Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88749
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃奎隆zh_TW
dc.contributor.advisorKwei-Long Huangen
dc.contributor.author李韶軒zh_TW
dc.contributor.authorShao-Xuan Leeen
dc.date.accessioned2023-08-15T17:37:51Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAllahverdi, A., Gupta, J.N.D. and Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega-International Journal of Management Science, 27(4), 219-239.
Allahverd,i A., Ng, C.T. and Cheng, T.C.E. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(6), 985-1032.
Johnson, S.M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68.
Ignall, E. and Schrage, L. (1965). Application of the branch and bound technique to some flow-shop scheduling problems. Operations Research, 13(3), 400-412.
Willem, J. S. and David, D. H. (1986). A mixed-integer goal-programming formulation of the standard flow-shop scheduling problem. Journal of the Operational Research Society, 37(12), 1121-1128.
Manas Ranjan Singh & S. S. Mahapatra (2012). A swarm optimization approach for flexible flow shop scheduling with multiprocessor tasks. The International Journal of Advanced Manufacturing Technology, 62, 267–277.
Weishi Shao , Zhongshi Shao & Dechang Pi (2021). Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem. Computers and Operations Research, 105482, ISSN 0305-0548
Jitti Jungwattanakit, Manop Reodecha, Paveena Chaovalitwongse, Frank Werner (2009), A comparison of scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria.Computers & Operations Research, Pages 358-378.
Arash Motaghedi-larijani, Kamyar Sabri-laghaie, Mahdi Heydari (2010), Solving Flexible Job Shop Scheduling with Multi Objective Approach. International Journal of Industrial Engineering & Production Research,Pages 197-209.
Liu, L.L, Hu, R.S., Hu, X.P., Zhao, G.P. and Wang, S. (2015). A hybrid PSO-GA algorithm for job shop scheduling in machine tool production. International Journal of Production Research, 53(19), 5755-5781.
Ali Hasani, Seyed Mohammad Hassan Hosseini (2022). Auxiliary resource planning in a flexible flow shop scheduling problem considering stage skipping. Computers & Operations Research, Volume 138,ISSN 0305-0548.
Fernandez-Viagas, Victor, Luis Sanchez-Mediano, Alvaro Angulo-Cortes, David Gomez-Medina, and Jose Manuel Molina-Pariente (2022). "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm" Mathematics 10, no. 19: 3446.
Wang, Duo, and Junlong Zhang (2023). "Flow shop scheduling with human–robot collaboration: a joint chance-constrained programming approach." International Journal of Production Research: 1-21.
Gong, G., Deng, Q., Gong, X., Liu, W., & Ren, Q. (2018). A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators. Journal of Cleaner Production, 174, 560-576.
Di Martinelly, C., Baptiste, P., & Maknoon, M. Y. (2014). An assessment of the integration of nurse timetable changes with operating room planning and scheduling. International Journal of Production Research, 52(24), 7239-7250.
Moon, J. Y., & Park, J. (2014). Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. International Journal of Production Research, 52(13), 3922-3939.
Öztop, H., Tasgetiren M. F., Eliiyi, D. T. and Pan, Q.K. (2018). Iterated greedy algorithms for the hybrid flowshop scheduling with total flow time minimization. Proceedings of ACM GECCO conference, Kyoto, Japan.
Fan, J., Zhang, C., Liu, Q., Shen, W., & Gao, L. (2022). An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules. Journal of Manufacturing Systems, 62, 650-667.
Vital-Soto, A., Baki, M. F., & Azab, A. (2022). A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility. Flexible Services and Manufacturing Journal, 1-43.
Gong, G., Chiong, R., Deng, Q., Han, W., Zhang, L., Lin, W., & Li, K. (2020). Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems with Applications, 141, 112902.
Luo, J., Fujimura, S., El Baz, D., & Plazolles, B. (2019). GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem. Journal of Parallel and Distributed Computing, 133, 244-257.
Chen, T. L., Cheng, C. Y., & Chou, Y. H. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 290, 813-836.
Umam, M. S., Mustafid, M., & Suryono, S. (2022). A hybrid genetic algorithm and tabu search for minimizing makespan in flow shop scheduling problem. Journal of King Saud University-Computer and Information Sciences, 34(9), 7459-7467.
Yu, C., Semeraro, Q., & Matta, A. (2018). A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Computers & Operations Research, 100, 211-229.
Wang, L., Zhang, L., & Zheng, D. Z. (2006). An effective hybrid genetic algorithm for flow shop scheduling with limited buffers. Computers & Operations Research, 33(10), 2960-2971.
Paksi, A. B. N., & Ma'ruf, A. (2016, February). Flexible job-shop scheduling with dual-resource constraints to minimize tardiness using genetic algorithm. In IOP Conference series: Materials science and engineering (Vol. 114, No. 1, p. 012060). IOP Publishing.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88749-
dc.description.abstract隨著勞工的薪資逐年提升,企業爲了要維持自身競爭力必須將其納入成本環節中做考量,因此結合人力資源與生產排程就顯得至關重要,只有兩者相結合才能夠排出一個最高效的排程計劃。雙彈性流線型生產排程是目前許多製造業工廠内常見到的生產模式,例如模具加工廠、電子製造產業、半導體的晶片代工廠等。在流線型生產排程中,所有工件的加工順序都是相同的,而第一個彈性指的就是生產環境中至少存在一台機台具有加工不同種類工件和不同加工階段的彈性。由於在生產製造上目前大部分還是仰賴人機協同進行作業,所以在工件準備進行加工前,需要具有相應技能水平的作業員到其準備投入的機台上進行前置作業。故第二個彈性係指作業員在處理不同加工階段中,機台前置作業的技能彈性。

本研究中所欲探討的研究議題包含許多特性,其中在整個典型的流線型生產排程中具備生產多種產品並且考量途程規劃的特性。在機台上也考量了獨立作業時間、機台加工能力限制、機台效率、機台加工能力和具備多功能機台等特性。在工作人員的部分也考量了獨立前置作業時間、工作人員加工能力限制、工作人員效率和工作人員工作時間表。考量以上特性方能建構有效的生產排程方法,以滿足實務製造現場中的需求。

本研究議題中涵蓋了多種要素是過往學者們沒探討過的全新問題,在求解問題上採用了基因演算法和整數規劃模型爲基礎,開發出一個混合式分段啓發式演算法來求解該問題,該演算法在針對中小型排程問題中能夠更有效率的求解,並於有限時間内取得最合適的排程計劃。最後則是會將混合式分段啓發式演算法的結果與基因演算法進行比較,以證明本研究開發之方法在面對該問題時無論在求解效率或求解結果上皆具備實用性與有效性,並且最後也會使用實務案例進行驗證。
zh_TW
dc.description.abstractWith the annual increase in labor wages, businesses must consider incorporating them into their cost considerations in order to maintain their competitiveness. Therefore, the integration of human resources and production scheduling becomes crucial, as only the combination of the two can generate the most efficient scheduling plan. Dual-flexible flow production scheduling is a common production model found in many manufacturing plants, such as mold processing factories, electronic manufacturing industries, and semiconductor chip foundries. In a flow production scheduling, the processing sequence of all workpieces is the same, and the first flexibility refers to the presence of at least one machine in the production environment that can process different types of workpieces and different processing stages. Since most manufacturing processes still rely on human-machine collaboration, operators with the corresponding skill levels need to perform preparatory tasks on the machine before processing the workpiece. Hence, the second flexibility refers to the skill flexibility of operators in performing pre-processing tasks at different processing stages.

The research topic to be explored in this study includes various characteristics, including the production of multiple products in a typical flow production scheduling while considering route planning. The characteristics of machine consideration include independent operation time, machine processing capacity constraints, machine efficiency, machine capacity, and multi-functional machines. The workforce considerations include independent setup time, workforce processing capacity constraints, workforce efficiency, and workforce schedules. Considering these characteristics is essential to construct an effective production scheduling method that meets the needs of practical manufacturing sites.

This research topic encompasses multiple elements that have not been explored by previous scholars, presenting a completely new set of problems. To solve these problems, a combination of genetic algorithms and integer programming models has been employed as the foundation. A Hybrid Segmented Heuristic Algorithm has been developed to address the problem, allowing for more efficient resolution of medium and small-scale scheduling problems and achieving the most optimal scheduling plan within a limited timeframe. Finally, a comparison will be made between the results obtained from the Hybrid Segmented Heuristic Algorithm and those from the genetic algorithm. This comparison aims to demonstrate the practicality and effectiveness of the method developed in this study, both in terms of solution efficiency and results. Additionally, real-world case studies will be utilized for further validation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:37:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:37:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會鑒定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
1.3研究架構 4
第二章 文獻回顧 6
2.1 流線型生產排程 6
2.2 彈性流線型生產排程 7
2.3 資源限制排程問題 8
2.4 混合整數線性規劃模型簡介 9
2.5 基因演算法 11
2.6 小結 13
第三章 問題描述與研究方法 15
3.1 問題描述 15
3.1.1 彈性流線型生產排程 15
3.1.2具備多功能機台 16
3.1.3機台效率差異性 17
3.1.4考量機台的加工能力 18
3.1.5考量獨立前置作業時間與途程規劃 19
3.1.6考量工人的技術限制 20
3.1.7考量工人的輪休工作時間表與工作效率 21
3.2 問題假設與研究限制 22
3.3 研究方法 23
第四章 混合式分段啓發式演算法 26
4.1 基因演算法 26
4.1.1 編碼與初始群體 26
4.1.2 交配方法 27
4.1.3 突變方法 28
4.1.4 染色體解碼與適應值計算 29
4.2 第一階段-基因演算法 31
4.2.1 編碼與初始群體 32
4.2.2 交配方法 33
4.2.3 突變方法 33
4.2.4 染色體解碼與適應值計算 34
4.2.5 選擇優良的後代 34
4.3 第二階段-混合整數線性規劃模型 35
4.3.1 參數與決策變數說明 35
4.3.2 數學規劃模型 37
4.3.3 限制式說明 39
4.4 小範例實務應用 40
4.4.1 HSHA第一階段:基因演算法求解工件和機台之間指派關係 43
4.4.2 HSHA第二階段:混合整數線性規劃模型求解機台前置作業時間和工作人員之間指派關係 44
第五章 數值分析與實例驗證 46
5.1 情境設計與參數設定說明 46
5.2 實驗結果與分析 53
5.2.1 數值分析實驗結果 53
5.2.2 排程與管理策略建議 62
5.3 實務案例驗證 63
第六章 結論 74
6.1 研究總結 74
6.2 未來研究方向 75
參考文獻 77
-
dc.language.isozh_TW-
dc.subject最小化總成本zh_TW
dc.subject混合式分段啓發式演算法zh_TW
dc.subject途程規劃zh_TW
dc.subject雙彈性流線型生產排程zh_TW
dc.subject獨立設置時間zh_TW
dc.subjectRoute planningen
dc.subjectDual-flexible flow production schedulingen
dc.subjectIndependent setup timeen
dc.subjectMinimization of total costen
dc.subjectHybrid Segmented Heuristic Algorithmen
dc.title考量人力與機台限制下之雙彈性流線型生產排程zh_TW
dc.titleDouble Flexible Flow-Shop Scheduling with Considering Manpower and Machine Constrainsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭辰仰;吳政翰zh_TW
dc.contributor.oralexamcommitteeChen-Yang Cheng;Gen-Han Wuen
dc.subject.keyword雙彈性流線型生產排程,途程規劃,獨立設置時間,混合式分段啓發式演算法,最小化總成本,zh_TW
dc.subject.keywordDual-flexible flow production scheduling,Route planning,Independent setup time,Hybrid Segmented Heuristic Algorithm,Minimization of total cost,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202302899-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved