請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88719
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王俊能 | zh_TW |
dc.contributor.advisor | Chun-Neng Wang | en |
dc.contributor.author | 陳存瑩 | zh_TW |
dc.contributor.author | Tsun-Ying Chen | en |
dc.date.accessioned | 2023-08-15T17:30:07Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-04 | - |
dc.identifier.citation | Bergbusch, V. L. (1999). A Note on the Manipulation of Flower Symmetry in Antirrhinum majus. Annals of Botany, 83(5), 483-488. https://doi.org/https://doi.org/10.1006/anbo.1998.0844
Braybrook, S. A., & Kuhlemeier, C. (2010). How a plant builds leaves. The Plant Cell, 22(4), 1006-1018. https://doi.org/10.1105/tpc.110.073924 Broholm, S. K., Tähtiharju, S., Laitinen, R. A., Albert, V. A., Teeri, T. H., Elomaa, P. . (2008). A TCP domain transcription factor controls flowertype specification along the radial axis of theGerbera(Asteraceae) inflorescence. Proceedings of the National Academy of Sciences, 105(26), 9117-9122. https://doi.org/https://doi.org/10.1073/pnas.0801359105 Burian, A., Paszkiewicz, G., Nguyen, K. T., Meda, S., Raczynska-Szajgin, M., & Timmermans, M. C. P. (2022). Specification of leaf dorsiventrality via a prepatterned binary readout of a uniform auxin input. Nature Plants, 8(3), 269-280. https://doi.org/10.1038/s41477-022-01111-3 Busch, A., & Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceeding of National Academy of Sciences, 104(42), 16714-16719. https://doi.org/https://doi.org/10.1073/pnas.0705338104 Chen, M. K., Hsu, W. H., Lee, P. F., Thiruvengadam, M., Chen, H. I., & Yang, C. H. (2011). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant Journal, 68(1), 168-185. https://doi.org/10.1111/j.1365-313X.2011.04677.x Chen, W. H., Li, P. F., Chen, M. K., Lee, Y. I., & Yang, C. H. (2015). FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission. Plant Physiology, 168(4), 1666-1683. https://doi.org/10.1104/pp.15.00433 Corley, S. B., Carpenter, R., Copsey, L., & Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of United States of America, 102(14), 5068-5073. Costa, M. M., Fox, S., Hanna, A. I., Baxter, C., & Coen, E. (2005). Evolution of regulatory interactions controlling floral asymmetry. Development, 132(22), 5093-5101. https://doi.org/10.1242/dev.02085 Dastidar, M. G., Scarpa, A., Magele, I., Ruiz-Duarte, P., von Born, P., Bald, L., Jouannet, V., & Maizel, A. (2019). ARF5/MONOPTEROS directly regulates miR390 expression in the Arabidopsis thaliana primary root meristem. Plant Direct, 3(2), e00116. https://doi.org/10.1002/pld3.116 Ding, B., Li, J., Gurung, V., Lin, Q., Sun, X., & Yuan, Y. W. (2021). The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii. New Phytologiest, 232(5), 2191-2206. https://doi.org/10.1111/nph.17702 Ding, B., Xia, R., Lin, Q., Gurung, V., Sagawa, J. M., Stanley, L. E., Strobel, M., Diggle, P. K., Meyers, B. C., & Yuan, Y. W. (2020). Developmental Genetics of Corolla Tube Formation: Role of the tasiRNA-ARF Pathway and a Conceptual Model. The Plant Cell, 32(11), 3452-3468. https://doi.org/10.1105/tpc.18.00471 Doebley, J., & Lukens, L. (1998). Transcriptional Regulators and the Evolution of Plant Form. The Plant Cell, 10(7), 1075-1082. https://doi.org/https://doi.org/10.1105/tpc.10.7.1075 Dong, Y., Liu, J., Li, P. W., Li, C. Q., Lu, T. F., Yang, X., & Wang, Y. Z. (2018). Evolution of Darwin's Peloric Gloxinia (Sinningia speciosa) Is Caused by a Null Mutation in a Pleiotropic TCP Gene. Molecular Biology and Evolution, 35(8), 1901-1915. https://doi.org/10.1093/molbev/msy090 Doyle, J. J. D. a. J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11-15. Du, Z. Y., & Wang, Y. Z. (2008). Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii (Gesneriaceae). Journal of Systematics and Evolution, 45(1), 23-31. https://doi.org/10.3724/SP.J.1002.2008.07059 Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acid Research, 19(6), 1349. https://doi.org/https://doi.org/10.1093/nar/19.6.1349 Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A. L., & Carrington, J. C. (2006). Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Current Biology, 16(9), 939-944. https://doi.org/10.1016/j.cub.2006.03.065 Fambrini, M., Salvini, M., & Pugliesi, C. (2011). A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica, 139(11-12), 1521-1529. https://doi.org/10.1007/s10709-012-9652-y Ferreira, M. J., Silva, J., Pinto, S. C., & Coimbra, S. (2023). I Choose You: Selecting Accurate Reference Genes for qPCR Expression Analysis in Reproductive Tissues in Arabidopsis thaliana. Biomolecules, 13(3), 463. https://doi.org/10.3390/biom13030463 Fischer, C., & Neuhaus, G. (1996). Influence of auxin on the establishment of bilateral symmetry in monocots. The Plant Journal, 9(5), 659-669. https://doi.org/10.1046/j.1365-313X.1996.9050659.x Fouracre, J. P., & Poethig, R. S. (2016). The role of small RNAs in vegetative shoot development. Current Opinion in Plant Biology, 29, 64-72. https://doi.org/10.1016/j.pbi.2015.11.006 Giurfa, M., Dafni, A., & Neal, P. R. (1999). Floral Symmetry and Its Role in Plant‐Pollinator Systems. International Journal of Plant Sciences, 160(S6), S41-S50. Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10(5), 453-460. https://doi.org/10.1016/j.pbi.2007.08.014 Hadfi, K., Speth, V., & Neuhaus, G. (1998). Auxin-induced developmental patterns in Brassica juncea embryos. Development, 125(5), 879-887. https://doi.org/https://doi.org/10.1242/dev.125.5.879 Han, Y., Yong, X., Yu, J., Cheng, T., Wang, J., Yang, W., Pan, H., & Zhang, Q. (2019). Identification of Candidate Adaxial-Abaxial-Related Genes Regulating Petal Expansion During Flower Opening in Rosa chinensis "Old Blush". Frontiers in Plant Science, 10, 1098. https://doi.org/10.3389/fpls.2019.01098 Harrison, S. J., Mott, E. K., Parsley, K., Aspinall, S., Gray, J. C., & Cottage, A. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods, 2(1), 1-7. https://doi.org/10.1186/1746-4811-2-19 Hayashi, K. I. (2021). Chemical Biology in Auxin Research. Cold Spring Harbor Perspetives in Biology, 13(5), a040105. https://doi.org/10.1101/cshperspect.a040105 Hedhly, A., Vogler, H., Eichenberger, C., & Grossniklaus, U. (2018). Whole-mount Clearing and Staining of Arabidopsis Flower Organs and Siliques. JoVE (Journal of Visualized Experiments)(134), e56441. https://doi.org/10.3791/56441 Hileman, L. C., Kramer, E. M., & Baum, D. A. (2003). Differential regulation of symmetry genes and theevolution of floral morphologies. Proceedings of the National Academy of Sciences of United States of America, 100(22), 12814-12819. Hsin, K. T., & Wang, C. N. (2018). Expression shifts of floral symmetry genes correlate to flower actinomorphy in East Asia endemic Conandron ramondioides (Gesneriaceae). Botanical Studies, 59(1), 1-11. https://doi.org/10.1186/s40529-018-0242-x Hsu, H.-C., Chen, C.-Y., Lee, T.-K., Weng, L.-K., Yeh, D.-M., Lin, T.-T., Wang, C.-N., & Kuo, Y.-F. (2015). Quantitative analysis of floral symmetry and tube dilation in an F2 cross of Sinningia speciosa. Scientia Horticulturae, 188, 71-77. https://doi.org/10.1016/j.scienta.2015.03.019 Hsu, H. C., Wang, C. N., Liang, C. H., Wang, C. C., & Kuo, Y. F. (2017). Association between Petal Form Variation and CYC2-like Genotype in a Hybrid Line of Sinningia speciosa. Frontiers in Plant Science, 8, 558. https://doi.org/10.3389/fpls.2017.00558 Hsu, H. J., He, C. W., Kuo, W. H., Hsin, K. T., Lu, J. Y., Pan, Z. J., & Wang, C. N. (2018). Genetic Analysis of Floral Symmetry Transition in African Violet Suggests the Involvement of Trans-acting Factor for CYCLOIDEA Expression Shifts. Frontiers in Plant Science, 9, 1008. https://doi.org/10.3389/fpls.2018.01008 Huang, D., Li, X., Sun, M., Zhang, T., Pan, H., Cheng, T., Wang, J., & Zhang, Q. (2016). Identification and Characterization of CYC-Like Genes in Regulation of Ray Floret Development in Chrysanthemum morifolium. Frontiers in Plant Science, 7, 1633. https://doi.org/10.3389/fpls.2016.01633 Juntheikki-Palovaara, I., Tahtiharju, S., Lan, T., Broholm, S. K., Rijpkema, A. S., Ruonala, R., Kale, L., Albert, V. A., Teeri, T. H., & Elomaa, P. (2014). Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). The Plant Journal, 79(5), 783-796. https://doi.org/10.1111/tpj.12583 Karimi, M., De Meyer, B., & Hilson, P. (2005). Modular cloning in plant cells. Trends in Plant Science, 10(3), 103-105. https://doi.org/10.1016/j.tplants.2005.01.008 Ke, M., Gao, Z., Chen, J., Qiu, Y., Zhang, L., & Chen, X. (2018). Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biology, 18(1), 1-21. https://doi.org/10.1186/s12870-018-1357-7 Kim, M., Cui, M.-L., Cubas, P., Gillies, A., Lee, K., Chapman, M. A., Abbott, R. J., & Coen, E. (2008). Regulatory genes control a key morphological and ecological trait transferred between species. Science, 322(5904), 1116-1119. https://doi.org/10.1126/science.1164371 Kubes, M., & Napier, R. (2019). Non-canonical auxin signalling: fast and curious. J Exp Bot, 70(10), 2609-2614. https://doi.org/10.1093/jxb/erz111 Liu, B.-L., Pang, H.-B., Yang, X., & Wang, Y.-Z. (2014). Functional and evolutionary analyses of Primulina heterotricha CYC1C gene in tobacco and Arabidopsis transformation systems. Journal of Systematics and Evolution, 52(1), 112-123. https://doi.org/10.1111/jse.12067 Liu, C.-m., XU, Z.-h., & Chua, N.-H. (1993). Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. The Plant Cell, 5(6), 621-630. https://doi.org/https://doi.org/10.1105/tpc.5.6.621 Liu, H., & Naismith, J. H. (2008). An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnology, 8(1), 1-10. https://doi.org/10.1186/1472-6750-8-91 Liu, H., Sun, M., Pan, H., Cheng, T., Wang, J., & Zhang, Q. (2021). Two Cyc2CL transcripts (Cyc2CL-1 and Cyc2CL-2) may play key roles in the petal and stamen development of ray florets in chrysanthemum. BMC Plant Biology, 21(1), 1-15. https://doi.org/10.1186/s12870-021-02884-z Liu, J., Wu, J., Yang, X., & Wang, Y. Z. (2020). Regulatory pathways of CYC ‐like genes in atterning floral ygomorphy exemplified in Chirita pumila. Journal of Systematics and Evolution, 59(3), 567-580. https://doi.org/10.1111/jse.12574 Lucibelli, F., Valoroso, M. C., & Aceto, S. (2020). Radial or Bilateral? The Molecular Basis of Floral Symmetry. Genes, 11(4), 395. https://doi.org/10.3390/genes11040395 Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., & Coen, E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell, 99(4), 367-376. https://doi.org/https://doi.org/10.1016/S0092-8674(00)81523-8 Luo, D., Carpenter, R., Vincent, C., Copsey, L., & Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature, 383(6603), 794-799. https://doi.org/https://doi.org/10.1038/383794a0 Madrigal, Y., Alzate, J. F., Gonzalez, F., & Pabon-Mora, N. (2019). Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots. American Journal of Botany, 106(3), 334-351. https://doi.org/10.1002/ajb2.1243 Majda, M., & Robert, S. (2018). The Role of Auxin in Cell Wall Expansion. International Journal of Molecular Sciences, 19(4), 951. https://doi.org/10.3390/ijms19040951 Martin-Trillo, M., & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science, 15(1), 31-39. https://doi.org/10.1016/j.tplants.2009.11.003 Muliawan, J. (2019). Transcriptional Factors Responsive to CYCLOIDEA in zygomorphic flower of Sinningia speciosa. Taipei, Taiwan: National Taiwan University. Nemhauser, J. L., Feldman, L. J., & Zambryski, P. C. (2000). Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 127(18), 3877-3888. https://doi.org/https://doi.org/10.1242/dev.127.18.3877 Nien, Y.-C. (2018). Global analysis of small RNAs for controlling floral symmetry in Sinningia speciosa. Taipei, Taiwan: National Taiwan University. Nodine, M. D., & Bartel, D. P. (2010). MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes & Development, 24(23), 2678-2692. https://doi.org/10.1101/gad.1986710 Okada, K., Ueda, J., Komaki, M. K., Bell, C. J., & Shimura, Y. . (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabídopsis Floral Bud Formation. The Plant Cell, 3(7), 677-684. https://doi.org/https://doi.org/10.1105/tpc.3.7.677 Oono, Y., Ooura, C., Rahman, A., Aspuria, E. T., Hayashi, K. I., Tanaka, A., & Uchimiya, H. (2003). p-Chlorophenoxyisobutyric Acid Impairs Auxin response in Arabidopsis root. Plant Physiology, 133(3), 1135-1147. https://doi.org/10.1104/pp.103.027847 Pan, Z. J., Hung, Y. L., Chen, T. Y., Shih, Y. A., Lin, Y. J., & Wang, C. N. (2022). Development of a petal protoplast transfection system for Sinningia speciosa. Applications in Plant Sciences, 10(3), e11476. https://doi.org/10.1002/aps3.11476 Pan, Z. J., Nien, Y. C., Shih, Y. A., Chen, T. Y., Lin, W. D., Kuo, W. H., Hsu, H. C., Tu, S. L., Chen, J. C., & Wang, C. N. (2022). Transcriptomic Analysis Suggests Auxin Regulation in Dorsal-Ventral Petal Asymmetry of Wild Progenitor Sinningia speciosa. International Journal of Molecular Sciences, 23(4), 2073. https://doi.org/10.3390/ijms23042073 Pang, H.-B., Sun, Q.-W., He, S.-Z., & Wang, Y.-Z. (2010). Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia (Gesneriaceae). Journal of Systematics and Evolution, 48(5), 309-317. https://doi.org/10.1111/j.1759-6831.2010.00091.x Pfluger, J., & Zambryski, P. (2004). The role of SEUSS in auxin response and floral organ patterning. Development, 131(19), 4697-4707. https://doi.org/10.1242/dev.01306 Preston, J. C., & Hileman, L. C. (2009). Developmental genetics of floral symmetry evolution. Trends in Plant Science, 14(3), 147-154. https://doi.org/10.1016/j.tplants.2008.12.005 Pu, Y., Liao, M., Li, J., Tian, Y., Wang, Z., Song, X., & Dai, S. (2023). Floral Development Stage-Specific Transcriptomic Analysis Reveals the Formation Mechanism of Different Shapes of Ray Florets in Chrysanthemum. Genes, 14(3), 766. https://doi.org/10.3390/genes14030766 Ren, G., Li, L., Huang, Y., Wang, Y., Zhang, W., Zheng, R., Zhong, C., & Wang, X. (2018). GhWIP2, a WIP zinc finger protein, suppresses cell expansion in Gerbera hybrida by mediating crosstalk between gibberellin, abscisic acid, and auxin. New Phytologiest, 219(2), 728-742. https://doi.org/10.1111/nph.15175 Sargent, R. D. (2004). Floral symmetry affects speciation rates in angiosperms. Proceegins: Biological Sciences, 271(1539), 603-608. https://doi.org/10.1098/rspb.2003.2644 Sauer, M., Robert, S., & Kleine-Vehn, J. (2013). Auxin: simply complicated. Journal of Experimental Botany, 64(9), 2565-2577. https://doi.org/10.1093/jxb/ert139 Sengupta, A., & Hileman, L. C. (2018). Novel Traits, Flower Symmetry, and Transcriptional Autoregulation: New Hypotheses From Bioinformatic and Experimental Data. Frontiers in Plant Science, 9, 1561. https://doi.org/10.3389/fpls.2018.01561 Sengupta, A., & Hileman, L. C. (2022). A CYC-RAD-DIV-DRIF interaction likely pre-dates the origin of floral monosymmetry in Lamiales. Evodevo, 13(1), 3. https://doi.org/10.1186/s13227-021-00187-w Simonini, S., Bencivenga, S., Trick, M., & Ostergaard, L. (2017). Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis. The Plant Cell, 29(8), 1864-1882. https://doi.org/10.1105/tpc.17.00389 Simonini, S., Deb, J., Moubayidin, L., Stephenson, P., Valluru, M., Freire-Rios, A., Sorefan, K., Weijers, D., Friml, J., & Ostergaard, L. (2016). A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes & Development, 30(20), 2286-2296. https://doi.org/10.1101/gad.285361.116 Simonini, S., Mas, P. J., Mas, C., Ostergaard, L., & Hart, D. J. (2018). Auxin sensing is a property of an unstructured domain in the Auxin Response Factor ETTIN of Arabidopsis thaliana. Scientific Report, 8(1), 13563. https://doi.org/10.1038/s41598-018-31634-9 Song, C. F., Lin, Q. B., Liang, R. H., & Wang, Y. Z. (2009). Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra (Gesneriaceae). BMC Evolutionary Biology, 9(1), 1-12. https://doi.org/10.1186/1471-2148-9-244 Su, S., Xiao, W., Guo, W., Yao, X., Xiao, J., Ye, Z., Wang, N., Jiao, K., Lei, M., Peng, Q., Hu, X., Huang, X., & Luo, D. (2017). The CYCLOIDEA-RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytologiest, 215(4), 1582-1593. https://doi.org/10.1111/nph.14673 Tabata, R., Ikezaki, M., Fujibe, T., Aida, M., Tian, C. E., Ueno, Y., Yamamoto, K. T., Machida, Y., Nakamura, K., & Ishiguro, S. (2010). Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant and Cell Physiology, 51(1), 164-175. https://doi.org/10.1093/pcp/pcp176 Tan, S. (2021). Action mode of NPA direct inhibition on PIN auxin. Molecular plant, 14(2), 199. https://doi.org/10.1016/j.molp.2021.01.010 Tanaka, H., Dhonukshe, P., Brewer, P. B., & Friml, J. (2006). Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cellular and Molecular Life Sciences, 63(23), 2738-2754. https://doi.org/10.1007/s00018-006-6116-5 Tanaka, M., Sotta, N., Yamazumi, Y., Yamashita, Y., Miwa, K., Murota, K., Chiba, Y., Hirai, M. Y., Akiyama, T., Onouchi, H., Naito, S., & Fujiwara, T. (2016). The Minimum Open Reading Frame, AUG-Stop, Induces Boron-Dependent Ribosome Stalling and mRNA Degradation. The Plant Cell, 28(11), 2830-2849. https://doi.org/10.1105/tpc.16.00481 Tantikanjana, T., & Nasrallah, J. B. (2012). Non-cell-autonomous regulation of crucifer self-incompatibility by Auxin Response Factor ARF3. Proceeding of National Academy of Sciences, 109(47), 19468-19473. https://doi.org/10.1073/pnas.1217343109 Teh, O. K., Singh, P., Ren, J., Huang, L. T., Ariyarathne, M., Salamon, B. P., Wang, Y., Kotake, T., & Fujita, T. (2022). Surface-localized glycoproteins act through class C ARFs to fine-tune gametophore initiation in Physcomitrium patens. Development, 149(24), dev200370. https://doi.org/10.1242/dev.200370 van Doorn, W. G., Dole, I., Celikel, F. G., & Harkema, H. (2013). Opening of Iris flowers is regulated by endogenous auxins. Plant Physiology, 170(2), 161-164. https://doi.org/10.1016/j.jplph.2012.09.014 Wang, G.-J. (2020). De novo assembly for draft genome and transcriptome sequences of Sinningia speciosa and Titanotrichum oldhamii with Oxford Nanopore and Illumina technologies. Taipei, Taiwan: National Taiwan University. Wang, J., Wang, H., Ding, L., Song, A., Shen, F., Jiang, J., Chen, S., & Chen, F. (2017). Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'. Plant Molecular Biology, 93(6), 593-606. https://doi.org/10.1007/s11103-017-0584-x Yang, X., Cui, H., Yuan, Z.-L., & Wang, Y.-Z. (2010). Significance of consensus CYC-binding sites found in the promoters of both ChCYC and ChRAD genes in Chirita heterotricha (Gesneriaceae). Journal of Systematics and Evolution, 48(4), 249-256. https://doi.org/10.1111/j.1759-6831.2010.00086.x Yang, X., Pang, H. B., Liu, B. L., Qiu, Z. J., Gao, Q., Wei, L., Dong, Y., & Wang, Y. Z. (2012). Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. The Plant Cell, 24(5), 1834-1847. https://doi.org/10.1105/tpc.112.099457 Yang, X., Wang, Y., Liu, T. X., Liu, Q., Liu, J., Lu, T. F., Yang, R. X., Guo, F. X., & Wang, Y. Z. (2023). CYCLOIDEA-like genes control floral symmetry, floral orientation, and nectar guide patterning. The Plant Cell, koad115. https://doi.org/10.1093/plcell/koad115 Yang, Y., Zhang, L., Chen, P., Liang, T., Li, X., & Liu, H. (2020). UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. The EMBO Journal, 39(2), e101928. https://doi.org/10.15252/embj.2019101928 Yant, L., Collani, S., Puzey, J., Levy, C., & Kramer, E. M. (2015). Molecular basis for three-dimensional elaboration of the Aquilegia petal spur. Proceedings: Biological Sciences, 282(1803), 20142778. https://doi.org/10.1098/rspb.2014.2778 Yifhar, T., Pekker, I., Peled, D., Friedlander, G., Pistunov, A., Sabban, M., Wachsman, G., Alvarez, J. P., Amsellem, Z., & Eshed, Y. (2012). Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. The Plant Cell, 24(9), 3575-3589. https://doi.org/10.1105/tpc.112.100222 Yu, Q., Ge, L., Ahmad, S., Luo, D., & Li, X. (2022). A perspective on the molecular mechanism in the control of organ internal (IN) asymmetry during petal development. Horticultural Research, 9, uhac202. https://doi.org/10.1093/hr/uhac202 Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W., & Chua, N. H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1(2), 641-646. https://doi.org/10.1038/nprot.2006.97 Zhou, P., Fatima, M., Ma, X., Liu, J., & Ming, R. (2019). Auxin regulation involved in gynoecium morphogenesis of papaya flowers. Horticultural Research, 6, 119. https://doi.org/10.1038/s41438-019-0205-8 Zhou, X. R., Wang, Y. Z., Smith, J. F., & Chen, R. (2008). Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytologist, 178(3), 532-543. https://doi.org/10.1111/j.1469-8137.2008.02384.x Zoulias, N., Duttke, S. H. C., Garces, H., Spencer, V., & Kim, M. (2019). The Role of Auxin in the Pattern Formation of the Asteraceae Flower Head (Capitulum). Plant Physiology, 179(2), 391-401. https://doi.org/10.1104/pp.18.01119 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88719 | - |
dc.description.abstract | 兩側對稱的花朵能夠藉由限制專一傳粉者拜訪促進物種豐度,因此在被子植物中具有演化優勢。過去在金魚草(Antirrhinum)的研究中,發現CYCLOIDEA(CYC)基因能夠透過調控MYB轉錄因子家族提供背側花瓣特徵,並在花瓣建立背腹側極性,然而還有哪些下游轉錄因子參與其中尚不清楚。大岩桐(Sinningia speciosa ‘Espirito santo’)為兩側對稱花,且有較大的背側花瓣與較小的腹側花瓣。分析大岩桐背腹側花瓣轉錄體後,找出許多生長素訊息傳遞路徑相關基因(如生長素響應因子ARF3,AUXIN RESPONSE FACTOR 3)在背側花瓣高度表現,顯示生長素的調節可能與花瓣背腹側極性建立有關。我利用液向層析串聯式質譜儀在背側花瓣中偵測到較高含量的內生性生長素,並將花苞處理生長素抑制劑後,觀察到花瓣生長受到影響,如背側花瓣的長度縮短。經由雙螢光素酶證實SsARF3與SsCYC間有正向相互促進的關係。為了驗證SsARF3的基因功能,我透過比較阿拉伯芥轉殖株的性狀確認SsARF3為抑制子,在過度表現SsARF3-GFP與SsARF3-SRDX嵌合蛋白之轉植株中,皆有著較大的花瓣面積、較大的花瓣細胞,與縮短的初級花序。這些結果暗示生長素與SsARF3可能與SsCYC合作影響大岩桐背腹花瓣建立。 | zh_TW |
dc.description.abstract | Floral zygomorphy (bilateral symmetry) prevails in angiosperms and greatly enhances specific pollinators visits, thus promoting species richness. In Antirrhinum, the CYCLOIDEA (CYC) gene established zygomorphy by providing dorsal petal identity, but the downstream regulation except the MYB-like gene family remains unknown. Wild-type Sinningia speciosa ‘Espírito santo’ (Gloxinia) is zygomorphic by having its dorsal petals larger than the ventral petals. From a petal transcriptomic analysis in S. speciosa, most auxin signaling pathway genes, such as AUXIN RESPONSE FACTOR 3 (SsARF3), are highly expressed in dorsal petals, suggesting that auxin regulation is involved in dorsi-ventral petal asymmetry. Here, the endogenous IAA level in dorsal petals is higher than ventral petals, as determined by UPLC/MS/MS. NPA (auxin inhibitor) treatment affected petal growth by reducing the length of dorsal corolla tube. The positive regulation between SsCYC and SsARF3 was examined by a dual luciferase assay. Phenotypic analysis in Arabidopsis transgenic plants inferred that SsARF3 was a repressor, as was the SsARF3-SRDX fusion protein, which functions to promote petal cell expansion and reduce primary inflorescence. These results suggest that auxin and SsARF3 may coordinate with SsCYC for establishment of dorsi-ventral petal asymmetry. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:30:07Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:30:07Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III Content IV Index of Figures VII Index of Tables VIII Index of Supplementary data IX Abbreviations XI Introduction 1 1.1 CYCLOEDIA governs floral symmetry in Sinningia speciosa 1 1.1.1 Regulation of CYC-RAD-DIV from Antirrhinum to Sinningia 1 1.1.2 Ten-base deletion in SsCYC makes zygomorphic flower turn into actinomorphic flower (peloric) in Ss‘ES’ 2 1.2 The dorsi-ventral asymmetric cell growth shaped the petals in Ss‘ES’ 3 1.2.1 Inner epidermis cell size of dorsal petal was larger than that of ventral petals 3 1.2.2 Auxin signaling pathway is distinguishable in the dorsal petals in FB5 by transcriptomic analysis 6 1.3 Aim of study 10 Materials and Methods 11 2.1 Plant materials and growth condition 11 2.2 Total RNA extraction and reverse transcription 12 2.3 Endogenous IAA determination 13 2.4 Flower auxin inhibitor treatment 14 2.5 Genomic DNA extraction 15 2.6 Isolation of the 5’ regulatory region of Ss‘ES’ 16 2.7 Prediction of the promoter binding site 18 2.8 Vector construction for Arabidopsis transformants 18 2.9 Site directed mutagenesis 20 2.10 Floral dip transformation 22 2.11 Arabidopsis transgenic plants selection 23 2.12 Petal analysis 23 2.13 Auxin sensitivity root assay 25 2.14 Vector construction for dual-luciferase assay 26 2.15 Agrobacterium tumefaciens competent cell preparation and transformation 29 2.16 Dual-luciferase assay 30 2.17 Polymerase chain reaction 34 2.18 Real-time polymerase chain reaction 35 2.19 Statistical analyses 36 Results 37 3.1 Endogenous IAA level is higher in dorsal petals in FB5 37 3.2 Auxin inhibitors restrict dorsal corolla tube growth in Ss‘ES’ 40 3.3 The expression of SsARF3 is regulated by SsCYC 42 3.4 Ectopic expression of SsARF3 increase petal area by enhancing cell expansion 46 Discussions 58 4.1 Auxin gradient is established for the dorsal corolla tube growth in FB5 58 4.2 The SsARF3 gene participates in a different gene regulatory network in proximal petals 60 4.3 The SsARF3 gene and SsCYC gene might share gene regulatory network 62 Conclusion 68 References 70 Supplementary data 88 | - |
dc.language.iso | en | - |
dc.title | 生長素及生長素響應因子SsARF3 對大岩桐背腹花瓣建立的影響 | zh_TW |
dc.title | The effect of Auxin and AUXIN RESPONSE FACTOR3 for establishment of dorsi-ventral petal asymmetry in Sinningia speciosa | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭貽生;陳仁治;鄭惠國 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Sheng Cheng;Jen-Chih Chen;Ooi-Kock Teh | en |
dc.subject.keyword | 大岩桐屬,CYCLOIDEA,兩側對稱,背腹花瓣不對稱,生長素,生長素響應因子ARF3, | zh_TW |
dc.subject.keyword | Sinningia,CYCLOIDEA,zygomorphy,dorsi-ventral petal asymmetry,auxin,AUXIN RESPONSE FACTOR 3, | en |
dc.relation.page | 107 | - |
dc.identifier.doi | 10.6342/NTU202302660 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。