Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88718
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊士進zh_TW
dc.contributor.advisorShih-Chin Yangen
dc.contributor.author徐暐傑zh_TW
dc.contributor.authorWei-Chieh Hsuen
dc.date.accessioned2023-08-15T17:29:53Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-05-
dc.identifier.citation[1] W.-H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance-Observer-Based Control and Related Methods—An Overview," IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083-1095, 2016, doi: 10.1109/TIE.2015.2478397.
[2] K. Ohnishi, M. Shibata, and T. Murakami, "Motion Control for Advanced Mechatronics," IEEE/ASME Transactions on Mechatronics, vol. 1, no. 1, pp. 56-67, 1996, doi: 10.1109/3516.491410.
[3] E. Sariyildiz, R. Oboe, and K. Ohnishi, "Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview," IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2042-2053, 2020, doi: 10.1109/TIE.2019.2903752.
[4] B. Ugurlu, M. Nishimura, K. Hyodo, M. Kawanishi, and T. Narikiyo, "Proof of concept for robot-aided upper limb rehabilitation using disturbance observers," IEEE Transactions on Human-Machine Systems, vol. 45, no. 1, pp. 110-118, 2014.
[5] H. W. Kim, H. J. Kim, and J. Y. Choi, "Multiparameter Identification for SPMSMs Using NLMS Adaptive Filters and Extended Sliding‐Mode Observer," IET Electric Power Applications, vol. 14, no. 4, pp. 533-543, 2020.
[6] T. Li, Y. Zhao, and L. Hou, "Adaptive Sliding Mode Control With Disturbance Observer for Speed Regulation System of Permanent Magnet Synchronous Motor," IEEE Access, vol. 11, pp. 17021-17030, 2023, doi: 10.1109/ACCESS.2023.3245635.
[7] W. Lu et al., "A New Load Torque Identification Sliding Mode Observer for Permanent Magnet Synchronous Machine Drive System," IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 7852-7862, 2019, doi: 10.1109/TPEL.2018.2881217.
[8] X. Zhang and Z. Li, "Sliding-Mode Observer-Based Mechanical Parameter Estimation for Permanent Magnet Synchronous Motor," IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5732-5745, 2016, doi: 10.1109/TPEL.2015.2495183.
[9] S.-M. Yang and K.-W. Lin, "Automatic Control Loop Tuning for Permanent-Magnet AC Servo Motor Drives," IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1499-1506, 2016, doi: 10.1109/TIE.2015.2495300.
[10] M. S. Rafaq and J.-W. Jung, "A Comprehensive Review of State-of-the-Art Parameter Estimation Techniques for Permanent Magnet Synchronous Motors in Wide Speed Range," IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4747-4758, 2020, doi: 10.1109/TII.2019.2944413.
[11] K. Liu and Z. Zhu, "Fast Determination of Moment of Inertia of Permanent Magnet Synchronous Machine Drives for Design of Speed Loop Regulator," IEEE Transactions on Control Systems Technology, vol. 25, no. 5, pp. 1816-1824, 2017, doi: 10.1109/TCST.2016.2615090.
[12] M. Tetik, Y. Ulu, and O. Gurleyen, "Off-Line Auto-Tuning of a Microcontroller-Based PMSM Servo Drive," in 2018 XIII International Conference on Electrical Machines (ICEM), 3-6 Sept. 2018, pp. 1617-1622, doi: 10.1109/ICELMACH.2018.8507122.
[13] B. Zhang, Y. Li, and Y. Zuo, "A DSP-based fully digital PMSM servo drive using on-line self-tuning PI controller," in Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435), 15-18 Aug. 2000, vol. 2, pp. 1012-1017 vol.2, doi: 10.1109/IPEMC.2000.884655.
[14] A. Wang, W. Xu, and C.-T. Liu, "On-line PI self-turning based on inertia identification for permanent magnet synchronous motor servo system," in 2009 International Conference on Power Electronics and Drive Systems (PEDS), 2-5 Nov. 2009, pp. 1406-1410, doi: 10.1109/PEDS.2009.5385714.
[15] B.-T. Lyu, C.-L. Huang, and S.-C. Yang, "Motion Control Auto-tune for Traction Motor at Standstill using Virtual Damping for Inertia Estimation Improvement," in 2021 IEEE International Future Energy Electronics Conference (IFEEC), 16-19 Nov. 2021, pp. 1-5, doi: 10.1109/IFEEC53238.2021.9661724.
[16] J.-W. Choi, S.-C. Lee, and H.-G. Kim, "Inertia identification algorithm for high-performance speed control of electric motors," Electric Power Applications, IEE Proceedings -, vol. 153, pp. 379-386, 06/01 2006, doi: 10.1049/ip-epa:20050360.
[17] Y. Chen, M. Yang, J. Long, W. Qu, D. Xu, and F. Blaabjerg, "A Moderate Online Servo Controller Parameter Self-Tuning Method via Variable-Period Inertia Identification," IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 12165-12180, 2019, doi: 10.1109/TPEL.2019.2909439.
[18] F. Ding, T. Zhang, D. Jia, H. Zhang, Q. Pei, and H. Huang, "Identification of PMSM Moment of Inertia based on Model Reference Adaptive Algorithm," in 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), 29-31 July 2022, pp. 102-107, doi: 10.1109/ICPICS55264.2022.9873716.
[19] A. Quntao and S. Li, "On-line parameter identification for vector controlled PMSM drives using adaptive algorithm," in 2008 IEEE Vehicle Power and Propulsion Conference, 3-5 Sept. 2008, pp. 1-6, doi: 10.1109/VPPC.2008.4677634.
[20] J. Sun, Y. You, Y. Li, X. Yang, and J. Sun, "The on-line identification of moment of inertia of servo system," in 2016 IEEE International Conference on Mechatronics and Automation, 7-10 Aug. 2016, pp. 222-227, doi: 10.1109/ICMA.2016.7558564.
[21] G. Yujie, H. Lipei, Q. Yang, and M. Maramatsu, "Inertia identification and auto-tuning of induction motor using MRAS," in Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference, 15-18 Aug. 2000, vol. 2, pp. 1006-1011 vol.2, doi: 10.1109/IPEMC.2000.884654.
[22] V. Rasvan, "Popov Theories and Qualitative Behavior of Dynamic and Control Systems," European Journal of Control, vol. 8, no. 3, pp. 190-199, 01/01/ 2002, doi: 10.3166/ejc.8.190-199.
[23] J. Jin, S. Wang, and S. Huang, "Adaptive disturbance observer design for servo drive system with time-varying load inertia," in 2014 IEEE International Conference on Mechatronics and Automation, 3-6 Aug. 2014, pp. 1504-1508, doi: 10.1109/ICMA.2014.6885922.
[24] K. Jang-Hwan, C. Jong-Woo, and S. K. Sul, "High precision position control of linear permanent magnet synchronous motor for surface mount device placement system," in Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579), 2-5 April 2002, vol. 1, pp. 37-42 vol.1, doi: 10.1109/PCC.2002.998509.
[25] Y. Young-Doo, J. Eunsoo, and S. K. Sul, "Application of a disturbance observer for a relative position control system," in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 24-28 Feb. 2008 2008, pp. 377-382, doi: 10.1109/APEC.2008.4522749.
[26] Y.-J. Lin, P.-H. Chou, W.-C. Hsu, C.-J. Wu, and S.-C. Yang, "Sensorless Disturbance Rejection for High-Precision Permanent Magnet Motor Motion System," in 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 9-13 Oct. 2022, pp. 1-5, doi: 10.1109/ECCE50734.2022.9947412.
[27] Y. Deng, J. Wang, H. Li, J. Liu, and D. Tian, "Speed Control of PMSM with Sliding Mode Disturbance Observer," in 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 5-8 Aug. 2018, pp. 2311-2315, doi: 10.1109/ICMA.2018.8484457.
[28] K. J. Astrom, Wittenmark, B, Adaptive Control, 2nd edn. Addison-Wesley, 1994.
[29] S.-M. Yang and J.-D. Lin, "Observer-based automatic control loop tuning for servo motor drives," in 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 22-25 April 2013, pp. 302-305, doi: 10.1109/PEDS.2013.6527034.
[30] I. Awaya, Y. Kato, I. Miyake, and M. Ito, "New motion control with inertia identification function using disturbance observer," in Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, 13-13 Nov. 1992, pp. 77-81 vol.1, doi: 10.1109/IECON.1992.254601.
[31] S. Zhao, L. Cui, G. Liu, and Y. Chen, "An improved torque feed-forward control with observer-based inertia identification in PMSM drives," in 2012 15th International Conference on Electrical Machines and Systems (ICEMS), 21-24 Oct. 2012 2012, pp. 1-6.
[32] J. She, M. Xie, D.-Y. Li, M. Wu, Z.-T. Liu, and W.-N. Zhang, "A VFF-RLS Method of Inertia Identification for PMSM," in 2019 IEEE Conference on Control Technology and Applications (CCTA), 19-21 Aug. 2019, pp. 942-943, doi: 10.1109/CCTA.2019.8920489.
[33] Y. Cao, J. Wang, and W. Shen, "High-performance PMSM self-tuning speed control system with a low-order adaptive instantaneous speed estimator using a low-cost incremental encoder," Asian Journal of Control, vol. 23, no. 4, pp. 1870-1884, 07/01 2021, doi: doi.org/10.1002/asjc.2346.
[34] F.-J. Lin, "Robust speed-controlled induction-motor drive using EKF and RLS estimators," IEE Proceedings-Electric Power Applications, vol. 143, no. 3, pp. 186-192, 1996.
[35] N. Li, Y. Ming, G. Xianguo, and X. Dianguo, "A novel inertia identification algorithm for PMSM," in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 22-25 Oct. 2014, pp. 3371-3375, doi: 10.1109/ICEMS.2014.7014074.
[36] T. Shi, Z. Wang, and C. Xia, "Speed Measurement Error Suppression for PMSM Control System Using Self-Adaption Kalman Observer," IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2753-2763, 2015, doi: 10.1109/TIE.2014.2364989.
[37] Z. Liu, M. Yang, and D. Xu, A novel algorithm for on-line inertia identification via adaptive recursive least squares. 2017, pp. 2973-2978.
[38] F. Albu, "Improved variable forgetting factor recursive least square algorithm," in 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), 5-7 Dec. 2012, pp. 1789-1793, doi: 10.1109/ICARCV.2012.6485421.
[39] M. Yang, Z. Liu, J. Long, W. Qu, and D. Xu, "An Algorithm for Online Inertia Identification and Load Torque Observation via Adaptive Kalman Observer-Recursive Least Squares," Energies, vol. 11, no. 4, p. 778, 2018.
[40] T.-J. Kweon and D.-S. Hyun, "High-performance speed control of electric machine using low-precision shaft encoder," IEEE Transactions on Power Electronics, vol. 14, no. 5, pp. 838-849, 1999, doi: 10.1109/63.788480.
[41] S. Beineke and H. Wertz, "Design of extended Kalman filters for high performance position control of electrical drives," in 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399), 19-23 Sept. 1999, pp. 209-214, doi: 10.1109/AIM.1999.803168.
[42] S.-J. Hong, H.-W. Kim, and S.-K. Sul, "A novel inertia identification method for speed control of electric machine," in Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 9-9 Aug. 1996, vol. 2, pp. 1234-1239 vol.2, doi: 10.1109/IECON.1996.566056.
[43] K. Shedbalkar, A. P. Dhamangaonkar, and A. B. Patil, "Speed estimation using extended Kalman filter for PMSM," in 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), 13-15 Dec. 2012, pp. 433-435, doi: 10.1109/ICETEEEM.2012.6494466.
[44] E. A. Wan and R. V. D. Merwe, "The unscented Kalman filter for nonlinear estimation," in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), 4-4 Oct. 2000, pp. 153-158, doi: 10.1109/ASSPCC.2000.882463.
[45] S. Bolognani, R. Oboe, and M. Zigliotto, "Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position," IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 184-191, 1999, doi: 10.1109/41.744410.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88718-
dc.description.abstract本論文針對應用編碼器角度感測器進行永磁馬達磁場導向速度控制以及擾動解耦控制策略,提出系統轉動慣量的在線估測方法,其應用是在工業控制器或是工廠自動搬運車中,確保能將精確的慣量用作速度控制器的設計以及進行系統負載轉矩的準確估測,以改善速度控制的動態響應。
本論文提出的在線慣量估測架構整合無跡卡爾曼濾波器(Unscented Kalman Filter-UKF)與變遺忘因子最小遞歸二乘法(Variable Forgetting Factor Recursive Least Square-VFFRLS),先透過UKF對馬達的轉速以及負載轉矩進行估測,估測的轉速以及負載轉矩將用於VFFRLS的算法當中進行慣量的估測,能有效解決RLS算法容易受到輸入訊號雜訊干擾的問題。此外,估測的慣量會代回UKF的馬達模型中,藉此降低UKF模型中慣量的誤差,以得到準確的狀態估測結果。
最後本論文針對一顆470W用於自動搬運車應用的永磁馬達進行實驗測試,根據實驗結果,整體慣量估測的誤差與實際慣量相比能被限縮在2%以內,而在0到100%額定轉速的梯形波速度命令下,自適應控制下的響應上升時間為550ms、安定時間為890ms,與傳統固定增益的速度控制器比較,暫態上升時間減少5.6%、安定時間減少11.4%,能有效改善速度控制的動態響應性能。
zh_TW
dc.description.abstractThis thesis proposes an online inertia estimation method specifically tailored to the application of encoder angle sensors for magnetic field-oriented velocity control and disturbance decoupling strategy in permanent magnet motors. The application of this method is intended for industrial controllers or factory automated guided vehicles(AGV), aiming to ensure precise estimated inertia are used for speed controller design and accurate estimation of load torque. This, in turn, improves the dynamic response of the velocity control.
The online inertia estimation framework presented in this thesis integrates the Unscented Kalman Filter (UKF) and the Variable Forgetting Factor Recursive Least Square (VFFRLS) algorithms. The UKF is employed to estimate the motor's speed and load torque, and the estimated speed and load torque are then used in the VFFRLS algorithm to perform inertia estimation, effectively addressing the issue of RLS algorithm susceptibility to input signal noise interference. Furthermore, the estimated inertia is fed back into the UKF motor model to reduce the inertia estimation errors, resulting in more accurate state estimation outcomes.
Finally, a 470W motor used in AGV applications is tested. According to the experimental results, the overall inertia estimation error can be constrained within 2%. Under a trapezoidal speed command ranging from 0% to 100% of the rated speed. The rising time under adaptive control is 550ms, and the settling time is 890ms, When compared to the conventional fixed-gain speed controller, the transient rising time is reduced by 5.6% and the settling time is reduced by 11.4%. These findings suggest that our proposed method can effectively optimize the dynamic response performance of speed control.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:29:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:29:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 iii
ABSTRACT v
目錄 vii
表目錄 x
圖目錄 xii
符號列表 xv
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 永磁馬達慣量識別方法 2
1.2.2 混合擾動觀測器與梯度下降法進行擾動解耦和慣量識別 7
1.2.3 數值方法進行擾動解耦和慣量識別 11
1.2.4 改進RLS慣量估測性能之輸入訊號前處理方法 15
1.3 研究目的 19
1.3.1 永磁馬達轉動慣量與負載轉矩識別性能改善 20
1.3.2 轉速自適應控制和擾動解耦的性能改善 20
1.4 論文大綱 22
第2章 自適應控制與擾動解耦 23
2.1 基於無跡卡爾曼濾波器之狀態估測 24
2.1.1 轉速與負載轉矩估測 24
2.1.2 慣量估測輸入訊號之訊號篩選 29
2.2 變遺忘因子RLS慣量識別 31
2.2.1 轉動慣量估測 31
2.2.2 變遺忘因子算法 32
2.2.3 慣量估測條件與初始化參數 34
2.3 自適應控制與擾動解耦控制策略 35
2.3.1 自適應控制策略 35
2.3.2 擾動解耦策略 37
第3章 自適應控制與擾動解耦實驗結果 39
3.1 自適應控制於無載條件下有效性驗證 39
3.1.1 無載測試實驗平台 39
3.1.2 阻尼係數對於速度控制敏感度測試 41
3.1.3 變遺忘因子RLS實驗結果 42
3.1.4 動態調整UKF Q矩陣實驗結果 45
3.1.5 UKF與傳統卡爾曼濾波器性能比較 47
3.1.6 自適應控制動態性能驗證 49
3.1.7 慣量估測於無載條件下實驗總結 54
3.2 自適應控制於加載條件下有效性驗證 56
3.2.1 加載測試實驗平台 56
3.2.2 UKF-VFFRLS在加載條件下慣量估測測試 57
3.2.3 擾動解耦於等速條件下性能測試 60
3.2.4 自適應控制與擾動解耦綜合性能測試 63
3.2.5 慣量估測於加載條件下實驗總結 70
第4章 結論及未來工作 74
4.1 結論 74
4.1.1 自適應控制 74
4.1.2 擾動解耦 75
4.2 未來工作 75
4.2.1 高負載條件下的慣量估測 75
4.2.2 無感測器自適應控制 76
參考文獻 77
-
dc.language.isozh_TW-
dc.subject擾動估測zh_TW
dc.subject慣量估測zh_TW
dc.subject自適應控制zh_TW
dc.subject擾動解耦zh_TW
dc.subjectDisturbance decouplingen
dc.subjectAdaptive controlen
dc.subjectDisturbance estimationen
dc.subjectInertia estimationen
dc.title利用伺服馬達慣量估測進行控制器性能改善zh_TW
dc.titleControl Performance Improvement for Servo Motor Using Inertia Identificationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳耀銘;劉添華;李宇修zh_TW
dc.contributor.oralexamcommitteeYaow-Ming Chen;Tian-Hua Liu;Yu-Hsiu Leeen
dc.subject.keyword自適應控制,擾動解耦,慣量估測,擾動估測,zh_TW
dc.subject.keywordAdaptive control,Disturbance decoupling,Inertia estimation,Disturbance estimation,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202303110-
dc.rights.note未授權-
dc.date.accepted2023-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
6.98 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved