Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88710Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃鐘揚 | zh_TW |
| dc.contributor.advisor | Chung-Yang Huang | en |
| dc.contributor.author | 呂承樺 | zh_TW |
| dc.contributor.author | Cheng-Hua Lu | en |
| dc.date.accessioned | 2023-08-15T17:27:56Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] M. Amy, "Algorithms for the optimization of quantum circuits," University of Waterloo, 2013.
[2] A. Shafaei, M. Saeedi, and M. Pedram, "Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures," in Proceedings of the 50th annual design automation conference, 2013, pp. 1-6. [3] N. Abdessaied, M. Soeken, and R. Drechsler, "Quantum circuit optimization by Hadamard gate reduction," in Reversible Computation: 6th International Conference, RC 2014, Kyoto, Japan, July 10-11, 2014. Proceedings 6, 2014: Springer, pp. 149-162. [4] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, "Automated optimization of large quantum circuits with continuous parameters," npj Quantum Information, vol. 4, no. 1, p. 23, 2018. [5] A. Bocharov and K. M. Svore, "Resource-optimal single-qubit quantum circuits," Physical Review Letters, vol. 109, no. 19, p. 190501, 2012. [6] A. G. Fowler, "Time-optimal quantum computation," arXiv preprint arXiv:1210.4626, 2012. [7] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, "A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 6, pp. 818-830, 2013. [8] M. A. Nielsen and I. Chuang, "Quantum computation and quantum information," ed: American Association of Physics Teachers, 2002. [9] M. Coggins, Introduction to quantum computing with qiskit. Scarborough Quantum Computing Ltd, 2021. [10] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proceedings 35th annual symposium on foundations of computer science, 1994: Ieee, pp. 124-134. [11] B. P. Lanyon et al., "Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement," Physical Review Letters, vol. 99, no. 25, p. 250505, 2007. [12] T. Monz et al., "Realization of a scalable Shor algorithm," Science, vol. 351, no. 6277, pp. 1068-1070, 2016. [13] J. O'Gorman and E. T. Campbell, "Quantum computation with realistic magic-state factories," Physical Review A, vol. 95, no. 3, p. 032338, 2017. [14] C.-C. Lin, S. Sur-Kolay, and N. K. Jha, "PAQCS: Physical design-aware fault-tolerant quantum circuit synthesis," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7, pp. 1221-1234, 2014. [15] B. Gerard and M. Kong, "String Abstractions for Qubit Mapping," arXiv preprint arXiv:2111.03716, 2021. [16] A. Paler, I. Polian, K. Nemoto, and S. J. Devitt, "Fault-tolerant, high-level quantum circuits: form, compilation and description," Quantum Science and Technology, vol. 2, no. 2, p. 025003, 2017. [17] A. Zulehner, A. Paler, and R. Wille, "An efficient methodology for mapping quantum circuits to the IBM QX architectures," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 7, pp. 1226-1236, 2018. [18] G. Burkard and D. Loss, "Cancellation of spin-orbit effects in quantum gates based on the exchange coupling in quantum dots," Physical review letters, vol. 88, no. 4, p. 047903, 2002. [19] N. Abdessaied, R. Wille, M. Soeken, and R. Drechsler, "Reducing the depth of quantum circuits using additional circuit lines," in Reversible Computation: 5th International Conference, RC 2013, Victoria, BC, Canada, July 4-5, 2013. Proceedings 5, 2013: Springer, pp. 221-233. [20] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De Wetering, "Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus," Quantum, vol. 4, p. 279, 2020. [21] A. Paler, S. J. Devitt, K. Nemoto, and I. Polian, "Mapping of topological quantum circuits to physical hardware," Scientific reports, vol. 4, no. 1, p. 4657, 2014. [22] B. Coecke and R. Duncan, "Interacting quantum observables," in Automata, Languages and Programming: 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35, 2008: Springer, pp. 298-310. [23] B. Coecke and R. Duncan, "Interacting quantum observables: categorical algebra and diagrammatics," New Journal of Physics, vol. 13, no. 4, p. 043016, 2011. [24] J. van de Wetering, "ZX-calculus for the working quantum computer scientist," arXiv preprint arXiv:2012.13966, 2020. [25] A. Kissinger and J. van de Wetering, "Reducing the number of non-Clifford gates in quantum circuits," Physical Review A, vol. 102, no. 2, p. 022406, 2020. [26] A. Kissinger and J. van de Wetering, "PyZX: Large scale automated diagrammatic reasoning," arXiv preprint arXiv:1904.04735, 2019. [27] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, "t| ket⟩: a retargetable compiler for NISQ devices," Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020. [28] L. S. Bishop, "Qasm 2.0: A quantum circuit intermediate representation," in APS March Meeting Abstracts, 2017, vol. 2017, p. P46. 008. [29] M. Amy, D. Maslov, and M. Mosca, "Polynomial-time T-depth optimization of Clifford+ T circuits via matroid partitioning," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 10, pp. 1476-1489, 2014. [30] M. Amy. "T-par GitHub." https://github.com/meamy/t-par.git (accessed. [31] N. J. R. Yunseong Nam, Yuan Su, Andrew M. Childs, Dmitri Maslov. "optimizer GitHub." https://github.com/njross/optimizer.git (accessed. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88710 | - |
| dc.description.abstract | 量子電路優化在提高量子計算系統的效率和性能方面起著關鍵作用。本論文以整合量子邏輯閘分解層次調整和動態減縮算法為核心,對量子電路進行了全面的優化研究。為了方便實現和分析這些演算法,我們開發了一個名為Qsyn的C++工具。Qsyn提供了一個靈活的框架,可以高效地執行和探索各種優化策略。我們通過對各種測試案例的應用,展示了我們方法的有效性。實驗結果顯示,與現有方法相比,我們的方法在總量子邏輯閘數、2量子位邏輯閘數、量子電路深度等方面平均上分別達到11.5%、10.5%、14.8%的減少。取得了顯著的改善。此外,我們將Qsyn的性能與廣泛使用的PyZX工具進行了比較,觀察到執行時間大幅減少,特別是對於大規模電路。這些結果突顯了Qsyn的優越性,以及它在質量和計算效率方面優化量子電路的適用性。總體來說,本論文通過提供一個強大的工具和一個優化的工作流程,為量子電路優化領域做出了貢獻,使得電路優化更加有效和可擴展。 | zh_TW |
| dc.description.abstract | Quantum circuit optimization plays a crucial role in improving the efficiency and performance of quantum computing systems. In this thesis, we present a comprehensive study on optimizing quantum circuits by integrating decomposition level adjustment and dynamic reduction algorithms. To facilitate the implementation and analysis of these algorithms, we have developed a novel quantum circuit optimization framework called Qsyn in C++. Qsyn is very efficient in terms of the execution time and provides the flexibilities in exploring various optimization strategies. We demonstrate the effectiveness of our approach by applying it to a diverse set of test cases. Our experimental results show that our algorithm can lead to significant improvements in quantum circuit gate count, 2-qubit-gate count, and circuit depth. The reduction rate are 11.5%, 10.5%, and 14.8%, respectively, when compared to the existing approaches. Furthermore, Qsyn is much faster than the widely used quantum circuit optimization tool, PyZX, particularly for large-scale circuits. The results highlight the superiority of Qsyn and its suitability for optimizing quantum circuits in both quality and computational efficiency. Overall, this thesis contributes to the field of quantum circuit optimization by providing a powerful tool and an optimized workflow that enable more effective and scalable quantum circuit optimization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:27:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:27:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Quantum Circuit Optimization 1 1.2 Previous Works 2 1.3 Contribution of the Thesis 3 1.4 Organization of the Thesis 3 Chapter 2 Preliminaries 5 2.1 Quantum Circuits 5 2.2 Single-Qubit Gates 6 2.3 Multi-Qubit Gates 9 2.4 Quantum Circuit Synthesis Flow 10 Chapter 3 Quantum Circuit Modeling by ZX-calculus 13 3.1 Introduction to ZX-calculus 13 3.2 PyZX: Automated Diagrammatic Python Tool for Quantum Circuit using ZX-calculus 21 Chapter 4 Optimization by Dynamic Reduction Algorithm 26 4.1 Previous Work 26 4.2 Case Study: 3-Toffoli Quantum Circuit 27 4.3 Decomposition Level Adjustment 29 4.4 Dynamic Reduction Algorithm 32 Chapter 5 Implementation 35 5.1 Qsyn: Quantum Circuit Synthesis Framework 35 5.2 Execution of Dynamic Reduction Algorithm 40 Chapter 6 Experimental Results 45 6.1 Experiment Setup 45 6.2 Comparison of PyZX and Qsyn 48 6.3 Decomposition Level Adjustment Comparison 50 6.4 Dynamic Reduction Algorithm 53 Chapter 7 Conclusion and Future Work 56 Reference 58 Appendix 62 A.1 ZX File Format 62 A.2 Command List for Qsyn 67 A.3 Optional Arguments for ZXGSimp 70 | - |
| dc.language.iso | en | - |
| dc.subject | 量子電路優化 | zh_TW |
| dc.subject | 動態減縮算法 | zh_TW |
| dc.subject | 量子邏輯閘分解層次調整 | zh_TW |
| dc.subject | ZX-calculus | zh_TW |
| dc.subject | Qsyn | zh_TW |
| dc.subject | ZX-calculus | en |
| dc.subject | Decomposition Level Adjustment | en |
| dc.subject | Dynamic Reduction Algorithm | en |
| dc.subject | Quantum Circuit Optimization | en |
| dc.subject | Qsyn | en |
| dc.title | 利用Qsyn實作ZX-calculus對量子電路的動態優化 | zh_TW |
| dc.title | Dynamic Quantum Circuit Optimization by ZX-calculus using Qsyn | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 梁伯嵩;李建模;江介宏;洪士灝 | zh_TW |
| dc.contributor.oralexamcommittee | Bor-Sung Liang;Chien-Mo Li;Jie-Hong Jiang;Shih-Hao Hung | en |
| dc.subject.keyword | 量子電路優化,量子邏輯閘分解層次調整,動態減縮算法,ZX-calculus,Qsyn, | zh_TW |
| dc.subject.keyword | Quantum Circuit Optimization,ZX-calculus,Decomposition Level Adjustment,Dynamic Reduction Algorithm,Qsyn, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202303169 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| Appears in Collections: | 電機工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf | 4.15 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
