請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川 | zh_TW |
| dc.contributor.advisor | Kuo-Chuan Ho | en |
| dc.contributor.author | 陳韻心 | zh_TW |
| dc.contributor.author | Yun-Hsin Chen | en |
| dc.date.accessioned | 2023-08-15T17:26:59Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | (1) Shiva Kumar, S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports 2022, 8, 13793-13813.
(2) Rasheed, T.; Rasheed, A.; Alzahrani, F. M. A.; Ajmal, S.; Warsi, M. F.; Al-Buriahi, M. S.; Dastgeer, G.; Lee, S. G. Bifunctional electrocatalytic water splitting augmented by cobalt-nickel-ferrite NPs-supported fluoride-free MXene as a novel electrocatalyst. Fuel 2023, 346, 128305. (3) Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science 2018, 11 (4), 744-771. (4) Bos, K.; Gupta, J. Stranded assets and stranded resources: Implications for climate change mitigation and global sustainable development. Energy Research & Social Science 2019, 56, 101215. (5) Cf, O. Transforming our world: the 2030 Agenda for Sustainable Development. United Nations: New York, NY, USA 2015. (6) Mohideen, M. M.; Ramakrishna, S.; Prabu, S.; Liu, Y. Advancing green energy solution with the impetus of COVID-19 pandemic. Journal of Energy Chemistry 2021, 59, 688-705. (7) Vincent, I.; Bessarabov, D. Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews 2018, 81, 1690-1704. (8) Sadeghi, M. T.; Molaei, M. CFD Simulation of a Methane Steam Reforming Reactor. 2008, 6 (1). (9) de Levie, R. The electrolysis of water. Journal of Electroanalytical Chemistry 1999, 476 (1), 92-93. (10) Yeh, Y.-X.; Cheng, C.-C.; Jhu, P.-S.; Lin, S.-H.; Chen, P.-W.; Lu, S.-Y. Core–shell FTO@Co3O4 nanoparticles as active and stable anode catalysts for acidic oxygen evolution reaction and proton exchange membrane water electrolysis. Journal of Materials Chemistry A 2023, 11 (7), 3399-3407. (11) Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews 2015, 44 (15), 5148-5180. (12) Lu, F.; Zhou, M.; Zhou, Y.; Zeng, X. First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small 2017, 13 (45), 1701931. (13) Gao, L.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews 2021, 50 (15), 8428-8469. (14) Huang, C.-L.; Lin, Y.-G.; Chiang, C.-L.; Peng, C.-K.; Senthil Raja, D.; Hsieh, C.-T.; Chen, Y.-A.; Chang, S.-Q.; Yeh, Y.-X.; Lu, S.-Y. Atomic scale synergistic interactions lead to breakthrough catalysts for electrocatalytic water splitting. Applied Catalysis B: Environmental 2023, 320, 122016. (15) Liu, J.; Wang, Z.; Kou, L.; Gu, Y. Mechanism Exploration and Catalyst Design for Hydrogen Evolution Reaction Accelerated by Density Functional Theory Simulations. ACS Sustainable Chemistry & Engineering 2023, 11 (2), 467-481. (16) Wang, Q.; He, R.; Yang, F.; Tian, X.; Sui, H.; Feng, L. An overview of heteroatom doped cobalt phosphide for efficient electrochemical water splitting. Chemical Engineering Journal 2023, 456, 141056. (17) Sahin, N. E.; Pech-Rodríguez, W. J.; Meléndez-González, P. C.; Lopez Hernández, J.; Rocha-Rangel, E. Water Splitting as an Alternative for Electrochemical Hydrogen and Oxygen Generation: Current Status, Trends, and Challenges. In Energies, 2023; Vol. 16. (18) Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews 2020, 120 (2), 851-918. (19) Batool, M.; Hameed, A.; Nadeem, M. A. Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: A critical review. Coordination Chemistry Reviews 2023, 480, 215029. (20) Yao, Y.; Zhang, Z.; Jiao, L. Development Strategies in Transition Metal Borides for Electrochemical Water Splitting. ENERGY & ENVIRONMENTAL MATERIALS 2022, 5 (2), 470-485. (21) Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports 2015, 5 (1), 13801. (22) Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. NiFe-Based Metal–Organic Framework Nanosheets Directly Supported on Nickel Foam Acting as Robust Electrodes for Electrochemical Oxygen Evolution Reaction. Advanced Energy Materials 2018, 8 (21), 1800584. (23) Senthil Raja, D.; Huang, C.-L.; Chen, Y.-A.; Choi, Y.; Lu, S.-Y. Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Applied Catalysis B: Environmental 2020, 279, 119375. (24) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 2013, 135 (45), 16977-16987. (25) Al-Naggar, A. H.; Shinde, N. M.; Kim, J.-S.; Mane, R. S. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordination Chemistry Reviews 2023, 474, 214864. (26) Xu, Z.; Yeh, C.-L.; Chen, J.-L.; Lin, J. T.; Ho, K.-C.; Lin, R. Y.-Y. Metal–Organic Framework-Derived 2D NiCoP Nanoflakes from Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Splitting at High Current Densities. ACS Sustainable Chemistry & Engineering 2022, 10 (35), 11577-11586. (27) Liu, S.; Lin, Z.; Wan, R.; Liu, Y.; Liu, Z.; Zhang, S.; Zhang, X.; Tang, Z.; Lu, X.; Tian, Y. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. Journal of Materials Chemistry A 2021, 9 (37), 21259-21269. (28) Wodrich, M. D.; Sawatlon, B.; Busch, M.; Corminboeuf, C. The Genesis of Molecular Volcano Plots. Accounts of Chemical Research 2021, 54 (5), 1107-1117. (29) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews 2010, 110 (11), 6474-6502. (30) Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C.-L.; Liu, R.-S.; Han, C.-P.; Li, Y.; Gogotsi, Y.; Wang, G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis 2018, 1 (12), 985-992. (31) Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters 2012, 3 (3), 399-404. (32) Karuppasamy, K.; Bose, R.; Velusamy, D. B.; Vikraman, D.; Santhoshkumar, P.; Sivakumar, P.; Alfantazi, A.; Kim, H.-S. Rational Design and Engineering of Metal–Organic Framework-Derived Trimetallic NiCoFe-Layered Double Hydroxides as Efficient Electrocatalysts for Water Oxidation Reaction. ACS Sustainable Chemistry & Engineering 2022, 10 (45), 14693-14704. (33) Lv, C.-N.; Zhang, L.; Huang, X.-H.; Zhu, Y.-X.; Zhang, X.; Hu, J.-S.; Lu, S.-Y. Double functionalization of N-doped carbon carved hollow nanocubes with mixed metal phosphides as efficient bifunctional catalysts for electrochemical overall water splitting. Nano Energy 2019, 65, 103995. (34) Jia, Q.; Gao, J.; Qiu, C.; Dong, L.; Jiang, Y.; Liu, X.; Hong, M.; Yang, S. Ultrasound-seeded vapor-phase-transport growth of boundary-rich layered double hydroxide nanosheet arrays for highly efficient water splitting. Chemical Engineering Journal 2022, 433, 134552. (35) Shang, J.; Zhang, Y.; Zhang, Q.; Li, Y.; Deng, F.; Gao, R.; Wang, J. A novel interlaced NiCoFe hydrotalcite assembled by nanorods and nanosheets with enhanced electrochemical performance for supercapacitor. Journal of Alloys and Compounds 2022, 925, 166668. (36) Liu, R.; Shi, X.-R.; Wen, Y.; Shao, X.; Su, C.; Hu, J.; Xu, S. Trimetallic synergistic optimization of 0D NiCoFe-P QDs anchoring on 2D porous carbon for efficient electrocatalysis and high-energy supercapacitor. Journal of Energy Chemistry 2022, 74, 149-158. (37) Ding, Z.; Yu, H.; Liu, X.; He, N.; Chen, X.; Li, H.; Wang, M.; Yamauchi, Y.; Xu, X.; Amin, M. A.; et al. Prussian blue analogue derived cobalt–nickel phosphide/carbon nanotube composite as electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. Journal of Colloid and Interface Science 2022, 616, 210-220. (38) Li, Y.; Dong, Z.; Jiao, L. Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis. Advanced Energy Materials 2020, 10 (11), 1902104. (39) Li, N.; Han, J.; Yao, K.; Han, M.; Wang, Z.; Liu, Y.; Liu, L.; Liang, H. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution. Journal of Materials Science & Technology 2022, 106, 90-97. (40) Chai, R.; Zhou, T.; Sun, D.; Luo, Y.; Li, J.; Wu, F. Bimetallic-MOF derived nickel-iron phosphide nanosheets on carbon cloth for efficacious oxygen evolution reaction. International Journal of Hydrogen Energy 2022, 47 (85), 36129-36138. (41) Zhang, L.; Wang, Z.; Zhang, J.; Lin, Z.; Zhang, Q.; Zhong, W.; Wu, G. High activity and stability in Ni2P/(Co,Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Research 2023, 16 (5), 6552-6559. (42) Oliveira, F. M.; Paštika, J.; Mazánek, V.; Melle-Franco, M.; Sofer, Z.; Gusmão, R. Cobalt Phosphorous Trisulfide as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (20), 23638-23646. (43) Liang, Q.; Zheng, Y.; Du, C.; Luo, Y.; Zhang, J.; Li, B.; Zong, Y.; Yan, Q. General and Scalable Solid-State Synthesis of 2D MPS3 (M = Fe, Co, Ni) Nanosheets and Tuning Their Li/Na Storage Properties. Small Methods 2017, 1 (12), 1700304. (44) Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Advanced Materials 2019, 31 (17), 1807134. (45) He, R.; Huang, X.; Feng, L. Recent Progress in Transition-Metal Sulfide Catalyst Regulation for Improved Oxygen Evolution Reaction. Energy & Fuels 2022, 36 (13), 6675-6694. (46) Mukherjee, D.; Austeria, P. M.; Sampath, S. Two-Dimensional, Few-Layer Phosphochalcogenide, FePS3: A New Catalyst for Electrochemical Hydrogen Evolution over Wide pH Range. ACS Energy Letters 2016, 1 (2), 367-372. (47) Fang, L.; Xie, Y.; Guo, P.; Zhu, J.; Xiao, S.; Sun, S.; Zi, W.; Zhao, H. In situ formation of highly exposed NiPS3 nanosheets on nickel foam as an efficient 3D electrocatalyst for overall water splitting. Sustainable Energy & Fuels 2021, 5 (9), 2537-2544. (48) Chen, X.; Ding, X.; Muheiyati, H.; Feng, Z.; Xu, L.; Ge, W.; Qian, Y. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Research 2019, 12 (5), 1115-1120. (49) Du, C.-F.; Dinh, K. N.; Liang, Q.; Zheng, Y.; Luo, Y.; Zhang, J.; Yan, Q. Self-Assemble and In Situ Formation of Ni1−xFexPS3 Nanomosaic-Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials 2018, 8 (26), 1801127. (50) Li, D.; Zhou, C.; Yang, R.; Xing, Y.; Xu, S.; Jiang, D.; Tian, D.; Shi, W. Interfacial Engineering of the CoxP–Fe2P Heterostructure for Efficient and Robust Electrochemical Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2021, 9 (23), 7737-7748. (51) Zhang, X.; Zhang, L.; Zhu, G.-G.; Zhu, Y.-X.; Lu, S.-Y. Mixed Metal Phosphide Chainmail Catalysts Confined in N-Doped Porous Carbon Nanoboxes as Highly Efficient Water-Oxidation Electrocatalysts with Ultralow Overpotentials and Tafel Slopes. ACS Applied Materials & Interfaces 2020, 12 (6), 7153-7161. (52) Chen, Z.; Fei, B.; Hou, M.; Yan, X.; Chen, M.; Qing, H.; Wu, R. Ultrathin Prussian blue analogue nanosheet arrays with open bimetal centers for efficient overall water splitting. Nano Energy 2020, 68, 104371. (53) Yi, H.; Qin, R.; Ding, S.; Wang, Y.; Li, S.; Zhao, Q.; Pan, F. Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications. Advanced Functional Materials 2021, 31 (6), 2006970. (54) Keggin, J. F.; Miles, F. D. Structures and Formulæ of the Prussian Blues and Related Compounds. Nature 1936, 137 (3466), 577-578. (55) Robin, M. B. The Color and Electronic Configurations of Prussian Blue. Inorganic Chemistry 1962, 1 (2), 337-342. (56) Min, X.; Xiao, J.; Fang, M.; Wang, W.; Zhao, Y.; Liu, Y.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. Potassium-ion batteries: outlook on present and future technologies. Energy & Environmental Science 2021, 14 (4), 2186-2243. (57) Song, X.; Song, S.; Wang, D.; Zhang, H. Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods 2021, 5 (4), 2001000. (58) Cao, L.-M.; Lu, D.; Zhong, D.-C.; Lu, T.-B. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coordination Chemistry Reviews 2020, 407, 213156. (59) Ying, S.; Chen, C.; Wang, J.; Lu, C.; Liu, T.; Kong, Y.; Yi, F.-Y. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. ChemPlusChem 2021, 86 (12), 1608-1622. (60) Wu, X.; Jing, Q.; Sun, F.; Pang, H. The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors. Inorganic Chemistry Frontiers 2023, 10 (1), 78-84. (61) Viet Thieu, Q. Q.; Hoang, H.; Le, V. T.; Nguyen, V. H.; Nguyen, D. Q.; Nguyen, V. D.; Phung Le, M. L.; Thi Tran, N. H.; Kim, I. T.; Nguyen, T. L. Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceramics International 2021, 47 (21), 30164-30171. (62) Meng, X.; Yang, J.; Zhang, C.; Fu, Y.; Li, K.; Sun, M.; Wang, X.; Dong, C.; Ma, B.; Ding, Y. Light-Driven CO2 Reduction over Prussian Blue Analogues as Heterogeneous Catalysts. ACS Catalysis 2022, 12 (1), 89-100. (63) Peng, J.; Zhang, W.; Liu, Q.; Wang, J.; Chou, S.; Liu, H.; Dou, S. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. Advanced Materials 2022, 34 (15), 2108384. (64) Wang, Q.; Gao, Q.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers 2020, 7 (2), 300-339. (65) Singh, B.; Indra, A. Prussian blue- and Prussian blue analogue-derived materials: progress and prospects for electrochemical energy conversion. Materials Today Energy 2020, 16, 100404. (66) Lin, Y.-C.; Chuang, C.-H.; Hsiao, L.-Y.; Yeh, M.-H.; Ho, K.-C. Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2020, 12 (38), 42634-42643. (67) Du, Y.; Ding, X.; Han, M.; Zhu, M. Morphology and Composition Regulation of FeCoNi Prussian Blue Analogues to Advance in the Catalytic Performances of the Derivative Ternary Transition-Metal Phosphides for OER. ChemCatChem 2020, 12 (17), 4339-4345. (68) Senthil Raja, D.; Cheng, C.-C.; Ting, Y.-C.; Lu, S.-Y. NiMo-MOF-Derived Carbon-Armored Ni4Mo Alloy of an Interwoven Nanosheet Structure as an Outstanding pH-Universal Catalyst for Hydrogen Evolution Reaction at High Current Densities. ACS Applied Materials & Interfaces 2023, 15 (16), 20130-20140. (69) Zhang, L.; Chang, C.; Hsu, C.-W.; Chang, C.-W.; Lu, S.-Y. Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly efficient and durable electrocatalysts for the oxygen evolution reaction at high current densities. Journal of Materials Chemistry A 2017, 5 (37), 19656-19663. (70) Liu, A.; Liang, X.; Ren, X.; Guan, W.; Gao, M.; Yang, Y.; Yang, Q.; Gao, L.; Li, Y.; Ma, T. Recent Progress in MXene-Based Materials: Potential High-Performance Electrocatalysts. Advanced Functional Materials 2020, 30 (38), 2003437. (71) Rosenkranz, A.; Righi, M. C.; Sumant, A. V.; Anasori, B.; Mochalin, V. N. Perspectives of 2D MXene Tribology. Advanced Materials 2023, 35 (5), 2207757. (72) Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Materials and Applications 2021, 5 (1), 78. (73) Wang, C.; Shou, H.; Chen, S.; Wei, S.; Lin, Y.; Zhang, P.; Liu, Z.; Zhu, K.; Guo, X.; Wu, X.; et al. HCl-Based Hydrothermal Etching Strategy toward Fluoride-Free MXenes. Advanced Materials 2021, 33 (27), 2101015. (74) Wei, Y.; Soomro, R. A.; Xie, X.; Xu, B. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. Journal of Energy Chemistry 2021, 55, 244-255. (75) Hong, W.; Wyatt, B. C.; Nemani, S. K.; Anasori, B. Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bulletin 2020, 45 (10), 850-861. (76) Qiao, J.; Kong, L.; Xu, S.; Lin, K.; He, W.; Ni, M.; Ruan, Q.; Zhang, P.; Liu, Y.; Zhang, W.; et al. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Materials 2021, 43, 509-530. (77) Zhang, J.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M.; Yang, W.; Liu, J.; et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Advanced Materials 2020, 32 (23), 2001093. (78) Peng, J.; Chen, X.; Ong, W.-J.; Zhao, X.; Li, N. Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. Chem 2019, 5 (1), 18-50. (79) Zhang, X.; Yang, S.; Lu, W.; Lei, D.; Tian, Y.; Guo, M.; Mi, P.; Qu, N.; Zhao, Y. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science 2021, 592, 95-102. (80) Sharma, K.; Hasija, V.; Patial, S.; Singh, P.; Nguyen, V.-H.; Nadda, A. K.; Thakur, S.; Nguyen-Tri, P.; Nguyen, C. C.; Kim, S. Y.; et al. Recent progress on MXenes and MOFs hybrids: Structure, synthetic strategies and catalytic water splitting. International Journal of Hydrogen Energy 2023, 48 (17), 6560-6574. (81) Zubair, M.; Ul Hassan, M. M.; Mehran, M. T.; Baig, M. M.; Hussain, S.; Shahzad, F. 2D MXenes and their heterostructures for HER, OER and overall water splitting: A review. International Journal of Hydrogen Energy 2022, 47 (5), 2794-2818. (82) Hu, L.; Xiao, R.; Wang, X.; Wang, X.; Wang, C.; Wen, J.; Gu, W.; Zhu, C. MXene-induced electronic optimization of metal-organic framework-derived CoFe LDH nanosheet arrays for efficient oxygen evolution. Applied Catalysis B: Environmental 2021, 298, 120599. (83) Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews 2015, 44 (8), 2060-2086. (84) Zhao, Y.; Bai, J.; Wu, X.-R.; Chen, P.; Jin, P.-J.; Yao, H.-C.; Chen, Y. Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. Journal of Materials Chemistry A 2019, 7 (27), 16437-16446. (85) Morales-Guio, C. G.; Stern, L.-A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews 2014, 43 (18), 6555-6569. (86) Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414 (6861), 345-352. (87) Senthil Raja, D.; Lin, H.-W.; Lu, S.-Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 2019, 57, 1-13. (88) Qian, Q.; Li, Y.; Liu, Y.; Zhang, G. General anion-exchange reaction derived amorphous mixed-metal oxides hollow nanoprisms for highly efficient water oxidation electrocatalysis. Applied Catalysis B: Environmental 2020, 266, 118642. (89) Quan, L.; Li, S.; Zhao, Z.; Liu, J.; Ran, Y.; Cui, J.; Lin, W.; Yu, X.; Wang, L.; Zhang, Y.; et al. Hierarchically Assembling CoFe Prussian Blue Analogue Nanocubes on CoP Nanosheets as Highly Efficient Electrocatalysts for Overall Water Splitting. Small Methods 2021, 5 (7), 2100125. (90) Sun, L.; Luo, Q.; Dai, Z.; Ma, F. Material libraries for electrocatalytic overall water splitting. Coordination Chemistry Reviews 2021, 444, 214049. (91) Du, C.-F.; Liang, Q.; Dangol, R.; Zhao, J.; Ren, H.; Madhavi, S.; Yan, Q. Layered trichalcogenidophosphate: a new catalyst family for water splitting. Nano-Micro Letters 2018, 10, 1-15. (92) Zhou, L.; Shao, M.; Li, J.; Jiang, S.; Wei, M.; Duan, X. Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy 2017, 41, 583-590. (93) Su, S.; Sun, L.; Qian, J.; Shi, X.; Zhang, Y. Hollow Bimetallic Phosphosulfide NiCo–P/S Nanoparticles in a CNT/rGO Framework with Interface Charge Redistribution for Battery-Type Supercapacitors. ACS Applied Energy Materials 2022, 5 (1), 685-696. (94) Li, K.; Rakov, D.; Zhang, W.; Xu, P. Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping. Chemical Communications 2017, 53 (58), 8199-8202. (95) Jing, S.; Gong, X.; Ji, S.; Jia, L.; Pollet, B. G.; Yan, S.; Liang, H. Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries. Beilstein journal of nanotechnology 2020, 11 (1), 1809-1821. (96) Xiang, R.; Duan, Y.; Tong, C.; Peng, L.; Wang, J.; Shah, S. S. A.; Najam, T.; Huang, X.; Wei, Z. Self-standing FeCo Prussian blue analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting. Electrochimica Acta 2019, 302, 45-55. (97) Chen, J. E.; Fan, M.-S.; Chen, Y.-L.; Deng, Y.-H.; Kim, J. H.; Alamri, H. R.; Alothman, Z. A.; Yamauchi, Y.; Ho, K.-C.; Wu, K. C. W. Prussian Blue-Derived Synthesis of Hollow Porous Iron Pyrite Nanoparticles as Platinum-Free Counter Electrodes for Highly Efficient Dye-Sensitized Solar Cells. Chemistry – A European Journal 2017, 23 (54), 13284-13288. (98) Han, L.; Yu, X.-Y.; Lou, X. W. Formation of Prussian-Blue-Analog Nanocages via a Direct Etching Method and their Conversion into Ni–Co-Mixed Oxide for Enhanced Oxygen Evolution. Advanced Materials 2016, 28 (23), 4601-4605. (99) Wang, Y.; Ma, J.; Wang, J.; Chen, S.; Wang, H.; Zhang, J. Interfacial Scaffolding Preparation of Hierarchical PBA-Based Derivative Electrocatalysts for Efficient Water Splitting. Advanced Energy Materials 2019, 9 (5), 1802939. (100) Ying, Q.; Ni, S.; Zhang, H.; Yu, F.; Yang, Y. Boosting Synergy of Polymetal Phosphides by Core-Shell Design of Prussian Blue Analogue Precursors as Electrocatalysts for Water Splitting. ChemCatChem 2022, 14 (14), e202200330. (101) Cao, L.-M.; Hu, Y.-W.; Tang, S.-F.; Iljin, A.; Wang, J.-W.; Zhang, Z.-M.; Lu, T.-B. Fe-CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large-Current-Density Oxygen Evolution and Overall Water Splitting. Advanced Science 2018, 5 (10), 1800949. (102) Cao, Z.; Zhou, T.; Xi, W.; Zhao, Y. Bimetal metal-organic frameworks derived Co0.4Fe0.28P and Co0.37Fe0.26S nanocubes for enhanced oxygen evolution reaction. Electrochimica Acta 2018, 263, 576-584. (103) Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Advanced Materials 2017, 29 (14), 1605838. (104) Liu, H.-J.; Dong, B. Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage. Materials Today Physics 2021, 20, 100469. (105) Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181-190. (106) Liang, J.; Ding, C.; Liu, J.; Chen, T.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media. Nanoscale 2019, 11 (22), 10992-11000. (107) Qu, G.; Zhou, Y.; Wu, T.; Zhao, G.; Li, F.; Kang, Y.; Xu, C. Phosphorized MXene-Phase Molybdenum Carbide as an Earth-Abundant Hydrogen Evolution Electrocatalyst. ACS Applied Energy Materials 2018, 1 (12), 7206-7212. (108) Handoko, A. D.; Fredrickson, K. D.; Anasori, B.; Convey, K. W.; Johnson, L. R.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Applied Energy Materials 2018, 1 (1), 173-180. (109) Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters 2016, 1 (3), 589-594. (110) Zhu, X.; Zhu, T.; Chen, Q.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. FeP-CoP Nanocubes In Situ Grown on Ti3C2Tx MXene as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Industrial & Engineering Chemistry Research 2022, 61 (30), 10837-10845. (111) Yue, Q.; Sun, J.; Chen, S.; Zhou, Y.; Li, H.; Chen, Y.; Zhang, R.; Wei, G.; Kang, Y. Hierarchical Mesoporous MXene–NiCoP Electrocatalyst for Water-Splitting. ACS Applied Materials & Interfaces 2020, 12 (16), 18570-18577. (112) Wen, Y.; Wei, Z.; Ma, C.; Xing, X.; Li, Z.; Luo, D. MXene Boosted CoNi-ZIF-67 as Highly Efficient Electrocatalysts for Oxygen Evolution. In Nanomaterials, 2019; Vol. 9. (113) Chuang, C.-H.; Hsiao, L.-Y.; Yeh, M.-H.; Wang, Y.-C.; Chang, S.-C.; Tsai, L.-D.; Ho, K.-C. Prussian Blue Analogue-Derived Metal Oxides as Electrocatalysts for Oxygen Evolution Reaction: Tailoring the Molar Ratio of Cobalt to Iron. ACS Applied Energy Materials 2020, 3 (12), 11752-11762. (114) Ding, X.; Uddin, W.; Sheng, H.; Li, P.; Du, Y.; Zhu, M. Porous transition metal phosphides derived from Fe-based Prussian blue analogue for oxygen evolution reaction. Journal of Alloys and Compounds 2020, 814, 152332. (115) Lei, B.; Li, G. R.; Gao, X. P. Morphology dependence of molybdenum disulfide transparent counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2 (11), 3919-3925. (116) He, L.; Gong, L.; Gao, M.; Yang, C.-W.; Sheng, G.-P. In situ formation of NiCoP@phosphate nanocages as an efficient bifunctional electrocatalyst for overall water splitting. Electrochimica Acta 2020, 337, 135799. (117) Guo, Y.; Huang, Q.; Ding, J.; Zhong, L.; Li, T.-T.; Pan, J.; Hu, Y.; Qian, J.; Huang, S. CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. International Journal of Hydrogen Energy 2021, 46 (43), 22268-22276. (118) Kuang, P.; He, M.; Zhu, B.; Yu, J.; Fan, K.; Jaroniec, M. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. Journal of Catalysis 2019, 375, 8-20. (119) Mei, Y.; Cong, Y.; Huang, S.; Qian, J.; Ye, J.; Li, T.-T. MOF-on-MOF Strategy to Construct a Nitrogen-Doped Carbon-Incorporated CoP@Fe–CoP Core-Shelled Heterostructure for High-Performance Overall Water Splitting. Inorganic Chemistry 2022, 61 (2), 1159-1168. (120) Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J.-Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy & Environmental Science 2014, 7 (8), 2624-2629. (121) Fan, K.; Zou, H.; Lu, Y.; Chen, H.; Li, F.; Liu, J.; Sun, L.; Tong, L.; Toney, M. F.; Sui, M.; et al. Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. ACS Nano 2018, 12 (12), 12369-12379. (122) Liu, Y.; Geng, H.; Ang, E. H.; Cao, X.; Zheng, J.; Gu, H. Hierarchical Nanotubes Constructed by Co9S8/MoS2 Ultrathin Nanosheets Wrapped with Reduced Graphene Oxide for Advanced Lithium Storage. Chemistry – An Asian Journal 2019, 14 (1), 170-176. (123) Xie, Y.; Yu, H.; Deng, L.; Amin, R. S.; Yu, D.; Fetohi, A. E.; Maximov, M. Y.; Li, L.; El-Khatib, K. M.; Peng, S. Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting. Inorganic Chemistry Frontiers 2022, 9 (4), 662-669. (124) Wei, X.; Zhang, Y.; He, H.; Peng, L.; Xiao, S.; Yao, S.; Xiao, P. Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chemical Communications 2019, 55 (73), 10896-10899. (125) Fominski, V.; Demin, M.; Nevolin, V.; Fominski, D.; Romanov, R.; Gritskevich, M.; Smirnov, N. Reactive pulsed laser deposition of clustered-type MoSx (x~ 2, 3, and 4) films and their solid lubricant properties at low temperature. Nanomaterials 2020, 10 (4), 653. (126) Mayorga-Martinez, C. C.; Sofer, Z.; Sedmidubský, D.; Huber, Š.; Eng, A. Y. S.; Pumera, M. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Applied Materials & Interfaces 2017, 9 (14), 12563-12573. (127) Lin, K.-Y. A.; Chen, B.-J. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate. Chemosphere 2017, 166, 146-156. (128) Yan, W.; Cao, X.; Tian, J.; Jin, C.; Ke, K.; Yang, R. Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4 with enhanced electrocatalytic activities for oxygen reduction and evolution reactions. Carbon 2016, 99, 195-202. (129) Yang, S.; Chen, L.; Wei, W.; Lv, X.; Xie, J. CoP nanoparticles encapsulated in three-dimensional N-doped porous carbon for efficient hydrogen evolution reaction in a broad pH range. Applied Surface Science 2019, 476, 749-756. (130) Yu, M.; Budiyanto, E.; Tüysüz, H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction. Angewandte Chemie International Edition 2022, 61 (1), e202103824. (131) Chen, C.; Levitin, G.; Hess, D. W.; Fuller, T. F. XPS investigation of Nafion® membrane degradation. Journal of Power Sources 2007, 169 (2), 288-295. (132) Tsai, F.-T.; Deng, Y.-T.; Pao, C.-W.; Chen, J.-L.; Lee, J.-F.; Lai, K.-T.; Liaw, W.-F. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting. Journal of Materials Chemistry A 2020, 8 (19), 9939-9950. (133) He, L.-G.; Cheng, P.-Y.; Cheng, C.-C.; Huang, C.-L.; Hsieh, C.-T.; Lu, S.-Y. (NixFeyCo6-x-y)Mo6C cuboids as outstanding bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental 2021, 290, 120049. (134) Tseng, W.-C.; Chang, C.-W.; Kaun, C.-C.; Su, Y.-H. Catalytic hydrogen evolution reaction on surfaces of metal-nanoparticle-coated zinc-based oxides by first-principles calculations. International Journal of Hydrogen Energy 2022, 47 (96), 40768-40776. (135) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321), eaad4998. (136) Raveendran, A.; Chandran, M.; Dhanusuraman, R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Advances 2023, 13 (6), 3843-3876. (137) Yu, Z.-Y.; Duan, Y.; Feng, X.-Y.; Yu, X.; Gao, M.-R.; Yu, S.-H. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials 2021, 33 (31), 2007100. (138) Zhao, S.; Zhao, Y.; Chen, J.; Dai, R.; Zhou, W.; Yang, J.; Zhao, X.; Chen, Z.; Zhou, Y.; Zhang, H.; et al. Crystalline and amorphous phases: NiFeCo tri-metal phosphide as an efficient electrocatalyst to accelerate oxygen evolution reaction kinetics. Electrochimica Acta 2022, 426, 140788. (139) Wang, J.-G.; Hua, W.; Li, M.; Liu, H.; Shao, M.; Wei, B. Structurally Engineered Hyperbranched NiCoP Arrays with Superior Electrocatalytic Activities toward Highly Efficient Overall Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (48), 41237-41245. (140) Chen, W.; Chen, C.; Li, L.; Lin, Z. Partial carbonization and etching of ZIF-9 to construct SO42−-decorated C@NiCoFe LDH ultrathin nanosheets for efficient oxygen evolution reaction. Journal of Materials Chemistry A 2023, 11 (21), 11170-11178. (141) Tan, X.; Wu, Y.; Lin, X.; Zeb, A.; Xu, X.; Luo, Y.; Liu, J. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorganic Chemistry Frontiers 2020, 7 (24), 4939-4955. (142) Yue, R.; Mo, Z.; Shuai, C.; He, S.; Liu, W.; Liu, G.; Du, Y.; Dong, Q.; Ding, J.; Zhu, X.; et al. N-doped bimetallic NiFeP nanocubic clusters derived from Prussian blue analogues as a high-efficiency and durable water splitting electrocatalyst. Journal of Electroanalytical Chemistry 2022, 918, 116427. (143) Guo, Y.; Tang, J.; Wang, Z.; Sugahara, Y.; Yamauchi, Y. Hollow Porous Heterometallic Phosphide Nanocubes for Enhanced Electrochemical Water Splitting. Small 2018, 14 (44), 1802442. (144) Wang, G.; Huang, D.; Cheng, M.; Chen, S.; Zhang, G.; Lei, L.; Chen, Y.; Du, L.; Li, R.; Liu, Y. Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials. Coordination Chemistry Reviews 2022, 460, 214467. (145) Wang, T.; Pang, Q.; Li, B.; Chen, Y.; Zhang, J. Z. Three-dimensional core–shell CoFe Prussian blue analog at NiCoFe layered ternary hydroxide electrocatalyst for efficient oxygen evolution reaction. Applied Physics Letters 2021, 118 (23), 233903. (146) Lv, Z.; Ma, W.; Dang, J.; Wang, M.; Jian, K.; Liu, D.; Huang, D. Induction of Co2P Growth on a MXene (Ti3C2Tx)-Modified Self-Supporting Electrode for Efficient Overall Water Splitting. The Journal of Physical Chemistry Letters 2021, 12 (20), 4841-4848. (147) Xu, D.; Kang, Z.; Zhao, H.; Ji, Y.; Yao, W.; Ye, D.; Zhang, J. Coupling heterostructured CoP-NiCoP nanopin arrays with MXene (Ti3C2Tx) as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science 2023, 639, 223-232. (148) Wang, H.; Lee, J.-M. Recent advances in structural engineering of MXene electrocatalysts. Journal of Materials Chemistry A 2020, 8 (21), 10604-10624. (149) Tang, Y.; Yang, C.; Xu, X.; Kang, Y.; Henzie, J.; Que, W.; Yamauchi, Y. MXene Nanoarchitectonics: Defect-Engineered 2D MXenes towards Enhanced Electrochemical Water Splitting. Advanced Energy Materials 2022, 12 (12), 2103867. (150) Du, C.-F.; Song, Q.; Liang, Q.; Zhao, X.; Wang, J.; Zhi, R.; Wang, Y.; Yu, H. The Passive Effect of MXene on Electrocatalysis: A Case of Ti3C2Tx/CoNi−MOF nanosheets for Oxygen Evolution Reaction. ChemNanoMat 2021, 7 (5), 539-544. (151) Sarfraz, B.; Mehran, M. T.; Baig, M. M.; Naqvi, S. R.; Khoja, A. H.; Shahzad, F. HF free greener Cl-terminated MXene as novel electrocatalyst for overall water splitting in alkaline media. International Journal of Energy Research 2022, 46 (8), 10942-10954. (152) Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao, K.; Lu, M.; et al. Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano 2017, 11 (6), 5800-5807. (153) Zhou, Q.; Chen, Y.; Zhao, G.; Lin, Y.; Yu, Z.; Xu, X.; Wang, X.; Liu, H. K.; Sun, W.; Dou, S. X. Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (6), 5382-5390. (154) Dong, Q.; Shuai, C.; Mo, Z.; Guo, R.; Liu, N.; Liu, G.; Wang, J.; Liu, W.; Chen, Y.; Liu, J.; et al. The in situ derivation of a NiFe-LDH ultra-thin layer on Ni-BDC nanosheets as a boosted electrocatalyst for the oxygen evolution reaction. CrystEngComm 2021, 23 (5), 1172-1180. (155) Yang, Y.; Lin, Z.; Gao, S.; Su, J.; Lun, Z.; Xia, G.; Chen, J.; Zhang, R.; Chen, Q. Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. ACS Catalysis 2017, 7 (1), 469-479. (156) Zhao, Y.; Fan, G.; Yang, L.; Lin, Y.; Li, F. Assembling Ni–Co phosphides/carbon hollow nanocages and nanosheets with carbon nanotubes into a hierarchical necklace-like nanohybrid for electrocatalytic oxygen evolution reaction. Nanoscale 2018, 10 (28), 13555-13564. (157) Xiao, X.; He, C.-T.; Zhao, S.; Li, J.; Lin, W.; Yuan, Z.; Zhang, Q.; Wang, S.; Dai, L.; Yu, D. A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy & Environmental Science 2017, 10 (4), 893-899. (158) Yang, H. B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances 2 (4), e1501122. (159) Rajagopal, V.; Kathiresan, M.; Manivel, P.; Suryanarayanan, V.; Velayutham, D.; Ho, K.-C. Porous organic polymer derived metal-free carbon composite as an electrocatalyst for CO2 reduction and water splitting. Journal of the Taiwan Institute of Chemical Engineers 2020, 106, 183-190. (160) Long, G.-f.; Wan, K.; Liu, M.-y.; Liang, Z.-x.; Piao, J.-h.; Tsiakaras, P. Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction. Journal of Catalysis 2017, 348, 151-159. (161) Guo, P.; Wu, R.; Fei, B.; Liu, J.; Liu, D.; Yan, X.; Pan, H. Multifunctional bayberry-like composites consisting of CoFe encapsulated by carbon nanotubes for overall water splitting and zinc–air batteries. Journal of Materials Chemistry A 2021, 9 (38), 21741-21749. (162) Anantharaj, S.; Kundu, S.; Noda, S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. (163) Perez Bakovic, S. I.; Acharya, P.; Watkins, M.; Thornton, H.; Hou, S.; Greenlee, L. F. Electrochemically active surface area controls HER activity for FexNi100−x films in alkaline electrolyte. Journal of Catalysis 2021, 394, 104-112. (164) Anantharaj, S.; Ede, S.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science 2018, 11 (4), 744-771. (165) Kandel, M. R.; Pan, U. N.; Paudel, D. R.; Dhakal, P. P.; Kim, N. H.; Lee, J. H. Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Composites Part B: Engineering 2022, 239, 109992. (166) Chen, W.; Wang, C.; Su, S.; Wang, H.; Cai, D. Synthesis of ZIF-9(III)/Co LDH layered composite from ZIF-9(I) based on controllable phase transition for enhanced electrocatalytic oxygen evolution reaction. Chemical Engineering Journal 2021, 414, 128784. (167) Wang, J.; He, P.; Shen, Y.; Dai, L.; Li, Z.; Wu, Y.; An, C. FeNi nanoparticles on Mo2TiC2Tx MXene@nickel foam as robust electrocatalysts for overall water splitting. Nano Research 2021, 14 (10), 3474-3481. (168) Selvam, N. C. S.; Lee, J.; Choi, G. H.; Oh, M. J.; Xu, S.; Lim, B.; Yoo, P. J. MXene supported CoxAy (A = OH, P, Se) electrocatalysts for overall water splitting: unveiling the role of anions in intrinsic activity and stability. Journal of Materials Chemistry A 2019, 7 (48), 27383-27393. (169) Wei, B.; Xu, G.; Hei, J.; Zhang, L.; Huang, T. PBA derived FeCoP nanoparticles decorated on NCNFs as efficient electrocatalyst for water splitting. International Journal of Hydrogen Energy 2021, 46 (2), 2225-2235. (170) Ren, J.; Zong, H.; Sun, Y.; Gong, S.; Feng, Y.; Wang, Z.; Hu, L.; Yu, K.; Zhu, Z. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm 2020, 22 (8), 1395-1403. (171) Lian, Y.; Sun, H.; Wang, X.; Qi, P.; Mu, Q.; Chen, Y.; Ye, J.; Zhao, X.; Deng, Z.; Peng, Y. Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science 2019, 10 (2), 464-474. (172) Yu, M.; Wang, Z.; Liu, J.; Sun, F.; Yang, P.; Qiu, J. A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880. (173) Yan, L.; Zhang, B.; Wu, S.; Yu, J. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. Journal of Materials Chemistry A 2020, 8 (28), 14234-14242. (174) Zhang, B.; Lui, Y. H.; Zhou, L.; Tang, X.; Hu, S. An alkaline electro-activated Fe–Ni phosphide nanoparticle-stack array for high-performance oxygen evolution under alkaline and neutral conditions. Journal of Materials Chemistry A 2017, 5 (26), 13329-13335. (175) Feng, H.; Tang, L.; Zeng, G.; Yu, J.; Deng, Y.; Zhou, Y.; Wang, J.; Feng, C.; Luo, T.; Shao, B. Electron density modulation of Fe1-xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting. Nano Energy 2020, 67, 104174. (176) Hu, Q.; Liu, X.; Tang, C.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C. Facile fabrication of a 3D network composed of N-doped carbon-coated core–shell metal oxides/phosphides for highly efficient water splitting. Sustainable Energy & Fuels 2018, 2 (5), 1085-1092. (177) Shi, J.; Qiu, F.; Yuan, W.; Guo, M.; Lu, Z.-H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chemical Engineering Journal 2021, 403, 126312. (178) Begildayeva, T.; Theerthagiri, J.; Lee, S. J.; Yu, Y.; Choi, M. Y. Unraveling the Synergy of Anion Modulation on Co Electrocatalysts by Pulsed Laser for Water Splitting: Intermediate Capturing by In Situ/Operando Raman Studies. Small 2022, 18 (47), 2204309. (179) Chu, H.; Feng, P.; Jin, B.; Ye, G.; Cui, S.; Zheng, M.; Zhang, G.-X.; Yang, M. In-situ release of phosphorus combined with rapid surface reconstruction for Co–Ni bimetallic phosphides boosting efficient overall water splitting. Chemical Engineering Journal 2022, 433, 133523. (180) Zhao, Y.; Dongfang, N.; Triana, C. A.; Huang, C.; Erni, R.; Wan, W.; Li, J.; Stoian, D.; Pan, L.; Zhang, P.; et al. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy & Environmental Science 2022, 15 (2), 727-739. (181) Jeon, S. S.; Lim, J.; Kang, P. W.; Lee, J. W.; Kang, G.; Lee, H. Design Principles of NiFe-Layered Double Hydroxide Anode Catalysts for Anion Exchange Membrane Water Electrolyzers. ACS Applied Materials & Interfaces 2021, 13 (31), 37179-37186. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88706 | - |
| dc.description.abstract | 本論文旨在討論利用普魯士藍類似物與二維碳材碳化鉬所衍生之過渡金屬複合材料,於電催化水分解之產氧及產氫反應的應用及效能探討。依照材料的設計面向可分為兩部分,第三章將鈷鐵雙金屬的普魯士藍類似物原位生長在二維碳化鉬層狀上,並調節高溫磷硫化反應溫度轉換為氮摻雜磷硫化鈷鐵之複合材料,應用於電催化水分解反應;第四章則延伸鈷鐵普魯士藍類似物/二維碳化鉬之催化特性,利用水熱生長及高溫磷化的方式形成具有氮摻雜之磷化鎳鈷鐵的複合碳材,應用於電催化水分解反應。
在第三章中,本研究將鈷鐵雙金屬普魯士藍類似物原位生長在二維碳化鉬上,並以此作為前驅物,經由一步磷硫化的方式成功製備了鈷鐵雙金屬磷硫化物複合材料。二維碳化鉬具有良好的產氫反應催化活性、優良的導電性及親水性,目前僅有少數論文利用其性質設計複合材料應用在電催化水分解反應。由於二維碳化鉬表面豐富的帶電官能基能使對應的金屬離子經由庫倫靜電力吸附在其表面,形成均勻的成核點,有助形成二維碳化鉬承載普魯士藍類似物的複合結構。藉由合成出鈷鐵普魯士藍類似物原位生於二維碳化鉬,可經由適度的磷硫化反應衍伸出磷硫化鈷鐵生長於二維碳化鉬之複合結構,從而有效促進電子轉移效率並產生更多活性位點,有利於提升產氧及產氫反應的電催化能力。因此,本研究合成出的磷硫化鈷鐵/二維碳化鉬觸媒具有出色的電催化表現,在鹼性條件下達到10 mA cm-2的電流密度之產氧及產氫反應的過電位分別僅需240及146 mV,且於全水分解二極式系統中,在10 mA cm-2的電流密度下之驅動電壓為1.64 V,並在長期穩定性測試中皆可維持至少120小時的產氧及產氫反應電催化活性。此實驗結果展示了二維過渡金屬碳化物複合普魯士藍類似物衍伸之材料於於電催化產氧及產氫反應觸媒開發的潛力及有效性。 在第四章中,本研究闡釋第三章所提出之鈷鐵普魯士藍類似物/二維碳化鉬複合結構可作為合適的前驅物以衍生出三元過渡金屬磷化物。藉由水熱法使鎳跟普魯士藍類似物內部中的鈷跟鐵金屬反應,從而自普魯士藍類似物結構延伸出鎳鈷鐵氫氧化物的片狀結構,有助於與電解液之間的分子和離子傳輸,並透過磷化處理製備出生長於二維碳化鉬上的磷化鎳鈷鐵維階結構,進而增加活性位點及優化於產氧及產氫反應的電化學表現。本研究中也進一步說明鎳添加量所帶來的片狀結構生成影響及對應的三元過渡金屬磷化物對於電催化產氧及產氫反應效能的重要性。得益於特殊的型貌及化學組成的優勢,本研究合成出的磷化鎳鈷鐵/二維碳化鉬觸媒顯示出極佳的電催化效能,在鹼性條件下,達到10 mA cm-2的電流密度之產氧及產氫反應的過電位分別僅需219及92 mV,且於全水分解二極式系統中,在10 mA cm-2的電流密度下之驅動電壓為1.55 V,並在長期穩定性測試中皆可維持至少120小時的產氧及產氫反應電催化活性。此實驗結果展示了以形貌與組成的面向去調節普魯士藍類似物/二維過渡金屬碳化物衍伸物的電催化特性,且優化後的磷化鎳鈷鐵/二維碳化鉬觸媒極俱應用於電催化水分解反應的可行性。 根據第三章與第四章的核心概念,普魯士藍類似物可與二維碳化鉬結合形成複合結構,並藉由磷硫化、磷化、金屬組成及形貌設計等的方式延伸出各式各樣的過渡金屬複合材料。本論文所提出的研究方向能提供一個平台來設計電催化觸媒或優化其於相關的能源應用領域的催化效率。 | zh_TW |
| dc.description.abstract | This thesis aims to discuss the potential of Mo2C MXene boosted Prussian blue analogues (PBAs) derived transition metal composites toward oxygen evolution reaction and hydrogen evolution reaction of electrocatalytic water splitting. The thesis is mainly divided into two parts, namely, two-dimensional molybdenum carbide (MXene) boosted cobalt iron phosphorus trisulfides for electrocatalytic overall water splitting (Chapter 3) and Prussian blue analogues derived Ni-CoFeP augmented by two-dimensional molybdenum Carbide (MXene) for bifunctional electrocatalytic water splitting (Chapter 4).
In Chapter 3, CoFe PBA was in-situ incorporated with two-dimensional molybdenum carbide (Mo2C) MXene, serving as a starting material to yield bimetallic CoFe phosphorous trisulfide on Mo2C by one-step phosphorization and sulfurization. Mo2C possesses good HER electroactivity, excellent electrical conductivity, and hydrophilic nature. To date, there are only a few attempts to fabricate efficient electrocatalysts based on the features of Mo2C with favorable bifunctionalities for water splitting reactions. The abundant polar functional groups on Mo2C will adsorb metal ions via electrostatic attraction to form nucleation sites, making MXene to be amenable to the direct growth of CoFe PBA. The MXene achored CoFe PBA was in-situ transformed into cobalt iron phosphorous trisulfide on MXene (PS3-CoFe/MXene) by proper phosphorization and sulfurization treatment, which can speed up electron transfer characteristic and provide abundant electroactive sites during catalytic processes, leading to improved electrocatalytic performances toward OER and HER. In alkaline solution, the as-synthesized PS3-CoFe/MXene demonstrates prominent HER and OER activities with overpotentials of 146 mV and 240 mV, respectively, at 10 mA cm-2. When applying as bifunctional electrocatalysts for overall water splitting, it only takes 1.64 V to deliver current density of 10 mA cm-2 and preserves remarkable long-term stability for at least 120 h for OER and HER applications. This work validates the promising properties of MXene incorporated PBA-derived materials for facilitating electrocatalytic OER and HER. In Chapter 4, it’s demonstrated that as-proposed CoFe PBA/ MXene heterostructure can be used as a self-supporting substrate to derive ternary transition metal phosphides. The Ni additive will interaction with metal ions of CoFe PBA to establish trimetallic layered double hydroxides (LDHs) nanosheets protruding from CoFe PBA structures in the hydrothermal process, which can improve the contact ability with electrolyte and expedite electron and mass transport. By phosphorization, the hierarchical structure of trimetallic phosphide was obtained, which furnishes abundant active sites and enhances electrochemical performances toward OER and HER catalyzation. In this research, it’s further exemplified the importance of enhanced electrocatalytic efficiencies resulting from the decent architecture induced by adequate Ni contents and outstanding electrocatalytic properties of mixed metal phosphide. Benefiting from the structural and the compositional advantages, the as-synthesized trimetallic phosphide on MXene (P-0.4 Ni-CoFe/MXene) exhibits fascinating electrocatalytic efficiencies with low overpotentials of 219 mV and 92 mV toward OER and HER at 10 mA cm-2 in alkaline solution. For overall water splitting, it only takes the cell voltages of 1.55 V to reach current density of 10 mA cm-2 and keeps the catalytic activities with eminent long-term stabilities at least for 120 h for OER and HER applications. This work suggests that the electrocatalytic properties can be optimized with morphologically and compositionally engineered strategies, and the P-0.4 Ni-CoFe/MXene holds great feasibility to act as a bifunctional electrocatalyst for water splitting. Based on the core concept of Chapter 3 and Chapter 4, PBA nanocubes can in-situ grow on MXene to act as a precursor, followed by suitable annealing processes like phosphorization and sulfurization, metal composition strategy, or morphological design to derive manifold transitional metal-based composites as electrocatalysts. The pathway proposed in this thesis can offer a rational design concept to develop electrocatalysts with optimized catalytic activity in the field of energy application. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:26:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:26:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract V Table of contents VII List of tables IX List of figures X Nomenclatures XVI Chapter 1 Introduction 1 1-1 Overview of water splitting 1 1-2 Electrochemical performance evaluating parameters for water splitting 5 1-3 Overview of transition metal phosphides and phosphorous trisulfides 8 1-4 Overview of Prussian blue analogues (PBAs) 11 1-5 Overview of MXene 13 1-6 Scope of this thesis 16 Chapter 2 Experimental procedure 18 2-1 General experimental details 18 2-1-1 Materials 18 2-1-2 Apparatus 19 2-2 Experimental details related to Chapter 3 21 2-2-1 Synthesis of Mo2C (MXene) 21 2-2-2 Synthesis of CoFe PBA and CoFe PBA/MXene 21 2-3 Experimental details related to Chapter 4 23 2-3-1 Synthesis of Ni-CoFe/MXene and NiCo LDH/MXene 23 2-3-2 Preparation of P-Ni-CoFe/MXene, P-CoFe/MXene, P-NiCo/MXene, P-Ni-CoFe and P-MXene 24 Chapter 3 Two-dimensional Molybdenum Carbide (MXene) Boosted Cobalt Iron Phosphorus Trisulfides for Electrocatalytic Overall Water Splitting 25 3-1 Introduction 25 3-2 Results and discussion 30 3-2-1 Characterization of as-prepared electrocatalysts 30 3-2-2 Electrochemical performance of PS3-CoFe/MXene for OER 44 3-2-3 Electrochemical performance of PS3-CoFe/MXene for HER 48 3-2-4 Comparison of PS3-CoFe/MXene with PS3-MXene and PS3-CoFe 54 3-2-5 Optimized temperature for annealing treatments 57 3-2-6 Overall water splitting for PS3-CoFe/MXene 64 3-3 Conclusions 67 Chapter 4 Prussian Blue Analogues Derived Ni-CoFeP Augmented by Two-dimensional Molybdenum Carbide (MXene) for Bifunctional Electrocatalytic Water Splitting 68 4-1 Introduction 68 4-2 Results and discussion 72 4-2-1 Characterization of as-prepared electrocatalysts 72 4-2-2 Electrochemical performance of P-0.4 Ni-CoFe/MXene for OER 88 4-2-3 Electrochemical performance of P-0.4 Ni-CoFe/MXene for HER 94 4-2-4 Comparison of P-0.4 Ni-CoFe/MXene with P-MXene and P-0.4 Ni-CoFe 102 4-2-5 Optimized Ni concentration introduced into the bimetallic CoFe PBA/MXene 106 4-2-6 Overall water splitting for P-0.4 Ni-CoFe/MXene 113 4-3 Conclusions 116 Chapter 5 Conclusions and suggestions 117 5-1 General conclusions 117 5-2 Suggestions 125 References 126 Appendix 147 | - |
| dc.language.iso | en | - |
| dc.subject | 過渡金屬複合物 | zh_TW |
| dc.subject | 產氧反應 | zh_TW |
| dc.subject | 產氫反應 | zh_TW |
| dc.subject | 雙功能電化學觸媒 | zh_TW |
| dc.subject | 二維碳化鉬 | zh_TW |
| dc.subject | 普魯士藍類似物 | zh_TW |
| dc.subject | Bifunctional electrocatalyst | en |
| dc.subject | Oxygen evolution reaction | en |
| dc.subject | Prussian blue analogues | en |
| dc.subject | Transition metal composite | en |
| dc.subject | Hydrogen evolution reaction | en |
| dc.subject | Two-dimensional molybdenum carbide MXene | en |
| dc.title | 二維碳化鉬結合有機金屬骨架衍生之過渡金屬複合材料 作為雙效電催化水分解觸媒 | zh_TW |
| dc.title | Mo2C MXene Boosted Metal-Organic Frameworks Derived Transition Metal Composites as Bifunctional Electrocatalysts for Water Splitting | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林律吟;葉旻鑫 | zh_TW |
| dc.contributor.oralexamcommittee | Lu-Yin Lin;Min-Hsin Yeh | en |
| dc.subject.keyword | 雙功能電化學觸媒,產氫反應,產氧反應,普魯士藍類似物,過渡金屬複合物,二維碳化鉬, | zh_TW |
| dc.subject.keyword | Bifunctional electrocatalyst,Hydrogen evolution reaction,Oxygen evolution reaction,Prussian blue analogues,Transition metal composite,Two-dimensional molybdenum carbide MXene, | en |
| dc.relation.page | 151 | - |
| dc.identifier.doi | 10.6342/NTU202303019 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
