請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭友晉 | zh_TW |
| dc.contributor.advisor | Yo-Jin Shiau | en |
| dc.contributor.author | 陳亭愷 | zh_TW |
| dc.contributor.author | Ting-Kai Chen | en |
| dc.date.accessioned | 2023-08-15T17:21:11Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | Allan, W., Struthers, H., & Lowe, D. (2007). Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. Journal of Geophysical Research: Atmospheres, 112, D04306.
APHA, AWWA, WEF. (1992). Standard Methods for the Examination of water and Wastewater. 18th Ed., Method 2550, 2-59. APHA, Washington, D.C., USA. APHA, AWWA, WEF. (1992). Standard Methods for the Examination of Water and Wastewater, 18th Ed., Method 2510 B, 43-46. APHA, Washington, D.C., USA. Apprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75(2), 129-137. Auman, A. J., Stolyar, S., Costello, A. M., & Lidstrom, M. E. (2000). Molecular characterization of methanotrophic isolates from freshwater lake sediment. Applied and Environmental Microbiology, 66(12), 5259-5266. Badiou, P., McDougal, R., Pennock, D., & Clark, B. (2011). Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management, 19, 237-256. Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME journal, 6(2), 343-351. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In Proceedings of the international AAAI conference on web and social media, 3(1), 361-362. Beck, D. A., Kalyuzhnaya, M. G., Malfatti, S., Tringe, S. G., Del Rio, T. G., Ivanova, N., Lidstrom, M. E., & Chistoserdova, L. (2013). A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ, 1, e23. Belova, S. E., Baani, M., Suzina, N. E., Bodelier, P. L., Liesack, W., & Dedysh, S. N. (2011). Acetate utilization as a survival strategy of peat‐inhabiting Methylocystis spp. Environmental Microbiology Reports, 3(1), 36-46. Belova, S. E., Kulichevskaya, I. S., Bodelier, P. L., & Dedysh, S. N. (2013). Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_3), 1096-1104. Bernal, B., & Mitsch, W. J. (2012). Comparing carbon sequestration in temperate freshwater wetland communities. Global Change Biology, 18(5), 1636-1647. Bernal, B., & Mitsch, W. J. (2013). Carbon sequestration in two created riverine wetlands in the Midwestern United States. Journal of Environmental Quality, 42(4), 1236-1244. Bourne, D. G., McDonald, I. R., & Murrell, J. C. (2001). Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Applied and Environmental Microbiology, 67(9), 3802-3809. Bowman, J. P. (2014). The family Methylococcaceae. The Prokaryotes, 411–441. Bowman, J. P., Sly, L. I., Nichols, P. D., & Hayward, A. (1993). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 43(4), 735-753. Bowman, J. P., Sly, L. I., & Stackebrandt, E. (1995). The phylogenetic position of the family Methylococcaceae. Int. J. Syst. Bacteriol, 45, 182–185. Bratina, B. J., Brusseau, G. A., & Hanson, R. S. (1992). Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. International Journal of Systematic and Evolutionary Microbiology, 42(4), 645-648. Bray, J. R., & Curtis, J. T.(1957). An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr, 27, 325-349. Bridgham, S. D., Cadillo‐Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1325-1346. Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26(4), 889-916. Buckley, D. H., Huangyutitham, V., Hsu, S.-F., & Nelson, T. A. (2007). Stable isotope probing with 15N achieved by disentangling the effects of genome G+ C content and isotope enrichment on DNA density. Applied and Environmental Microbiology, 73(10), 3189-3195. Bulc, T. G. (2006). Long term performance of a constructed wetland for landfill leachate treatment. Ecological Engineering, 26(4), 365-374. Bussmann, I., Horn, F., Hoppert, M., Klings, K.-W., Saborowski, A., Warnstedt, J., & Liebner, S. (2021). Methylomonas albis sp. nov. and Methylomonas fluvii sp. nov.: Two cold-adapted methanotrophs from the river Elbe and emended description of the species Methylovulum psychrotolerans. Systematic and Applied Microbiology, 44(6), 126248. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130122. Byskov, M. F., Hyams, K., Satyal, P., Anguelovski, I., Benjamin, L., Blackburn, S., Borie, M., Caney, S., Chu, E., & Edwards, G. (2021). An agenda for ethics and justice in adaptation to climate change. Climate and Development, 13(1), 1-9. Cai, Y., Zheng, Y., Bodelier, P. L., Conrad, R., & Jia, Z. (2016). Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications, 7(1), 11728. Cao, M., Gregson, K., & Marshall, S. (1998). Global methane emission from wetlands and its sensitivity to climate change. Atmospheric Environment, 32(19), 3293-3299. Cao, M., & Woodward, F. I. (1998). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393(6682), 249-252. Capblancq, T., & Forester, B. R. (2021). Redundancy analysis: A Swiss Army Knife for landscape genomics. Methods in Ecology and Evolution, 12(12), 2298-2309. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., & Bauer, M. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME journal, 6(8), 1621-1624. Cébron, A., Bodrossy, L., Chen, Y., Singer, A. C., Thompson, I. P., Prosser, J. I., & Murrell, J. C. (2007). Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS microbiology ecology, 62(1), 12-23. Cerbin, S., Pérez, G., Rybak, M., Wejnerowski, Ł., Konowalczyk, A., Helmsing, N., Naus-Wiezer, S., Meima-Franke, M., Pytlak, Ł., & Raaijmakers, C. (2022). Methane-Derived Carbon as a Driver for Cyanobacterial Growth. Frontiers in microbiology, 13. Chan, A. S., & Parkin, T. B. (2001). Methane oxidation and production activity in soils from natural and agricultural ecosystems. Journal of Environmental Quality, 30(6), 1896-1903. Chang, C.-Y., Tung, H.-H., Tseng, I.-C., Wu, J.-H., Liu, Y.-F., & Lin, H.-M. (2010). Dynamics of methanotrophic communities in tropical alkaline landfill upland soil. Applied Soil Ecology, 46(2), 192-199. Chang, T.-C., & Yang, S.-S. (2003). Methane emission from wetlands in Taiwan. Atmospheric Environment, 37(32), 4551-4558. Chapman, H. D. (1965). Cation‐exchange capacity. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 891-901. Chen, G., Shao, L., Chen, Z., Li, Z., Zhang, B., Chen, H., & Wu, Z. (2011). Low-carbon assessment for ecological wastewater treatment by a constructed wetland in Beijing. Ecological Engineering, 37(4), 622-628. Chen, Y., Dumont, M. G., McNamara, N. P., Chamberlain, P. M., Bodrossy, L., Stralis‐Pavese, N., & Murrell, J. C. (2008). Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP‐PLFA analyses. Environmental Microbiology, 10(2), 446-459. Cheng, C., Zhang, J., He, Q., Wu, H., Chen, Y., Xie, H., & Pavlostathis, S. G. (2021). Exploring simultaneous nitrous oxide and methane sink in wetland sediments under anoxic conditions. Water research, 194, 116958. Chimner, R. A., & Ewel, K. C. (2005). A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecology and Management, 13(6), 671-684. Chiri, E., Greening, C., Lappan, R., Waite, D. W., Jirapanjawat, T., Dong, X., Arndt S. K., & Nauer, P. A. (2020). Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. The ISME Journal, 14(11), 2715-2731. Chistoserdova, L. (2011). Modularity of methylotrophy, revisited. Environmental Microbiology, 13(10), 2603-2622. Chistoserdova, L., Kalyuzhnaya, M. G., & Lidstrom, M. E. (2009). The expanding world of methylotrophic metabolism. Annual review of microbiology, 63, 477-499. Chistoserdova, L., Lidstrom, M. E., Rosenberg, E., DeLong, E. F., Thompson, F., Lory, S., & Stackebrandt, E. (2013). The prokaryotes: Prokaryotic physiology and biochemistry. The Prokaryotes: Prokaryotic Physiology and Biochemistry; Rosenberg, E., Delong, E., Lory, S., Stackebrandt, E., Thompson, F., Eds, 267-285. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., & Heimann, M. (2014). Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465-570). Cambridge University Press. Costello, A. M., & Lidstrom, M. E. (1999). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Applied and Environmental Microbiology, 65(11), 5066-5074. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12(12), 989-994. Craft, C., Vymazal, J., & Kröpfelová, L. (2018). Carbon sequestration and nutrient accumulation in floodplain and depressional wetlands. Ecological Engineering, 114, 137-145. Craft, C., Washburn, C., & Parker, A. (2008). Latitudinal trends in organic carbon accumulation in temperate freshwater peatlands. Wastewater treatment, plant dynamics and management in constructed and natural wetlands, 23-31. Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., & Janssens-Maenhout, G. (2020). High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific data, 7(1), 121. Crites, R. W., Middlebrooks, E. J., & Bastian, R. K. (2014). Natural wastewater treatment systems. CRC press. Danilova, O. V., Kulichevskaya, I. S., Rozova, O. N., Detkova, E. N., Bodelier, P. L., Trotsenko, Y. A., & Dedysh, S. N. (2013). Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_6), 2282-2289. Dann, L. M., Clanahan, M., Paterson, J. S., & Mitchell, J. G. (2019). Distinct niche partitioning of marine and freshwater microbes during colonisation. FEMS microbiology ecology, 95(8), fiz098. Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934-941. Davis, K. E., Joseph, S. J., & Janssen, P. H. (2005). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied and Environmental Microbiology, 71(2), 826-834. Davis, T. J., Blasco, D., & Carbonell, M. (1997). The Ramsar Convention manual: a guide to the Convention on wetlands (Ramsar, Iran, 1971). De Bont, J., Lee, K., & Bouldin, D. (1978). Bacterial oxidation of methane in a rice paddy. Ecological Bulletins, 91-96. de Klein, J. J., & van der Werf, A. K. (2014). Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecological Engineering, 66, 36-42. Dedysh, S. N., Liesack, W., Khmelenina, V. N., Suzina, N. E., Trotsenko, Y. A., Semrau, J. D., Bares, A. M., Panikov, N. S., & Tiedje, J. M. (2000). Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 50(3), 955-969. Deng, H., Ge, L., Xu, T., Zhang, M., Wang, X., Zhang, Y., & Peng, H. (2011). Analysis of the Metabolic Utilization of Carbon Sources and Potential Functional Diversity of the Bacterial Community in Lab‐Scale Horizontal Subsurface‐Flow Constructed Wetlands. Journal of Environmental Quality, 40(6), 1730-1736. Deng, Y., Cui, X., & Dumont, M. G. (2016). Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiology Letters, 363(16), fnw168. Deutzmann, J. S., Stief, P., Brandes, J., & Schink, B. (2014). Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proceedings of the National Academy of Sciences, 111(51), 18273-18278. do Carmo Linhares, D., Saia, F. T., Duarte, R. T. D., Nakayama, C. R., de Melo, I. S., & Pellizari, V. H. (2021). Methanotrophic Community Detected by DNA-SIP at Bertioga’s Mangrove Area, Southeast Brazil. Microbial Ecology, 81(4), 954-964. Drake, K., Halifax, H., Adamowicz, S. C., & Craft, C. (2015). Carbon sequestration in tidal salt marshes of the Northeast United States. Environmental Management, 56, 998-1008. D'Souza, G., Shitut, S., Preussger, D., Yousif, G., Waschina, S., & Kost, C. (2018). Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports, 35(5), 455-488. Dumont, M. G., Lüke, C., Deng, Y., & Frenzel, P. (2014). Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Frontiers in microbiology, 5, 34. Dumont, M. G., & Murrell, J. C. (2005). Community‐level analysis: key genes of aerobic methane oxidation. Methods in enzymology, 397, 413-427. Dumont, M. G., & Murrell, J. C. (2005). Stable isotope probing—linking microbial identity to function. Nature Reviews Microbiology, 3(6), 499-504. Dumont, M. G., Pommerenke, B., Casper, P., & Conrad, R. (2011). DNA‐, rRNA‐and mRNA‐based stable isotope probing of aerobic methanotrophs in lake sediment. Environmental Microbiology, 13(5), 1153-1167. Duncan, C. P., & Groffman, P. M. (1994). Comparing microbial parameters in natural and constructed wetlands. J. Environ. Qual., 23, 298–305. Dunford, E. A., & Neufeld, J. D. (2010). DNA stable-isotope probing (DNA-SIP). JoVE (Journal of Visualized Experiments)(42), e2027. Dušek, J., Dařenová, E., Pavelka, M., & Marek, M. (2020). Methane and carbon dioxide release from wetland ecosystems. In Climate Change and Soil Interactions (pp. 509-553). Elsevier. Dutaur, L., & Verchot, L. V. (2007). A global inventory of the soil CH4 sink. Global biogeochemical cycles, 21(4). Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., & de Beer, D. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543-548. Euliss Jr, N. H., Gleason, R. A., Olness, A., McDougal, R., Murkin, H., Robarts, R., Bourbonniere, R., & Warner, B. (2006). North American prairie wetlands are important nonforested land-based carbon storage sites. Science of The Total Environment, 361(1-3), 179-188. Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., Camper, A. K., & Stein, O. R. (2009). Microbial processes influencing performance of treatment wetlands: a review. Ecological Engineering, 35(6), 987-1004. Fennessy, M., Wardrop, D., Moon, J., Wilson, S., & Craft, C. (2018). Soil carbon sequestration in freshwater wetlands varies across a gradient of ecological condition and by ecoregion. Ecological Engineering, 114, 129-136. Ferretti, D., Miller, J., White, J., Etheridge, D., Lassey, K., Lowe, D., Meure, C. M., Dreier, M., Trudinger, C., & Van Ommen, T. (2005). Unexpected changes to the global methane budget over the past 2000 years. science, 309(5741), 1714-1717. Finn, D. R., Ziv-El, M., Van Haren, J., Park, J. G., del Aguila-Pasquel, J., Urquiza–Muñoz, J. D., & Cadillo-Quiroz, H. (2020). Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza-Maranon Basin, Peruvian Amazonia. Frontiers in microbiology, 11, 746. Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461-2470. Frenzel, P., Rothfuss, F., & Conrad, R. (1992). Oxygen profiles and methane turnover in a flooded rice microcosm. Biology and Fertility of Soils, 14, 84-89. Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., & Sitch, S. (2020). Global carbon budget 2020. Earth System Science Data, 12(4), 3269-3340. Frolking, S., & Roulet, N. T. (2007). Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology, 13(5), 1079-1088. Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Prentice, I. C., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W., & Björck, S. (2018). Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 8(10), 907-913. Gao, R., Shao, L., Li, J., Guo, S., Han, M., Meng, J., Liu, J., Xu, F., & Lin, C. (2012). Comparison of greenhouse gas emission accounting for a constructed wetland wastewater treatment system. Ecological Informatics, 12, 85-92. Ghosh, A., Patra, P., Ishijima, K., Umezawa, T., Ito, A., Etheridge, D., Sugawara, S., Kawamura, K., Miller, J., & Dlugokencky, E. (2015). Variations in global methane sources and sinks during 1910–2010. Atmospheric Chemistry and Physics, 15(5), 2595-2612. Ghoul, M., & Mitri, S. (2016). The ecology and evolution of microbial competition. Trends in microbiology, 24(10), 833-845. Greenway, M. (2017). Stormwater wetlands for the enhancement of environmental ecosystem services: case studies for two retrofit wetlands in Brisbane, Australia. Journal of Cleaner Production, 163, S91-S100. Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., & Smith, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114(44), 11645-11650. Grüntzig, V. n., Nold, S. C., Zhou, J., & Tiedje, J. M. (2001). Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR. Applied and Environmental Microbiology, 67(2), 760-768. Gulledge, J., Ahmad, A., Steudler, P. A., Pomerantz, W. J., & Cavanaugh, C. M. (2001). Family-and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Applied and Environmental Microbiology, 67(10), 4726-4733. Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8(4), 345-360. Gutknecht, J. L., Goodman, R. M., & Balser, T. C. (2006). Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant and Soil, 289, 17-34. Han, B., Chen, Y., Abell, G., Jiang, H., Bodrossy, L., Zhao, J., Murrell, J. C., & Xing, X.-H. (2009). Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS microbiology ecology, 70(2), 196-207. Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439-471. Hao, Q., Liu, F., Zhang, Y., Wang, O., & Xiao, L. (2020). Methylobacter accounts for strong aerobic methane oxidation in the Yellow River Delta with characteristics of a methane sink during the dry season. Science of The Total Environment, 704, 135383. Harrell Jr, F. E., & Harrell Jr, M. F. E. (2019). Package ‘hmisc’. CRAN2018, 2019, 235-236. Harrington, C., & Scholz, M. (2010). Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems. Bioresource technology, 101(20), 7713-7723. He, D., Zhang, L., Dumont, M. G., He, J.-S., Ren, L., & Chu, H. (2019). The response of methanotrophs to additions of either ammonium, nitrate or urea in alpine swamp meadow soil as revealed by stable isotope probing. FEMS microbiology ecology, 95(7), fiz077. He, R., Wooller, M. J., Pohlman, J. W., Catranis, C., Quensen, J., Tiedje, J. M., & Leigh, M. B. (2012). Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environmental Microbiology, 14(6), 1403-1419. Hill, E. A., Chrisler, W. B., Beliaev, A. S., & Bernstein, H. C. (2017). A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks. Bioresource technology, 228, 250-256. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., & Troxler, T. (2014). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland. Ho, A., Kerckhof, F. M., Luke, C., Reim, A., Krause, S., Boon, N., & Bodelier, P. L. (2013). Conceptualizing functional traits and ecological characteristics of methane‐oxidizing bacteria as life strategies. Environmental Microbiology Reports, 5(3), 335-345. Ho, A., Lüke, C., Reim, A., & Frenzel, P. (2013). Selective stimulation in a natural community of methane oxidizing bacteria: effects of copper on pmoA transcription and activity. Soil Biology and Biochemistry, 65, 211-216. Ho, A., Mo, Y., Lee, H. J., Sauheitl, L., Jia, Z., & Horn, M. A. (2018). Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment. Soil Biology and Biochemistry, 125, 210-214. Ho, A., Vlaeminck, S. E., Ettwig, K. F., Schneider, B., Frenzel, P., & Boon, N. (2013). Revisiting methanotrophic communities in sewage treatment plants. Applied and Environmental Microbiology, 79(8), 2841-2846. Hoefman, S., van der Ha, D., De Vos, P., Boon, N., & Heylen, K. (2012). Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast‐growing methane‐oxidizing bacteria. Microbial biotechnology, 5(3), 368-378. Holmes, A. J., Costello, A., Lidstrom, M. E., & Murrell, J. C. (1995). Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiology Letters, 132(3), 203-208. Holmes, A. J., Roslev, P., McDonald, I. R., Iversen, N., Henriksen, K., & Murrell, J. C. (1999). Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Applied and Environmental Microbiology, 65(8), 3312-3318. Hutchens, E., Radajewski, S., Dumont, M. G., McDonald, I. R., & Murrell, J. C. (2004). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environmental Microbiology, 6(2), 111-120. Iguchi, H., Yurimoto, H., & Sakai, Y. (2011). Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Applied and environmental microbiology, 77(24), 8509-8515. ISO-International Organization for Standardization. (1993). Soil quality–Determination of dry matter and water content on a mass basis-Gravimetric method. ISO 11465. Jia, W., Zhang, J., Li, P., Xie, H., Wu, J., & Wang, J. (2011). Nitrous oxide emissions from surface flow and subsurface flow constructed wetland microcosms: effect of feeding strategies. Ecological Engineering, 37(11), 1815-1821. Jia, Z., Kikuchi, H., Watanabe, T., Asakawa, S., & Kimura, M. (2007). Molecular identification of methane oxidizing bacteria in a Japanese rice field soil. Biology and Fertility of Soils, 44, 121-130. Jiménez, J. J., Lal, R., Leblanc, H. A., & Russo, R. O. (2007). Soil organic carbon pool under native tree plantations in the Caribbean lowlands of Costa Rica. Forest Ecology and Management, 241(1-3), 134-144. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological applications, 10(2), 423-436. Junk, W. J., An, S., Finlayson, C., Gopal, B., Květ, J., Mitchell, S. A., Mitsch, W. J., & Robarts, R. D. (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic sciences, 75, 151-167. Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. CRC press. Kalyuzhnaya, M. G., Khmelenina, V., Eshinimaev, B., Sorokin, D., Fuse, H., Lidstrom, M., & Trotsenko, Y. (2008). Classification of halo (alkali) philic and halo (alkali) tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. International Journal of Systematic and Evolutionary Microbiology, 58(3), 591-596. Kalyuzhnaya, M. G., Khmelenina, V. N., Kotelnikova, S., Holmquist, L., Pedersen, K., & Trotsenko, Y. A. (1999). Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Systematic and Applied Microbiology, 22(4), 565-572. Kaluzhnaya, M., Khmelenina, V., Eshinimaev, B., Suzina, N., Nikitin, D., Solonin, A., Lin, J.-L., McDonald, I., Murrell, C., & Trotsenko, Y. (2001). Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. nov. Systematic and Applied Microbiology, 24(2), 166-176. Kalyuzhnaya, M. G., Stolyar, S. M., Auman, A. J., Lara, J. C., Lidstrom, M. E., & Chistoserdova, L. (2005). Methylosarcina lacus sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. International Journal of Systematic and Evolutionary Microbiology, 55(6), 2345-2350. Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., Fuertes-Mendizabal, T., Jeffery, S., Kern, J., & Novak, J. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114-139. Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å. (2010). Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands, 30, 111-124. Kchouk, M., Gibrat, J.-F., & Elloumi, M. (2017). An error correction algorithm for NGS data. 2017 28th International Workshop on Database and Expert Systems Applications (DEXA), Keohane, N., Petsonk, A., & Hanafi, A. (2017). Toward a club of carbon markets. Climatic Change, 144, 81-95. Kim, J., Verma, S. B., & Billesbach, D. P. (1999). Seasonal variation in methane emission from a temperate Phragmites‐dominated marsh: Effect of growth stage and plant‐mediated transport. Global Change Biology, 5(4), 433-440. Kip, N., Ouyang, W., van Winden, J., Raghoebarsing, A., van Niftrik, L., Pol, A., Pan, Y., Bodrossy, L., van Donselaar, E. G., & Reichart, G.-J. (2011). Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Applied and Environmental Microbiology, 77(16), 5643-5654. Kits, K. D., Klotz, M. G., & Stein, L. Y. (2015). Methane oxidation coupled to nitrate reduction under hypoxia by the G ammaproteobacterium M ethylomonas denitrificans, sp. nov. type strain FJG1. Environmental Microbiology, 17(9), 3219-3232. Knief, C. (2015). Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontiers in microbiology, 6, 1346. Köchy, M., Hiederer, R., & Freibauer, A. (2015). Global distribution of soil organic carbon–Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1(1), 351-365. Kolb, S., Knief, C., Stubner, S., & Conrad, R. (2003). Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Applied and Environmental Microbiology, 69(5), 2423-2429. Kolb, S., & Stacheter, A. (2013). Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Frontiers in microbiology, 4, 268. Kramer, M. G., & Chadwick, O. A. (2018). Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nature Climate Change, 8(12), 1104-1108. Kristjansson, J. K., Schönheit, P., & Thauer, R. K. (1982). Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Archives of microbiology, 131, 278-282. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304(5677), 1623-1627. Lamas, A., Regal, P., Vázquez, B., Miranda, J. M., Franco, C. M., & Cepeda, A. (2019). Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain. Food Research International, 125, 108543. Lan, X., Thoning, K., & Dlugokencky, E. (2022). Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2023-04. In. Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European journal of soil biology, 37(1), 25-50. Leifeld, J., & Menichetti, L. (2018). The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications, 9(1), 1071. Leifeld, J., Wüst-Galley, C., & Page, S. (2019). Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change, 9(12), 945-947. Lidstrom, M. E. (2006). Aerobic methylotrophic prokaryotes. The prokaryotes, 2(20), 618. Liikanen, A., Huttunen, J. T., Karjalainen, S. M., Heikkinen, K., Väisänen, T. S., Nykänen, H., & Martikainen, P. J. (2006). Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecological Engineering, 26(3), 241-251. Lindner, A. S., Pacheco, A., Aldrich, H. C., Costello Staniec, A., Uz, I., & Hodson, D. J. (2007). Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. International Journal of Systematic and Evolutionary Microbiology, 57(8), 1891-1900. Liu, C., Xu, K., Inamori, R., Ebie, Y., Liao, J., & Inamori, Y. (2009). Pilot-scale studies of domestic wastewater treatment by typical constructed wetlands and their greenhouse gas emissions. Frontiers of Environmental Science & Engineering in China, 3, 477-482. Liu, X., Shen, L. D., Yang, W. T., Tian, M. H., Jin, J. H., Yang, Y. L., Liu, J. Q., Hu, Z. H., & Wu, H. S. (2022). Effect of elevated atmospheric CO2 concentration on the activity, abundance and community composition of aerobic methanotrophs in paddy soils. Applied Soil Ecology, 170, 104301. Lüke, C., Krause, S., Cavigiolo, S., Greppi, D., Lupotto, E., & Frenzel, P. (2010). Biogeography of wetland rice methanotrophs. Environmental microbiology, 12(4), 862-872. Ma, K., & Lu, Y. (2011). Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS microbiology ecology, 75(3), 446-456. Mack, S. K., Lane, R. R., Deng, J., Morris, J. T., & Bauer, J. J. (2023). Wetland carbon models: Applications for wetland carbon commercialization. Ecological Modelling, 476, 110228. Macalady, J. L., McMillan, A. M., Dickens, A. F., Tyler, S. C., & Scow, K. M. (2002). Population dynamics of type I and II methanotrophic bacteria in rice soils. Environmental Microbiology, 4(3), 148-157. Mancinelli, R. L. (1995). The regulation of methane oxidation in soil. Annual review of microbiology, 49(1), 581-605. Mander, Ü., Dotro, G., Ebie, Y., Towprayoon, S., Chiemchaisri, C., Nogueira, S. F., Jamsranjav, B., Kasak, K., Truu, J., & Tournebize, J. (2014). Greenhouse gas emission in constructed wetlands for wastewater treatment: a review. Ecological Engineering, 66, 19-35. Mander, Ü., Kuusemets, V., Lohmus, K., Mauring, T., Teiter, S., & Augustin, J. (2003). Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Science and Technology, 48(5), 135-142. Mander, Ü., Lõhmus, K., Teiter, S., Mauring, T., Nurk, K., & Augustin, J. (2008). Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Science of The Total Environment, 404(2-3), 343-353. Manefield, M., Whiteley, A. S., Griffiths, R. I., & Bailey, M. J. (2002). RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Applied and Environmental Microbiology, 68(11), 5367-5373. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2. Matthews, G. V. T. (1993). The Ramsar Convention on Wetlands: its history and development. Maucieri, C., Barbera, A. C., Vymazal, J., & Borin, M. (2017). A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agricultural and forest meteorology, 236, 175-193. Mayumi, D., Yoshimoto, T., Uchiyama, H., Nomura, N., & Nakajima-Kambe, T. (2010). Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative real-time PCR. Microbes and environments, 25(3), 156-163. McDonald, I. R., & Murrell, J. C. (1997). The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiology Letters, 156(2), 205-210. Megonigal, J. P., & Schlesinger, W. H. (2002). Methane‐limited methanotrophy in tidal freshwater swamps. Global biogeochemical cycles, 16(4), 35-31-35-10. Meselson, M., & Stahl, F. W. (1958). The replication of DNA in Escherichia coli. Proceedings of the National Academy of Sciences, 44(7), 671-682. Mitra, S., Wassmann, R., & Vlek, P. L. (2005). An appraisal of global wetland area and its organic carbon stock. Current science, 88(1), 25-35. Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jørgensen, S. E., & Brix, H. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28, 583-597. Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands. John Wiley & Sons. Mitsch, W. J., Nahlik, A., Wolski, P., Bernal, B., Zhang, L., & Ramberg, L. (2010). Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecology and Management, 18, 573-586. Mitsch, W. J., Zhang, L., Waletzko, E., & Bernal, B. (2014). Validation of the ecosystem services of created wetlands: two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological Engineering, 72, 11-24. Morris, B. E., Henneberger, R., Huber, H., & Moissl-Eichinger, C. (2013). Microbial syntrophy: interaction for the common good. FEMS microbiology reviews, 37(3), 384-406. Morris, S. A., Radajewski, S., Willison, T. W., & Murrell, J. C. (2002). Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Applied and Environmental Microbiology, 68(3), 1446-1453. Moussard, H., Stralis‐Pavese, N., Bodrossy, L., Neufeld, J. D., & Murrell, J. C. (2009). Identification of active methylotrophic bacteria inhabiting surface sediment of a marine estuary. Environmental Microbiology Reports, 1(5), 424-433. Murase, J., & Frenzel, P. (2008). Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS microbiology ecology, 65(3), 408-414. Murray, B. C., Sohngen, B., & Ross, M. T. (2007). Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects. Climatic Change, 80(1-2), 127-143. Murrell, J. (2010). The aerobic methane oxidizing bacteria (methanotrophs). Handbook of hydrocarbon and lipid microbiology, Springer, Berlin Heidelberg, 1954-1966. Muyzer, G., De Waal, E. C., & Uitterlinden, A. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695-700. Nahlik, A. M., & Fennessy, M. S. (2016). Carbon storage in US wetlands. Nature Communications, 7(1), 1-9. Nakano, T., Kuniyoshi, S., & Fukuda, M. (2000). Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmospheric Environment, 34(8), 1205-1213. Nazaries, L., Murrell, J. C., Millard, P., Baggs, L., & Singh, B. K. (2013). Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology, 15(9), 2395-2417. Neubauer, S. C. (2014). On the challenges of modeling the net radiative forcing of wetlands: reconsidering Mitsch et al. 2013. Landscape Ecology, 29, 571-577. Neue, H.-U. (1993). Methane emission from rice fields. Bioscience, 43(7), 466-474. Neufeld, J. D., Dumont, M. G., Vohra, J., & Murrell, J. C. (2007). Methodological considerations for the use of stable isotope probing in microbial ecology. Microbial Ecology, 53, 435-442. Nyerges, G., & Stein, L. Y. (2009). Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS microbiology letters, 297(1), 131-136. Nguyen, H., Shiemke, A. K., Jacobs, S. J., Hales, B. J., Lidstrom, M. E., & Chan, S. I. (1994). The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Journal of Biological Chemistry, 269(21), 14995-15005. Nilo, G., Bernaldo, B., Boukbida, H. A., Espinosa, J. S., & Mooketsi-Selepe, L. (2021). Standard operating procedure for soil electrical conductivity, soil/water, 1: 5 (Doctoral dissertation, FAO). Nijman, T. P., Davidson, T. A., Weideveld, S. T., Audet, J., Esposito, C., Levi, E. E., Ho, A., Lamers, L. P., Jeppesen, E., & Veraart, A. J. (2021). Warming and eutrophication interactively drive changes in the methane-oxidizing community of shallow lakes. ISME Communications, 1(1), 32. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community ecology package, version, 2(9), 1-295. Olson, K. R. (2013). Soil organic carbon sequestration, storage, retention and loss in US croplands: Issues paper for protocol development. Geoderma, 195, 201-206. Orata, F. D., Meier-Kolthoff, J. P., Sauvageau, D., & Stein, L. Y. (2018). Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Frontiers in microbiology, 9, 3162. Oremland, R. S., & Culbertson, C. W. (1992). Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature, 356(6368), 421-423. Orson, R. A. (1996). Some applications of paleoecology to the management of tidal marshes. Estuaries, 19(2), 238-246. Ouyang, X., & Lee, S. (2014). Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences, 11(18), 5057-5071. Pan, T., Zhu, X.-D., & Ye, Y.-P. (2011). Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: A case study in China. Ecological Engineering, 37(2), 248-254. Pandit, P. S., Ranade, D. R., Dhakephalkar, P. K., & Rahalkar, M. C. (2016). A pmoA-based study reveals dominance of yet uncultured Type I methanotrophs in rhizospheres of an organically fertilized rice field in India. 3 Biotech, 6, 1-6. Pandit, P. S., Rahalkar, M. C., Dhakephalkar, P. K., Ranade, D. R., Pore, S., Arora, P., & Kapse, N. (2016). Deciphering community structure of methanotrophs dwelling in rice rhizospheres of an Indian rice field using cultivation and cultivation-independent approaches. Microbial ecology, 71, 634-644. Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403-1414. Pearse, A. L., Barton, J. L., Lester, R. E., Zawadzki, A., & Macreadie, P. I. (2018). Soil organic carbon variability in Australian temperate freshwater wetlands. Limnology and Oceanography, 63(S1), S254-S266. Pfaff, J. D. (1993). Method 300.0 Determination of inorganic anions by ion chromatography. US Environmental protection agency, Office of research and development, Environmental monitoring systems Laboratory, 28. Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5), 831-842. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,Austria. Radajewski, S., Ineson, P., Parekh, N. R., & Murrell, J. C. (2000). Stable-isotope probing as a tool in microbial ecology. Nature, 403(6770), 646-649. Radajewski, S., McDonald, I. R., & Murrell, J. C. (2003). Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Current opinion in biotechnology, 14(3), 296-302. Radajewski, S., Webster, G., Reay, D. S., Morris, S. A., Ineson, P., Nedwell, D. B., Prosser, J. I., & Murrell, J. C. (2002). Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology, 148(8), 2331-2342. Rai, U., Tripathi, R., Singh, N., Upadhyay, A., Dwivedi, S., Shukla, M., Mallick, S., Singh, S., & Nautiyal, C. (2013). Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresource technology, 148, 535-541. Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. CRC press. Ren, Z., Yu, L., Zhao, J., Zhang, H., Chen, W., & Zhai, Q. (2022). An Illumina MiSeq sequencing-based method using the mreB gene for high-throughput discrimination of Pseudomonas species in raw milk. LWT, 163, 113573. Revelle, W., & Revelle, M. W. (2015). Package ‘psych’. The comprehensive R archive network, 337, 338. Richardson, J. L., & Vepraskas, M. J. (2001). Wetland soils: genesis, hydrology, landscapes, and classification. Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., & Marangoni, G. (2018). Scenarios towards limiting global mean temperature increase below 1.5 C. Nature Climate Change, 8(4), 325-332. Roumpeka, D. D., Wallace, R. J., Escalettes, F., Fotheringham, I., & Watson, M. (2017). A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Frontiers in genetics, 8, 23. Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of environmental management, 112, 429-448. Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., & Patra, P. K. (2020). The global methane budget 2000–2017. Earth System Science Data, 12(3), 1561-1623. Schirmer, M., Ijaz, U. Z., D'Amore, R., Hall, N., Sloan, W. T., & Quince, C. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic acids research, 43(6), e37-e37. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., & Robinson, C. J. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541. Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecol Risk Assess Support Cent., 1-23. Schütz, H., Seiler, W., & Conrad, R. (1989). Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7, 33-53. Schwartz, D. C. (2019). Biophysics and the genomic sciences. Biophysical Journal, 117(11), 2047-2053. Semrau, J. D., DiSpirito, A. A., & Yoon, S. (2010). Methanotrophs and copper. FEMS microbiology reviews, 34(4), 496-531. Sharp, C. E., Martínez-Lorenzo, A., Brady, A. L., Grasby, S. E., & Dunfield, P. F. (2014). Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing. FEMS microbiology ecology, 90(1), 92-102. Shiau, Y.-J., Burchell, M. R., Krauss, K. W., Birgand, F., & Broome, S. W. (2016). Greenhouse gas emissions from a created brackish marsh in eastern North Carolina. Wetlands, 36, 1009-1024. Shiau, Y.-J., Cai, Y., Jia, Z., Chen, C.-L., & Chiu, C.-Y. (2018). Phylogenetically distinct methanotrophs modulate methane oxidation in rice paddies across Taiwan. Soil Biology and Biochemistry, 124, 59-69. Shiau, Y.-J., Cai, Y., Lin, Y.-T., Jia, Z., & Chiu, C.-Y. (2018). Community structure of active aerobic methanotrophs in red mangrove (Kandelia obovata) soils under different frequency of tides. Microbial Ecology, 75, 761-770. Shiau, Y.-J., Lin, C.-W., Cai, Y., Jia, Z., Lin, Y.-T., & Chiu, C.-Y. (2020). Niche differentiation of active methane-oxidizing bacteria in estuarine mangrove forest soils in Taiwan. Microorganisms, 8(8), 1248. Shrestha, M., Shrestha, P. M., Frenzel, P., & Conrad, R. (2010). Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. The ISME journal, 4(12), 1545-1556. Shurpali, N., Verma, S., Clement, R., & Billesbach, D. (1993). Seasonal distribution of methane flux in a Minnesota peatland measured by eddy correlation. Journal of Geophysical Research: Atmospheres, 98(D11), 20649-20655. Siljanen, H. M., Saari, A., Krause, S., Lensu, A., Abell, G. C., Bodrossy, L., Bodelier, P. L., & Martikainen, P. J. (2011). Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS microbiology ecology, 75(3), 430-445. Singh, S., Kulshreshtha, K., & Agnihotri, S. (2000). Seasonal dynamics of methane emission from wetlands. Chemosphere-Global Change Science, 2(1), 39-46. Siniscalchi, L. A. B., Leite, L. R., Oliveira, G., Chernicharo, C. A. L., & de Araújo, J. C. (2017). Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs. Environmental Science and Pollution Research, 24, 16751-16764. Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176. Sjögersten, S., Black, C. R., Evers, S., Hoyos‐Santillan, J., Wright, E. L., & Turner, B. L. (2014). Tropical wetlands: a missing link in the global carbon cycle? Global biogeochemical cycles, 28(12), 1371-1386. Smith, G. J., Angle, J. C., Solden, L. M., Borton, M. A., Morin, T. H., Daly, R. A., Johnston, M. D., Stefanik, K. C., Wolfe, R., & Gil, B. (2018). Members of the genus Methylobacter are inferred to account for the majority of aerobic methane oxidation in oxic soils from a freshwater wetland. MBio, 9(6), e00815-00818. Söhngen, N. (1906). Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Zentrabl Bakteriol Parasitenk Infektionskr, 15, 513-517. Steenbergh, A. K., Meima, M. M., Kamst, M., & Bodelier, P. L. (2009). Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS microbiology ecology, 71(1), 12-22. Stock, M., Hoefman, S., Kerckhof, F. M., Boon, N., De Vos, P., De Baets, B., Heylen, K., & Waegeman, W. (2013). Exploration and prediction of interactions between methanotrophs and heterotrophs. Research in microbiology, 164(10), 1045-1054. Strack, M., Kellner, E., & Waddington, J. (2005). Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry. Global biogeochemical cycles, 19(1), GB1003. Strack, M., & Waddington, J. (2008). Spatiotemporal variability in peatland subsurface methane dynamics. Journal of Geophysical Research: Biogeosciences, 113(G2). Stumpner, E. B., Kraus, T. E., Liang, Y. L., Bachand, S. M., Horwath, W. R., & Bachand, P. A. (2018). Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based coagulants. Ecological Engineering, 111, 176-185. Takeuchi, W., Tamura, M., & Yasuoka, Y. (2003). Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV. Remote Sensing of Environment, 85(1), 21-29. Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., ... & Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248-256. Tokida, T., Miyazaki, T., & Mizoguchi, M. (2005). Ebullition of methane from peat with falling atmospheric pressure. Geophysical Research Letters, 32(13), 3257. Toncheva‐Panova, T., & Ivanova, J. (2000). Influence of physiological factors on the lysis effect of Cytophaga on the red microalga Rhodella reticulata. Journal of Applied Microbiology, 88(2), 358-363. Trotsenko, Y. A., & Murrell, J. C. (2008). Metabolic aspects of aerobic obligate methanotrophy⋆. Advances in applied microbiology, 63, 183-229. Tsuji, K., Tsien, H., Hanson, R., DePalma, S., Scholtz, R., & LaRoche, S. (1990). 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. Microbiology, 136(1), 1-10. USEPA. (2004). Test methods for evaluating solid waste, 9045D. USEPA Washington, DC. Vekeman, B. (2016). Methanotrophic microbiomes from North Sea sediment. Ghent University. Faculty of Sciences, Ghent, Belgium. Veraart, A. J., Garbeva, P., Van Beersum, F., Ho, A., Hordijk, C. A., Meima-Franke, M., Zweers, A. J., & Bodelier, P. L. E. (2018). Living apart together—bacterial volatiles influence methanotrophic growth and activity. The ISME journal, 12(4), 1163-1166. Vick, S. H., Greenfield, P., Tran-Dinh, N., Tetu, S. G., Midgley, D. J., & Paulsen, I. T. (2018). The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community. International Journal of Coal Geology, 186, 41-50. Villa, J. A., & Bernal, B. (2018). Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods, and policy framework. Ecological Engineering, 114, 115-128. Vorobev, A. V., Baani, M., Doronina, N. V., Brady, A. L., Liesack, W., Dunfield, P. F., & Dedysh, S. N. (2011). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. International Journal of Systematic and Evolutionary Microbiology, 61(10), 2456-2463. Vymazal, J. (1998). Removal mechanisms and types of constructed wetlands. Constructed wetlands for wastewater treatment in Europe, 17-66. Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1-3), 48-65. Vymazal, J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35(1), 1-17. Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530-549. Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental science & technology, 45(1), 61-69. Vymazal, J. (2013). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water research, 47(14), 4795-4811. Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering, 73, 724-751. Vymazal, J., & Kröpfelová, L. (2008). Wastewater treatment in constructed wetlands with horizontal sub-surface flow (Vol. 14). Springer science & business media. Wang, Y., & Shieh, S. (1997). Emission and environmental conditions of paddy soil, wetland, dryland, upland soil and forest soil in the central and southern Taiwan area. Research on Atmospheric Environments of Taiwan Area. Global Change Research Center and Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, 99-121. Wang, Y., Yang, H., Ye, C., Chen, X., Xie, B., Huang, C., Zhang, J., & Xu, M. (2013). Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands. Environmental pollution, 174, 273-278. Wang, Z., Zeng, D., & Patrick, W. H. (1996). Methane emissions from natural wetlands. Environmental Monitoring and Assessment, 42, 143-161. Wartiainen, I., Hestnes, A. G., McDonald, I. R., & Svenning, M. M. (2006). Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78 N). International Journal of Systematic and Evolutionary Microbiology, 56(1), 109-113. Wartiainen, I., Hestnes, A. G., McDonald, I. R., & Svenning, M. M. (2006). Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 N). International Journal of Systematic and Evolutionary Microbiology, 56(3), 541-547. Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24. Whiting, G. J., & Chanton, J. P. (2001). Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B, 53(5), 521-528. Whittenbury, R., & Dalton, H. (1981). The methylotrophic bacteria. The prokaryotes: A handbook on habitats, isolation, and identification of bacteria, 894-902. Whittenbury, R., Davies, S. L., & Davey, J. (1970). Exospores and cysts formed by methane-utilizing bacteria. Microbiology, 61(2), 219-226. Whittenbury, R., Phillips, K., & Wilkinson, J. (1970). Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology, 61(2), 205-218. Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., Cordero, O. X., Brown, S. P., Momeni, B., & Shou, W. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME journal, 10(11), 2557-2568. Wu, H., Lin, L., Zhang, J., Guo, W., Liang, S., & Liu, H. (2016). Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent. Bioresource technology, 219, 768-772. Wu, J., Zhang, J., Jia, W., Xie, H., & Zhang, B. (2009). Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands. Frontiers of Environmental Science & Engineering, 3(2), 241-247. Wu, M. L., Ettwig, K. F., Jetten, M. S., Strous, M., Keltjens, J. T., & Niftrik, L. v. (2011). A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochemical Society Transactions, 39(1), 243-248. Wu, X., Zang, S., Ma, D., Ren, J., Chen, Q., & Dong, X. (2019). Emissions of CO2, CH4, and N2O fluxes from forest soil in permafrost region of Daxing’an Mountains, northeast China. International Journal of Environmental Research and Public Health, 16(16), 2999. Yan, C., Zhang, H., Li, B., Wang, D., Zhao, Y., & Zheng, Z. (2012). Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating synthetic municipal wastewater. Journal of hazardous materials, 203, 188-194. Yang, S.-S., & Chang, H.-L. (1998). Effect of environmental conditions on methane production and emission from paddy soil. Agriculture, Ecosystems & Environment, 69(1), 69-80. Yu, Z., Beck, D. A., & Chistoserdova, L. (2017). Natural selection in synthetic communities highlights the roles of Methylococcaceae and Methylophilaceae and suggests differential roles for alternative methanol dehydrogenases in methane consumption. Frontiers in microbiology, 8, 2392. Yun, J., Yu, Z., Li, K., & Zhang, H. (2013). Diversity, abundance and vertical distribution of methane-oxidizing bacteria (methanotrophs) in the sediments of the Xianghai wetland, Songnen Plain, northeast China. Journal of soils and sediments, 13, 242-252. Yun, J., Zhang, H., Deng, Y., & Wang, Y. (2015). Aerobic methanotroph diversity in Sanjiang wetland, Northeast China. Microbial ecology, 69, 567-576. Zamora, S., Sandoval-Herazo, L. C., Ballut-Dajud, G., Del Ángel-Coronel, O. A., Betanzo-Torres, E. A., & Marín-Muñiz, J. L. (2020). Carbon fluxes and stocks by Mexican tropical forested wetland soils: a critical review of its role for climate change mitigation. International Journal of Environmental Research and Public Health, 17(20), 7372. Zemanová, K., Picek, T., Dušek, J., Edwards, K., & Šantrůčková, H. (2010). Carbon, nitrogen and phosphorus tranformations are related to age of a constructe wetland. Water, Air, and Soil Pollution, 207, 39-48. Zheng, Y., & Jia, Z. (2016). The application of biomarker genes for DNA/RNA-stable isotope probing of active methanotrophs responsible for aerobic methane oxidation in six paddy soils. Acta pedologica sinica, 53(2), 490-501. Zhu, Z., Bergamaschi, B., Bernknopf, R., Clow, D., Dye, D., Faulkner, S., Forney, W., Gleason, R., Hawbaker, T., & Liu, J. (2010). Public review draft—a method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios. US Geological Scientific Investigations Report, 5233, 196. Zimmermann, C. F., Keefe, C. W., & Bashe, J. (1997). Method 440.0: determination of carbon and nitrogen in sediments and particulates of estuarine/coastal waters using elemental analysis. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory. Zou, J., Ziegler, A. D., Chen, D., McNicol, G., Ciais, P., Jiang, X., Zheng, C., Wu, J., Wu, J., & Lin, Z. (2022). Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nature Geoscience, 15(8), 627-632. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88682 | - |
| dc.description.abstract | 人工濕地作為生態工程技術,其封存碳的功能與天然濕地相似,並被視為降低全球溫室氣體濃度的自然為本解決方案。然而,濕地所提供的厭氧土壤條件也使其成為甲烷(CH4)排放的重要來源。在甲烷向上擴散的過程中,表層0-2公分好氧土壤層中的甲烷氧化菌,可以將深層濕地土壤產生的50至90% 甲烷可氧化為二氧化碳(CO2),進而緩和濕地的甲烷排放總量,促進濕地碳匯價值。過去研究顯示亞熱帶及熱帶地區濕地被認為可能主導著全球甲烷變化,然而以往有關甲烷氧化菌的研究主要集中在稻田和天然濕地,對於人工濕地的資料相對較少。
本研究利用DNA穩定同位素探針技術(DNA stable isotope probing;DNA-SIP)和次世代定序技術,分析臺灣夏冬兩季三個不同完工時間的人工濕地中活性甲烷氧化菌的群落結構變化。由pmoA及16S rRNA基因序列展示了人工濕地甲烷氧化菌不同的群落結構組成,與過去紅樹林土壤研究的結構類似。研究結果顯示,活性Type Ia甲烷氧化菌Methylomonas、Methylobacter、Methylosarcina主導了濕地的淨排放。冗餘分析及多變量線性迴歸分析探討環境因子對物種的影響,其中在年輕濕地中發現較高比例的Methylomonas可能是場域中高甲烷氧化能力物種,並且偏好酸性及C/N比較高的環境。通過相關性及網絡分析也展示活性Methylobacter與其他甲烷氧化菌間的負相關,及RPC-1、Methylomonas、Methylocystis之正相關。另外,高豐度的活性未分類Betaproteobacteria可能存在對土壤碳循環具重要作用的物種。本研究結果展示了人工濕地中甲烷氧化菌在不同條件下的生態位分化和活躍群落結構的變化,展望未來人工濕地管理應該加強其碳匯價值。 | zh_TW |
| dc.description.abstract | Constructed wetlands, as ecological engineering technologies have similar ecosystems services as natural wetlands in sequestrating carbon and are recognized as nature-based solutions in reducing the global greenhouse gas concentrations. However, the anaerobic soil conditions that wetlands provide also make them considerable sources for methane (CH4) emissions. Fortunately, 50 to 90 % of the CH4 produced from deep wetland soils can be oxidized into carbon dioxide (CO2) by methanotrophs in the aerobic soil layer, reducing the overall CH4 emissions from wetlands. Previous studies on methanotrophs have mostly be under taken in rice paddy and natural wetlands, while overlooked constructed wetlands, particularly in tropical and subtropical areas.
This study analyzed the changes of active methanotrophs in three constructed wetlands with different ages in Taiwan in summer and winter. With using DNA stable isotope probing (DNA-SIP) and next-generation sequencing techniques, we revealed the temporal and spatial variations of active methanotrophic compositions in the constructed wetlands. The results from pmoA genes of DNA-SIP showed that the highest relative abundance of type Ia Methylomonas, Methylobacter, Methylosarcina were dominated all the studied constructed wetlands. Redundancy analysis and multiple linear regression analysis revealed a higher relative abundance of Methylomonas in young wetlands, indicating their greater methane oxidation capability in the field. Methylomonas also exhibited a preference for acidic and high C/N ratio environments. Additionally, spearman correlation and network analysis demonstrated negative co-occurence of species between genera of active Methylobacter and others, while interactions between RPC-1, Methylomonas, Methylocystis correlated positively. Furthermore, the high abundance of active unclassified betaproteobacteria may play a significant role in soil carbon cycle. These results demonstrate the ecological niche differentiation of methanotrophs in constructed wetlands under different conditions and the active community structure changes in response to methane concentration. Future management in constructed wetlands will be needed to enhance their carbon sequestration value. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:21:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:21:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書……………………………………………………………….I
致謝…………………………………………………………………………………... II 摘要………………………………………………………………………………….. III 目錄………………………………………………………………………………….. VI 圖目錄……………………………………………………………………………….. IX 表目錄……………………………………………………………………………… XII 公式目錄…………………………………………………………………………… XII 第一章 前言………………………………………………………………………….. 1 1-1 研究背景..………………………………………………………………….. 1 1-2 研究目的..………………………………………………………………….. 3 第二章 文獻回顧.……………………………………………………………………. 4 2-1 全球溫室氣體趨勢………………………………………………………….4 2-1-1 二氧化碳……………………………………………………………. 4 2-1-2 甲烷.………………………………………………………………… 5 2-1-3 氧化亞氮……………………………………………………………..7 2-2 自然碳匯.…………………………………………………………………... 7 2-2-1 濕地.……………………………………………………………….. 10 2-2-2 人工濕地.………………………………………………………...... 17 2-3 好氧甲烷氧化菌.………………………………………………………..... 23 2-4 研究環境微生物之分子方法.……………………………………………. 28 2-4-1 基於PCR之分子技術.…………………………………………….28 2-4-2 Illumina 次世代定序.……………………………………….…... 31 2-4-3 DNA穩定性同位素探針……………………………………...… 32 第三章 研究方法……………………………………….…………...……….…….. 35 3-1 研究架構與實驗項目……………………………………….………….....35 3-2 採樣地點與方法……………………………………….……………….....37 3-3 土壤理化性質分析……………………………………….……………..... 41 3-4 穩定同位素甲烷培養與氧化效率測定………………………………….. .46 3-5 DNA萃取、穩定同位素標定DNA分離與純化……………………..... 49 3-5-1 DNA萃取……………………………………….………………...49 3-5-2 DNA-SIP高速離心與分離純化 ……………………………….. 51 3-6 16S rRNA與功能性基因pmoA之次世代定序………………………… 57 3-7 生物資訊與統計分析生物資訊與統計分析……………………………...62 第四章 結果與討論…………………………………………………………………65 4-1 濕地土壤環境因子差異……………………………………….…………..65 4-1-1 土壤理化性質……………………………………….…………..… 65 4-1-2 DNA-SIP培養甲烷氧化速率及pmoA基因拷貝數……………. 67 4-1-3 甲烷氧化率與物化因子相關性分析……………………………... 70 4-2 現地人工濕地土壤微生物定序…………………………………………...72 4-2-1 現地土壤甲烷氧化菌活性與群落組成…………………………... 72 4-2-2 現地pmoA親緣發育樹…………………………………………... 75 4-2-3 現地16S rRNA親緣發育樹……………………………………… 78 4-2-4 環境因素對現地群落適應之相關性……………………………... 81 4-3 DNA-SIP培養人工濕地活性微生物土壤定序…………………………... 84 4-3-1 DNA-SIP培養土壤 DNA密度分離qPCR結果………………. 84 4-3-2 DNA-SIP培養土壤甲烷氧化菌活性與群落組成……………… 84 4-3-3 DNA-SIP培養pmoA基因親緣發育樹…………………………..88 4-3-4 DNA-SIP培養16S rRNA基因親緣發育樹……………………. 92 4-3-5 環境因素對活性甲烷氧化菌群落適應之相關性………………... 95 4-4 活性甲烷氧化菌群落及非甲烷氧化群落相關性……………………….99 4-4-1 活性甲烷氧化菌群落網絡分析…………………………………. 99 4-4-2 活性非甲烷氧化菌群落………………………………………..... 101 第五章 結論與建議……………………………………………………….………..105 5.1結論……………………………………….……………………….…105 5.2建議……………………………………….………………………….107 參考文獻……………………………………….…………………………………...109 附錄…………………………………………………………………………………145 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 甲烷氧化菌 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 穩定同位素探針技術 | zh_TW |
| dc.subject | 甲烷 | zh_TW |
| dc.subject | 顆粒甲烷單加氧酶 | zh_TW |
| dc.subject | 人工濕地 | zh_TW |
| dc.subject | pmoA | en |
| dc.subject | Methanotroph | en |
| dc.subject | DNA Stable-isotope probing | en |
| dc.subject | Constructed wetland | en |
| dc.subject | Next generation sequencing | en |
| dc.subject | Methane | en |
| dc.title | 以DNA穩定同位素探針技術探討臺灣亞熱帶人工濕地活性甲烷氧化菌結構 | zh_TW |
| dc.title | Composition of active methanotrophs in subtropical constructed wetlands in Taiwan with DNA stable isotope probing | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 童心欣;胡明哲;林巧雯;何銘洋 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hsin Tung;Ming-Che Hu;Chiao-Wen Ling;Ming-Yang Ho | en |
| dc.subject.keyword | 人工濕地,甲烷氧化菌,顆粒甲烷單加氧酶,甲烷,穩定同位素探針技術,次世代定序, | zh_TW |
| dc.subject.keyword | Constructed wetland,DNA Stable-isotope probing,Methanotroph,pmoA,Methane,Next generation sequencing, | en |
| dc.relation.page | 146 | - |
| dc.identifier.doi | 10.6342/NTU202301073 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 6.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
