physics, 2016. 13(1): p. 26-29. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88755 | - |
| dc.description.abstract | 氮-空缺(NV)中心是奈米鑽石的一種色中心缺陷,由於其自旋和光學特性,在生物學、磁感應和量子計算等領域有著廣泛的應用。其對外部磁場的極度敏感性和長的相干時間使其成為量子計算中最有前景的候選者之一。不同的環境也與其在實驗中的表現相關。然而,難以控制納米金剛石的組裝使得其特性機制與理解不同。在這裡,我們通過靜電引力吸引勢的納米金剛石聚集方法以及不同環境下的特性進行了演示。由於聚集物中含有多個顆粒而非單個顆粒,我們認為納米金剛石之間存在著相互吸引的作用。我們展示了納米金剛石核的磁矩在生長時被外部磁場所排列。聚集物中納米金剛石核的磁矩排列保持在特定的方向,使得其能量較正常樣品較低。納米金剛石聚集物在不同環境下顯示出不同的特性,這對於未來納米設備製造的量子計算應用非常有益。 | zh_TW |
| dc.description.abstract | The nitrogen-vacancy (NV) center is a defect in nanodiamond that has a various application in biology, magnetic sensing, and quantum computing because of its spin and optical properties. The extremely sensitive to external magnetic field and long decoherent time make it become the most promising candidates in quantum computing. And the different environment also be relative to their behavior on the experiment. However, it is hard to control the assembly of nanodiamond that make the mechanism of characteristics is different to understanding. Here, we demonstrate the nanodiamond assembly of clustering method by electrostatics attractive potential and the characteristics of nanodiamond in different environments. Because of the deposits in cluster not a single particle, we think there is the attractive interaction between nanodiamond particles. We demonstrate the magnetic moment of nanodiamond nuclear is aligned by the external magnetic field when growing. The magnetic moment of nanodiamond nuclear cluster alignment keep in the specific orientation that make the energy less than normal sample. The nanodiamond cluster particle show the various characteristics in different environment, which is beneficial for the quantum computing application made by nanodevice in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:39:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:39:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
英文摘要……………………………………………………………………i 中文摘要……………………………………………………………………ii Chapter1 Introduction……………………………………………………1 Chapter 2 Theory and Equipment Instruments……………………………3 2.1 NV center……………………………………………………3 2.1.1 Optical and spin properties…………………………………4 2.1.2 Optically detected magnetic resonance(ODMR) ………………6 2.1.3 Magnetometer……………………………………………8 2.1.4 Nuclear spin cluster………………………………………9 2.2 WS2 physical properties……………………………………11 2.3 Interaction between nanoparticle and two-dimensional material………………………………14 2.3.1 Non-radiative energy transfer………………………………15 2.3.2 Fӧrster resonance energy transfer (FRET) …………………16 2.4 Nanodevice…………………………………………………18 2.5 Frank-Condon Principle……………………………………20 2.6 Raman spectrum system……………………………………22 2.7 Photoluminescence spectrum system…………………………24 2.8 Atomic Force Microscope…………………………………25 Chapter 3 Experimental method………………………………………27 3.1 Sample fabrication……………………………………………27 3.1.1 Silicon substrate cleaning…………………………………27 3.1.2 Synthesis of nanodiamond…………………………………28 3.1.3 Thin film nanodiamond…………………………………28 3.1.4 Single-particle nanodiamond……………………………29 3.1.5 Synthesis of monolayer WS2 ……………………………31 3.2 Antenna fabrication…………………………………………32 3.2.1 Return loss of fabricated antenna…………………………32 3.2.2 Optimized antenna………………………………………33 3.3 Experimental setup of polarization ODMR……………………34 Chapter 4 Result and Discussion………………………………………36 4.1 Interaction between NV center and WS2 ………………………36 4.1.1 Mechanism of interaction between NV center and WS2 ………36 4.1.2 polarized ODMR of single point…………………………42 4.2 Optical properties of NV center in single-particle device………46 4.2.1 Mapping imaging………………………………………46 4.2.2 Single point focusing OMDR………………………………49 4.3 Magnetic properties of NV center……………………………50 4.3.1 Mapping imaging…………………………………………51 4.3.2 Single point focusing……………………………………53 Chapter 5 Conclusion……………………………………………………56 Reference………………………………………………………………57 | - |
| dc.language.iso | en | - |
| dc.subject | 奈米鑽石 | zh_TW |
| dc.subject | 偏振 | zh_TW |
| dc.subject | 弗蘭克-康登轉變 | zh_TW |
| dc.subject | 核自旋簇 | zh_TW |
| dc.subject | 光學檢測磁共振 | zh_TW |
| dc.subject | 靜電組成沉積 | zh_TW |
| dc.subject | 單粒子 | zh_TW |
| dc.subject | single particle | en |
| dc.subject | nanodiamond | en |
| dc.subject | polarization | en |
| dc.subject | Frank-Condon transition | en |
| dc.subject | ODMR | en |
| dc.subject | nuclear spin cluster | en |
| dc.subject | electrostatics assembly deposition | en |
| dc.title | 不同環境下的奈米鑽石特性 | zh_TW |
| dc.title | Characteristic of nanodiamond in different environment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝雅萍;陳永芳;丁初稷 | zh_TW |
| dc.contributor.oralexamcommittee | Ya-Pin Hsieh;Yang-Fang Chen;Chu-Ji Ding | en |
| dc.subject.keyword | 奈米鑽石,單粒子,靜電組成沉積,光學檢測磁共振,核自旋簇,弗蘭克-康登轉變,偏振, | zh_TW |
| dc.subject.keyword | nanodiamond,single particle,electrostatics assembly deposition,ODMR,nuclear spin cluster,Frank-Condon transition,polarization, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202302380 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
