Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88688
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張國鎮zh_TW
dc.contributor.advisorKuo-Chun Changen
dc.contributor.author黃振宇zh_TW
dc.contributor.authorCheng-Yu Huangen
dc.date.accessioned2023-08-15T17:22:38Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citationApplied Technology Council, 1996, Seismic Evaluation and Retrofit of Concrete Buildings, Report ATC-40, Redwood City.
Federal Emergency Management Agency (FEMA), 1997. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report FEMA 273, Washington, DC.
Federal Highway Administration (FHWA), 2006. Seismic Retrofitting Manual for Highway Structures: Part 1-Bridges, FHWA-HRT-06-032, McLean, VA.
American Association of State Highway and Transportation Officials (AASHTO), 2011. Guide Specification for LRFD Seismic Bridge Design, LRFDSEIS-2, Washington, DC.
California Department of Transportation (Caltrans), 2013. Seismic Design Criteria (SDC), Version 1.7, Sacramento, CA.
California Department of Transportation (Caltrans), 2016. Seismic Design Specifications for Steel Bridges, Second Version, Sacramento, CA.
Wang, P. H., Chang, K. C. and Ou, Y. C. 2019. Capacity-based inelastic displacement spectra for reinforced concrete bridge columns. Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.3212.
Wang, P. H. 2017. A New Smooth Hysteretic Model and Capacity-Based Displacement Spectrum for Reinforced Concrete Bridge Columns, Ph.D. Thesis, National Taiwan University, Taiwan.
Park, Y. J. and Ang, A. H. S. 1985. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering (ASCE), 111(4), 722–739.
Bouc, R. 1967. Forced vibration of mechanical systems with hysteresis. Proceedings of the 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia.
Wen, Y. K. 1976. Method for random vibration of hysteretic systems. ASCE Journal of the Engineering Mechanics Division; 102:249-263.
李台光, 繫筋細部對大尺寸鋼筋混凝土柱行為影響之驗證研究, 內政部建築研究所自行研究報告, 2009
李台光、薛凱元, 大尺寸鋼筋混凝土圓柱軸壓行為之分析研究, 內政部建築研究所自行研究報告, 2010
李台光, 圓箍筋對鋼筋混凝土圓柱韌性影響之研究, 內政部建築研究所自行研究報告, 2015
Lehman, D. E. and Moehle, J. P. 2000. Seismic performance of well-confined concrete bridge columns. Pacific Earthquake Engineering Research Center, Report No.PEER 1998/01, College of Engineering, University of California, Berkeley.
鄭維中, 縱向鋼筋比與高寬比對矩形RC橋柱遲滯衰減行為之影響, 國立台灣大學土木工程學系碩士論文, 2020
內政部, 混凝土結構設計規範, 2011.
交通部, 公路橋梁設計規範, 2009.
交通部, 公路橋樑耐震設計規範, 2019.
日本道路協會, 日本道路橋示方書, 2012.
Wang, Ping-Hsiung; Chang, Kuo-Chun; and Cheng, Wei-Chung, Deteriorated Hysteresis Behaviors of Reinforced Concrete Bridge Columns, ACI Structural Journal; Farmington Hills Vol. 120, Iss. 2, Mar 2023: 33-46.
Building Code Requirements for Structural Concrete (ACI 318-14), 2014.
Federal Emergency Management Agency (FEMA), 2000. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report FEMA 356, Washington, DC.
Adidharma, L. 2012. Seismic Behavior of Reinforced Concrete Bridge Columns under Long Duration Ground Motions, Master Thesis, National Taiwan University of Science and Technology,Taiwan Tech.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88688-
dc.description.abstract前人為能良好評估橋柱之勁度折減、強度衰減、束縮效應以及路徑相依特性等行為,提出一套新型的耐震評估方法:容量位移雙反應譜,此方法改良之前的各種遲滯模型進而使用新平滑遲滯模型,此模型能良好模擬出不同設計參數的橋柱受到不同特性的震源下的行為,同時將橋柱轉換為單自由度系統後進行非線性動力歷時分析,將其分析結果進行參數分析,建立容量位移雙反應譜,此反應譜可以同時針對不同的橋柱設計參數建構出相對應之非彈性位移譜及損傷指數反應譜,兩者可以更好的評估橋柱的耐震行為。
經前人之分析與探討,容量位移雙反應譜在矩形柱和圓柱皆可以準確地預測出橋柱的遲滯行為,其中損傷指數經過實驗證明能有效的判斷橋柱破壞狀況,在現有橋梁結構中能更加的準確、快速的分析其耐震性能,在評估橋柱的損傷程度以及強度上更加直觀。
容量位移雙反應譜目前的數據庫仍然需要增加,在實務設計中有不同斷面及配置的橋柱,除了矩形與圓形螺箍筋,還有圓形圓箍筋形式的設計,為盡可能地涵蓋上述設計範圍,需要設計一系列的試體進行實驗,本研究參考前人矩形與圓形螺箍筋的實驗安排,使用圓形圓箍筋的配置形式設計五座涵蓋實務設計範圍的縮尺RC橋柱,進行反覆側推載重試驗,設計參數包含縱向鋼筋比與高寬比,為兩種主要會影響混凝土強度的參數。
試驗完成後,針對實驗得到的結果觀察橋柱的破壞情形,包括裂縫產生、主筋斷裂情形、箍筋圍束行為進行探討,藉由致動器及應變計得到的數據繪製遲滯迴圈,計算其位移分布,同時與前人所做的矩形RC柱進行結果對比,相互比較其中差異性,探討不同配置下的橋柱行為。
zh_TW
dc.description.abstractIn the past, an innovative seismic design and evaluation method for reinforced concrete bridges was proposed to effectively evaluate the degradation of stiffness, strength deterioration, pinching effect, and path dependence properties of the columns. This method, known as the capacity based inelastic displacement spectra, integrates various types of hysteresis models to better simulate the nonlinear behavior. The model precisely simulates the behavior of reinforced concrete columns under different earthquake characteristics with various designed parameters. It achieves this by conducting a series of nonlinear time history analyses of single-degree-of-freedom (SDOF) systems simplified from the true columns to analyze the results. Through establishing these spectra, the inelastic displacement spectra associated with corresponding damage indices for RC columns can be constructed, allowing for a better evaluation of seismic performance.
According to the analysis and investigation from previous research, the capacity based inelastic displacement spectra can accurately predict the hysteresis behavior of the RC columns, both in rectangular and circular cross section. The damage index, which has been experimentally validated, can effectively assess the state of damage in bridge columns. In existing bridges, this method enables a more precise and rapid analysis of their seismic performance and provides a more intuitive evaluation of the extent of damage and strength in RC bridge columns.
The current data base for capacity based inelastic displacement spectra still need to be expanded. In practical design, columns come in different cross sections and configurations. Besides rectangular and circular spiral hoop, there are also designs with circular hoops. To satisfy a variety of designs, a series of specimens need to be designed and tested. In this study, referencing the experimental arrangements used for rectangular and circular spiral hoops by previous researchers, five scaled-down RC bridge columns were designed with circular hoops to encompass the practical design range. These columns were then subjected to cyclic loading test. The design parameters included longitudinal reinforcement ratios and aspect ratios, as these are the two main factors that influence the strength of concrete.
After completing the tests, the damage pattern was observed and investigated, including the formation of the cracks, fracture of the longitudinal reinforcement, and the confinement behavior of hoops. By analyzing the data obtained from actuators and strain gauges to plot the hysteresis loops and calculate the displacement distributions. Additionally, these results were compared with those from previous study on rectangular RC columns to identify differences and gain a better understanding of column behavior under different configurations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:22:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:22:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 新平滑遲滯模型(SHM) 5
2.2 實驗回顧 10
2.2.1 李台光[12] [13] [14] 10
2.2.2 Dawn E. Lehman[15] 16
2.2.3 鄭維中[16] 21
2.3 設計規範 27
2.3.1 混凝土結構設計規範(內政部,2011)[17] 27
2.3.2 公路橋梁設計規範(交通部,2009)[18] 27
2.3.3 公路橋梁耐震設計規範(交通部,2019)[19] 28
2.3.4 日本道路橋示方書(2012)[20] 30
第三章 試體規劃 32
3.1 試驗目的 32
3.2 試驗設計及規劃 33
3.2.1 試體介紹 33
3.2.2 箍筋設計 34
3.3 剪力分析 42
3.3.1 Caltrans 42
3.3.2 AASHTO 43
3.3.3 ACI 44
3.3.4 XTRACT軟體分析 44
3.4 試體製作 46
3.4.1 材料準備 47
3.4.2 鋼筋加工及綁紮 47
3.4.3 貼應變計 50
3.4.4 試體澆置 54
3.5 試驗配置 56
3.5.1 地板固定系統 56
3.5.2 軸力系統 57
3.5.3 側推系統 57
3.5.4 現場佈置 57
3.6 量測系統 59
3.6.1 內部量測系統 59
3.6.2 外部量測系統 62
3.7 實驗佈置 65
3.7.1 位移歷時 65
3.7.2 測試流程 67
第四章 試驗結果及分析 70
4.1 材料試驗結果 70
4.1.1 鋼筋抗拉試驗 70
4.1.2 混凝土坍度試驗 71
4.1.3 混凝土抗壓試驗 73
4.2 試驗觀察與紀錄 75
4.2.1 CH307試體 75
4.2.2 CH315試體 76
4.2.3 CH330試體 77
4.2.4 CH615試體 79
4.2.5 CH1015試體 80
4.3 遲滯迴圈 90
4.4 等效阻尼比 95
4.5 位移韌性比 102
4.6 試體位移 111
4.6.1 曲率 111
4.6.2 剪應變 116
4.6.3 滑移 120
4.6.4 位移占比 121
4.7 應變計數據 125
4.7.1 縱向鋼筋之應變 126
4.7.2 橫向鋼筋之應變 135
4.8 小結 142
第五章 鋼筋混凝土矩柱與圓柱之行為比較 143
5.1 試驗試體 143
5.2 破壞狀況 145
5.3 試驗結果 148
5.3.1 遲滯迴圈 148
5.3.2 等效阻尼比 150
5.3.3 位移韌性比 151
5.3.4 位移分布 154
5.3.5 縱向鋼筋之應變 156
第六章 結論與建議 159
6.1 結論與建議 159
6.2 未來研究展望 160
參考文獻 162
附錄A 各試體位移歷程表 165
附錄B 各試體之破壞照 169
附錄C 各試體之應變計 205
-
dc.language.isozh_TW-
dc.subject圓形鋼筋混凝土橋柱zh_TW
dc.subject縱向鋼筋比zh_TW
dc.subject圓箍筋zh_TW
dc.subject高寬比zh_TW
dc.subject遲滯行為zh_TW
dc.subjectcircular hoopen
dc.subjectlongitudinal reinforcement ratioen
dc.subjectaspect ratioen
dc.subjectcircular reinforced concrete bridge columnen
dc.subjecthysteretic behavioren
dc.title鋼筋混凝土圓形橫箍筋橋柱遲滯行為之實驗研究zh_TW
dc.titleExperimental Study on the Hysteretic behavior of Circular RC bridge columns with Circular hoopsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳東諭 ;吳日騰;王柄雄zh_TW
dc.contributor.oralexamcommitteeTung-Yu Wu;Rih-Teng Wu;Ping-Hsiung Wangen
dc.subject.keyword圓形鋼筋混凝土橋柱,圓箍筋,縱向鋼筋比,高寬比,遲滯行為,zh_TW
dc.subject.keywordcircular reinforced concrete bridge column,circular hoop,longitudinal reinforcement ratio,aspect ratio,hysteretic behavior,en
dc.relation.page215-
dc.identifier.doi10.6342/NTU202302743-
dc.rights.note未授權-
dc.date.accepted2023-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
27.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved