請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88737完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | zh_TW |
| dc.contributor.advisor | Chih-Wen Liu | en |
| dc.contributor.author | 陳家濬 | zh_TW |
| dc.contributor.author | Chia-Chun Chen | en |
| dc.date.accessioned | 2023-08-15T17:34:55Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | [1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA: a cancer journal for clinicians, vol. 68, no. 6, pp. 394-424, 2018.
[2] C. Chen, M. Hoffmeister, and H. Brenner, "The toll of not screening for colorectal cancer," Expert review of gastroenterology & hepatology, vol. 11, no. 1, pp. 1-3, 2017. [3] G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, vol. 405, no. 6785, pp. 417-417, 2000. [4] J. Park et al., "Artificial intelligence that determines the clinical significance of capsule endoscopy images can increase the efficiency of reading," PLoS One, vol. 15, no. 10, p. e0241474, 2020. [5] A. Biniaz, R. A. Zoroofi, and M. R. Sohrabi, "Automatic reduction of wireless capsule endoscopy reviewing time based on factorization analysis," Biomedical Signal Processing and Control, vol. 59, p. 101897, 2020. [6] H. Gu, H. Zheng, X. Cui, Y. Huang, and B. Jiang, "Maneuverability and safety of a magnetic-controlled capsule endoscopy system to examine the human colon under real-time monitoring by colonoscopy: a pilot study (with video)," Gastrointestinal Endoscopy, vol. 85, no. 2, pp. 438-443, 2017. [7] S. Levine, C. Finn, T. Darrell, and P. Abbeel, "End-to-end training of deep visuomotor policies," The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334-1373, 2016. [8] A. Pore et al., "Colonoscopy navigation using end-to-end deep visuomotor control: A user study," in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022: IEEE, pp. 9582-9588. [9] X. Zabulis, A. A. Argyros, and D. P. Tsakiris, "Lumen detection for capsule endoscopy," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: IEEE, pp. 3921-3926. [10] R. Reilink, S. Stramigioli, and S. Misra, "Image-based flexible endoscope steering," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: IEEE, pp. 2339-2344. [11] N. Van der Stap, R. Reilink, S. Misra, I. A. M. J. Broeders, and F. van der Heijden, "The use of the focus of expansion for automated steering of flexible endoscopes," in 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012: IEEE, pp. 13-18. [12] C. Sánchez, J. Bernal, D. Gil, and F. J. Sánchez, "On-line lumen centre detection in gastrointestinal and respiratory endoscopy," in Clinical Image-Based Procedures. Translational Research in Medical Imaging: Second International Workshop, CLIP 2013, Held in Conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013, Revised Selected Papers 2, 2014: Springer, pp. 31-38. [13] D. Wang, X. Xie, G. Li, Z. Yin, and Z. Wang, "A lumen detection-based intestinal direction vector acquisition method for wireless endoscopy systems," IEEE Transactions on Biomedical Engineering, vol. 62, no. 3, pp. 807-819, 2014. [14] J. W. Martin, B. Scaglioni, J. C. Norton, V. Subramanian, A. Arezzo, K. L. Obstein, and P. Valdastri, "Enabling the future of colonoscopy with intelligent and autonomous magnetic manipulation," Nature machine intelligence, vol. 2, no. 10, pp. 595-606, 2020. [15] E. Rosten and T. Drummond, "Machine learning for high-speed corner detection," in Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9, 2006: Springer, pp. 430-443. [16] J. Chen, X. Zhu, and C. Qiu, "Locomotion and steering design of an active capsule robot for endoscopic inspection," in 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2009: IEEE, pp. 2344-2348. [17] S. Yang, K. Park, J. Kim, T. S. Kim, I.-J. Cho, and E.-S. Yoon, "Autonomous locomotion of capsule endoscope in gastrointestinal tract," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011: IEEE, pp. 6659-6663. [18] J. M. Prendergast, G. A. Formosa, C. R. Heckman, and M. E. Rentschler, "Autonomous localization, navigation and haustral fold detection for robotic endoscopy," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 783-790. [19] J. M. Prendergast, G. A. Formosa, M. J. Fulton, C. R. Heckman, and M. E. Rentschler, "A real-time state dependent region estimator for autonomous endoscope navigation," IEEE Transactions on Robotics, vol. 37, no. 3, pp. 918-934, 2020. [20] C. C. Poon, B. Leung, C. K. Chan, J. Y. Lau, and P. W. Chiu, "Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues," Surgical endoscopy, vol. 30, pp. 772-778, 2016. [21] F. N. Alsunaydih, M. S. Arefin, J.-M. Redoute, and M. R. Yuce, "A navigation and pressure monitoring system toward autonomous wireless capsule endoscopy," IEEE Sensors Journal, vol. 20, no. 14, pp. 8098-8107, 2020. [22] H.-E. Huang, S.-Y. Yen, C.-F. Chu, F.-M. Suk, G.-S. Lien, and C.-W. Liu, "Autonomous navigation of a magnetic colonoscope using force sensing and a heuristic search algorithm," Scientific reports, vol. 11, no. 1, p. 16491, 2021. [23] 黃威銘, "基於資料擴增與深度學習的改善磁控膠囊內視鏡辨識腸道之研究," Study on the Improvement of Intestinal Identification by Magnetic Controlled Capsule Endoscope Based on Data Augmentation and Deep Learning, 國立臺灣大學電機工程學研究所, 2020. [24] 褚家灃, "應用於磁控膠囊內視鏡之控制策略及自動牽引技術," Control Strategy and Automatic Traction Technology for Magnetic Controlled Capsule Endoscopy, 國立臺灣大學電機工程學研究所, 2020. [25] 嚴聲揚, "混合式影像之腸腔追蹤演算法用於磁控膠囊內視鏡自動牽引," A hybrid image-based lumen tracking algorithm for magnetic capsule colonoscope navigation, 國立臺灣大學電機工程學研究所, 2022. [26] F. Richter, R. K. Orosco, and M. C. Yip, "Open-sourced reinforcement learning environments for surgical robotics," arXiv preprint arXiv:1903.02090, 2019. [27] E. Tagliabue, A. Pore, D. Dall’Alba, E. Magnabosco, M. Piccinelli, and P. Fiorini, "Soft tissue simulation environment to learn manipulation tasks in autonomous robotic surgery," in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020: IEEE, pp. 3261-3266. [28] H. Wang and A. Banerjee, "Bregman alternating direction method of multipliers," Advances in Neural Information Processing Systems, vol. 27, 2014. [29] J. A. Bagnell and J. Schneider, "Covariant policy search," 2003. [30] S. Levine and P. Abbeel, "Learning neural network policies with guided policy search under unknown dynamics," Advances in neural information processing systems, vol. 27, 2014. [31] J. Peters and S. Schaal, "Reinforcement learning of motor skills with policy gradients," Neural networks, vol. 21, no. 4, pp. 682-697, 2008. [32] J. Peters, K. Mulling, and Y. Altun, "Relative entropy policy search," in Proceedings of the AAAI Conference on Artificial Intelligence, 2010, vol. 24, no. 1, pp. 1607-1612. [33] S. Levine and V. Koltun, "Guided policy search," in International conference on machine learning, 2013: PMLR, pp. 1-9. [34] S. Levine and V. Koltun, "Learning complex neural network policies with trajectory optimization," in International Conference on Machine Learning, 2014: PMLR, pp. 829-837. [35] C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9. [36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009: Ieee, pp. 248-255. [37] W. Meeussen et al., "Autonomous door opening and plugging in with a personal robot," in 2010 IEEE International Conference on Robotics and Automation, 2010: IEEE, pp. 729-736. [38] K. Clark et al., "The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository," Journal of digital imaging, vol. 26, pp. 1045-1057, 2013. [39] B. H. Jeong, H. K. Kim, and Y. D. Son, "Depth estimation of endoscopy using sim-to-real transfer," arXiv preprint arXiv:2112.13595, 2021. [40] M. B. Christensen, K. Oberg, and J. C. Wolchok, "Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue," SpringerPlus, vol. 4, pp. 1-10, 2015. [41] A. Z. Taddese, P. R. Slawinski, K. L. Obstein, and P. Valdastri, "Nonholonomic closed-loop velocity control of a soft-tethered magnetic capsule endoscope," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016: IEEE, pp. 1139-1144. [42] Y. Wang, Y. He, X. Deng, Z. Lei, Y. Chen, and M. Li, "Learning friction model for tethered capsule robot," in 2021 6th International Conference on Robotics and Automation Engineering (ICRAE), 2021: IEEE, pp. 280-285. [43] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018. [44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," arXiv preprint arXiv:1707.06347, 2017. [45] T. Haarnoja et al., "Soft actor-critic algorithms and applications," arXiv preprint arXiv:1812.05905, 2018. [46] T. P. Lillicrap et al., "Continuous control with deep reinforcement learning," arXiv preprint arXiv:1509.02971, 2015. [47] M. F. Kaminski et al., "Performance measures for lower gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative," United European gastroenterology journal, vol. 5, no. 3, pp. 309-334, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88737 | - |
| dc.description.abstract | 近年來,由於大腸相關的病灶在國內都是排列第一的,而根據研究報告早期大腸鏡的篩檢有助於提高與結腸癌相關之存活率。在傳統的內視鏡檢查會因其固有的操作複雜性而產生了門檻的限制,而我們實驗室所使用的磁控膠囊內視鏡則相較於傳統內視鏡有了許多優點,例如:舒適性、低壓迫性、遠程控制等優點。
近年來各行各業陸陸續續導入AI技術,在醫學領域中也不例外,為了減少內視鏡醫師的工作負擔和操作時間,我們實驗室的學長已有開發透過腸鏡鏡頭獲取之影像處理、訓練深度學習模型、梯度計算相關應用達成由直腸至盲腸之全自動牽引之可行性研究。在本篇論文中,我期望使用另一種的深度學習模型將模型做改良並且使模型複雜化降低。我使用了一種強化學習(Reinforcement Learning,RL)之變型深度視覺運動控制(Deep Visuomotor Control,DVC)來做改良並在模擬的環境裡達到更好的任務效果。 強化學習雖然在機器學習上能完成許多任務,但在現實環境中機器人並不像人類有著聽覺、觸覺、味覺和嗅覺,而深度視覺運動控制則是開發了一種方法基於強化學習將原始圖像透過Convolutional Neural Networks(CNN)將強化學習的前處理變成監督學習,而處理後的輸入則作為訓練強化學習Policy使一系列需要在實現了在現實環境視覺和控制之間的協調。在本篇論文期望使用這種方法實現內視鏡在腸道自動牽引的高維連續動作。 | zh_TW |
| dc.description.abstract | Recently, colorectal diseases have emerged as the most prevalent health concern domestically. Early colonoscopy screenings, as research suggests, enhance survival rates for colon cancer patients. Traditional endoscopy, due to its inherent complexity, poses significant challenges. Our lab employs magnetically-controlled capsule endoscopy, providing advantages like greater comfort, reduced invasiveness, and remote control capabilities.
Various sectors are integrating AI technology, with medicine being no exception. To lessen the burden on endoscopists, previous work in our lab has developed a deep learning model for automating rectal-to-cecal traction, leveraging image processing and gradient computations. This paper seeks to improve and simplify this model using a variant of Reinforcement Learning (RL), termed Deep Visuomotor Control (DVC), achieving superior performance in a simulated environment. RL is proficient at various machine learning tasks, but real-world robots lack human senses. DVC addresses this by transforming RL preprocessing into supervised learning via Convolutional Neural Networks (CNN). This transformed input is used as an RL training policy, enabling coordinated actions in realistic vision and control scenarios. This paper aims to utilize this approach for implementing automatic endoscope traction in the intestines. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:34:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:34:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機及研究目的 2 1.3 文獻回顧 3 1.3.1 腸腔檢測 3 1.3.2 自動牽引 4 1.4 章節摘要 10 第二章 磁牽引平台與磁控內視鏡之介紹 11 2.1 MFN之演進 11 2.1.1 第一代磁牽引平台(MFN Platform) 11 2.1.2 第二代磁牽引平台(MFN Platform) 13 2.2 磁輔助控制系統 15 2.2.1 MFN平台 15 2.2.2 磁控膠囊內視鏡 23 2.2.3 磁輔助系統之架構 24 2.3 牽引平台之自動牽引技術 26 2.3.1 內視鏡訓練之模型 26 2.3.2 混合式影像之腸腔追蹤演算法 27 第三章 深度視覺運動控制之介紹 32 3.1 深度視覺運動政策 32 3.1.1 強化學習和策略搜索方法 34 3.1.2 定義及其架構 36 3.2 帶有BADMM之指導策略搜索 41 3.2.1 演算法推導 42 3.2.2 未知動態下的軌跡優化 44 3.2.3 監督策略優化 46 3.3 端對端的視覺運動策略 47 3.3.1 視覺運動策略之結構 48 3.3.2 視覺運動策略之訓練 49 3.4 深度視覺運動策略之性能評估 52 3.4.1 實驗任務 52 3.4.2 實驗條件 53 3.4.3 比較評估 54 3.4.4 視覺干擾 55 3.4.5 端對端訓練學習到的特徵 55 第四章 實驗介紹與實驗成果討論 57 4.1 硬體與架構 57 4.2 真實腸道模擬環境 57 4.3 內視鏡模擬 60 4.4 深度視覺控制Deep Visuomotor control 61 4.4.1 學習演算法 61 4.4.2 動作空間 62 4.4.2.1 Reward Shaping 62 4.4.3 觀察空間和策略 65 4.4.4 獎勵函數 66 4.5 DVC實驗成果與討論 68 4.5.1 導航指標介紹 68 4.5.2 DVC代理(Agent)訓練結果與比較 69 第五章 結論與未來工作 74 5.1 結論 74 5.2 未來工作 75 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 膠囊內視鏡 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 磁控牽引 | zh_TW |
| dc.subject | 強化學習 | zh_TW |
| dc.subject | 深度視覺運動控制 | zh_TW |
| dc.subject | Magnetic guiding system | en |
| dc.subject | Deep learning | en |
| dc.subject | Reinforcement Learning | en |
| dc.subject | Capsule endoscope | en |
| dc.subject | Deep Visuomotor Control | en |
| dc.title | 深度視覺運動控制之磁控膠囊內視鏡自動牽引 | zh_TW |
| dc.title | Deep Visuomotor Control for Magnetic Capsule Colonoscope Navigation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃世杰;蔡孟伸 | zh_TW |
| dc.contributor.oralexamcommittee | Shyh-Jier Huang;Men-Shen Tsai | en |
| dc.subject.keyword | 膠囊內視鏡,磁控牽引,深度學習,強化學習,深度視覺運動控制, | zh_TW |
| dc.subject.keyword | Capsule endoscope,Magnetic guiding system,Deep learning,Reinforcement Learning,Deep Visuomotor Control, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202302720 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
