Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88667Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳志軒 | zh_TW |
| dc.contributor.advisor | Chih-Hsuan Chen | en |
| dc.contributor.author | 王喜來 | zh_TW |
| dc.contributor.author | Hsi-Lai Wang | en |
| dc.date.accessioned | 2023-08-15T17:17:31Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-05 | - |
| dc.identifier.citation | [1] Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys .Progress in materials science. 50(5) (2005) 511-678.
[2] D. Y. Cong, G. Saha, and M. R. Barnett, "Thermomechanical properties of Ni-Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing," (in eng), Acta Biomater, vol. 10.(2014) 5178-5192,. [3] Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design. 56 (2014) 1078-1113. [4] C. Wayman, "Shape Memory Alloys," MRS Bulletin, vol. 18, no. 4(1993) 49-56. [5] Y. Lo, S. Wu, C. Wayman, Transformation heat as a function of ternary Pd additions in Ti50Ni50-zPdz alloys with x: 20~ 50 at, Scripta Metall. Mater. 24(8) (1990) 1571-1576. [6] S. Wu, C. Wayman, Martensitic transformations and the shape memory effect in Ti50Ni10Au40 and Ti50Au50 alloys, Metallography 20 (3) (1987) 359-376. [7] P. Potapov, A. Shelyakov, A. Gulyaev, E. Svistunov, N. Matveeva, D. Hodgson, Effect of Hf on the structure of Ni-Ti martensitic alloys, Mater. Lett. 32 (4) (1997) 247-250. [8] J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, G. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys, Acta Mater. 90 (2015) 213-231. [9] J.H. Mulder, Investigation of High Temperature Shape Memory Alloys from the Ni-Ti-Zr and Ni-Ti-Hf Systems, University of Twente, Phd. Thesis (1995). [10] G.S. Firstov, J. Van Humbeeck, Y.N. Koval, High-temperature shape memory alloys: some recent developments, Mater. Sci. Eng., A 378 (1) (2004) 2-10. [11] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni 4 Ti 3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations, Acta Mater. 50 (2002) 4255-4274. [12] E.Y. Panchenko, Y.I. Chumlyakov, I. Kireeva, A. Ovsyannikov, H. Sehitoglu, I. Karaman, Y. Maier, Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals, Phys. Metals Metallogr. 106 (2008) 577-589 [13] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv Eng Mater 6(5) (2004) 299-303. [14] G. Firstov, T. Kosorukova, Y.N. Koval, V. Odnosum, High entropy shape memory alloys, Mater. Today Proc. 2 (2015) S499-S503. [15] H.-C. Lee, Y.-J. Chen, C.-H. Chen, Effect of solution treatment on the shape memory functions of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Entropy 21(10) (2019) 1027. [16] C.-H. Chen, Y.-J. Chen, Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 162 (2019) 185-189 [17] J. Yaacoub, W. Abuzaid, F. Brenne, H. Sehitoglu, Superelasticity of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Mater. 186 (2020) 43-47. [18] Y.T. Chang, M.H. Lee, Mi.W. Chu, C.H. Chen, Phase formations and microstructures of Ti20Zr15Hf15Ni35Cu15 high entropy shape memory alloy under different aging conditions, Mater. Today Adv. 14 (2022) 100223. [19] J.P. Oliveira, R.M. Miranda, N. Schell, F.M. Braz Fernandes, High strain and long duration cycling behavior of laser welded NiTi sheets, Int. J. Fatig. 83 (2016) 195-200. [20] Z. Zeng, J.P. Oliveira, M. Yang, D. Song, B. Peng, Functional fatigue behavior of NiTi-Cu dissimilar laser welds, Mater. Des. 114 (2017) 282-287. [21] L.C. Chang, T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase, T Am I Min Met Eng 191(1) (1951) 47-52. [22] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the 136 memory metal and its applications, The chemical educator 2(2) (1997) 1-21. [23] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015) 56 (2014) 1078-1113. [24] J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A 273 (1999) 134-148. [25] N. Morgan, Medical shape memory alloy applications—the market and its products, Materials Science and Engineering: A 378(1-2) (2004) 16-23. [26] M. Mehrpouya, H. Cheraghi Bidsorkhi, MEMS applications of NiTi based shape memory alloys: a review, Micro and Nanosystems 8(2) (2016) 79-91. [27]Schetky, L.M., Miscellaneous applications of intermetallic compounds. MRS Bulletin, 1996. 21(5): p. 50-55. [28] H. Kessler, W. Pitsch, On Nature of Martensite to Austenite Reverse Transformation, Acta Metall Mater 15(2) (1967) 401-&. [29] 李芝媛、吳錫侃, 科儀新知第十六卷 6 (1995) 6. [30] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948. [31] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect, Scripta Metall Mater 8(9) (1974) 1055-1060. [32] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12) (1974) 1363-1367. [33] T.A. Schroeder, C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals, Scripta Metall Mater 11(3) (1977) 225-230. [34] M. Nishida, T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging, Scripta Metall Mater 18(11) (1984) 1293-1298. [35] T.A. Schroeder, C.M. Wayman, Formation of Martensite and Mechanism of Shape Memory Effect in Single-Crystals of Cu-Zn Alloys, Acta Metall Mater 25(12) (1977) 1375-1391. [36] K. Otsuka, K. Shimizu, Pseudoelasticity, Met Forum 4(3) (1981) 142-152. [37] Miyazaki, S., K. Otsuka, and Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy. Scripta Metallurgica 15(3) (1981) 287-292. [38] C.M.W. K.Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transformations, TMS-AIME Pittsburgh,Pa.(USA) (1981). [39] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [40] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875. [41] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, (1972). [42] J. Nei, K.-H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24. [43] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu Content on Atomic Positions of Ti50Ni50− xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Metals 5(4) (2015) 2222-2235. [44] K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Phys Status Solidi A 5(2) (1971) 457-&. [45] K.M. Knowles, D.A. Smith, The Crystallography of the Martensitic-Transformation in Equiatomic Nickel-Titanium, Acta Metall Mater 29(1) (1981) 101-110. [46] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of Martensitic Transformation in Ti-Ni Single-Crystals, Acta Metall Mater 35(8) (1987) 2137-2144. [47] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Electron-Microscopy Studies of Twin Morphologies in B19' Martensite in the Ti-Ni Shape-Memory Alloy, Acta Metallurgica Et Materialia 43(3) (1995) 1219-1227. [48] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron-Microscopy Study of Twins in Martensite in a Ti-50.0 at Percent Ni-Alloy, Mater T Jim 33(4) (1992) 354-359. [49] S.K. Wu, H.C. Lin, The Effect of Precipitation Hardening on the Ms Temperature in a Ti49.2ni50.8 Alloy, Scripta Metallurgica Et Materialia 25(7) (1991) 1529-1532. [50] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation Behavior of a Ti50ni47fe3 Alloy .2. Subsequent Premartensitic Behavior and the Commensurate Phase, Philos Mag A 47(1) (1983) 31-62. [51] S.K. Wu, H.C. Lin, The Effect of Precipitation Hardening on the Ms Temperature in a Ti49.2ni50.8 Alloy, Scripta Metallurgica Et Materialia 25(7) (1991) 1529-1532. [52] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528. [53] C.M.W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110 (1972). [54] A.P. Thomas duerig, Christine Trpanier, Nitinol, SMST e-Elastic newsletter (2011). [55] Y. Kishi, Z. Yajima, K.i. Shimizu, Relation between tensile deformation behavior and microstructure in a Ti-Ni-Co shape memory alloy, Materials Transactions 43(5) (2002) 834-839. [56] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .1. Compositional Dependence of 1/3 Reflections from the Matrix Phase, Metallography 15(3) (1982) 233-245. [57] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258. [58] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, Electron-Microscope Observation of the Early Stages of Thermoelastic Martensitic-Transformation in a Ti-Ni-Cu Alloy, J Less-Common Met 118(2) (1986) 217-226. [59] T.H. Y Shugo, Two-Step Martensitic Transformation and Yield Strength in TiNi sub 0.8 Cu sub 0.2, Bull. Res. Inst. Miner. Dressing Metall. (1987). [60] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, Shape Memory Characteristics Associated with the B2-Reversible-B19 and B19-Reversible-B19' Transformations in a Ti-40ni-10cu (at-Percent) Alloy, Mater T Jim 31(4) (1990) 262-269. [61] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys, Mater T Jim 31(12) (1990) 1050-1056. [62] T.H. Nam, T. Saburi, K. Shimizu, Cu-Content Dependence of Shape Memory Characteristics in Ti-Ni-Cu Alloys, Mater T Jim 31(11) (1990) 959-967. [63] T.H. Nam, T. Saburi, K. Shimizu, Effect of Thermomechanical Treatment on Shape Memory Characteristics in a Ti-40ni-10cu (at Percent) Alloy, Mater T Jim 32(9) (1991) 814-820. [64] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538. [65] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230. [66] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater Chem Phys 132(2-3) (2012) 233-238. [67] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Springer (2015). [68] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Mater 61(13) (2013) 4887-4897. [69] X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications, Journal of Materials Chemistry A (2020). [70] C. Lee, Master’s thesis, National Tsing Hua University, (2013). [71] P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, J.W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J Alloy Compd 587 (2014) 544-552. [72] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog Mater Sci 61 (2014) 1-93. [73] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys, J Alloy Compd 488(1) (2009) 57-64. [74] F. G.S, T.A.Kosorukova,Y.N.Koval,A.Verhovlyuk, Directions for High-Temperature Shape Memory Alloys' Improvement:Straight Way to High-Entropy Materials, Shap.Mem.Superelasticity 1 (2015) 400. [75] J. Ma, I. Karaman, R.D. Noebe, Int. Mater. Rev. 55 (2010) 257. [76] K.C. Atli, I. Karaman, R.D. Noebe, A. Garg, Y.I. Chumlyakov, I.V. Kireeva, Acta Mater. 59 (2011) 4747. [77] K.C. Atli, I. Karaman, R.D. Noebe, A. Garg, Y.I. Chumlyakov, I.V. Kireeva, Metall. Mater. Trans. A 41 (2010) 2485. [78] B. Kockar, K.C. Atli, J. Ma, M. Haouaoui, I. Karaman, M. Nagasako, R. Kainuma, Acta Mater. 58 (2010) 6411. [79] K.C. Atli, I. Karaman, R.D. Noebe, Scr. Mater. 65 (2011) 903. [80] K.C. Atli, I. Karaman, R.D. Noebe, H.J. Maier, Scr. Mater. 64 (2011) 315. [81] X.L. Meng, W. Cai, Y.F. Zheng, L.C. Zhao, Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys, Mater. Sci. Eng. A 438e440 (2006) 666-670. [82] H.E. Karaca, E. Acar, G.S. Ded, S.M. Saghaian, B. Basaran, H. Tobe, M. Kok, H.J. Maier, R.D. Noebe, Y.I. Chumlyakov, Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy, Mater. Sci. Eng., A 627 (2015) 82-94. [83] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, R.D. Noebe, Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy, Acta Mater. 83 (2015). [84] D. Canadinc, W. Trehern, J. Ma, I. Karaman, F. Sun, Z. Chaudhry, Ultra-high temperature multi-component shape memory alloys, Scripta Materialia 158 (2019) 83-87. [85] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Current science 85(10)(2003) 1404-1406. [86] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater 122 (2017) 448-511. [87] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions 46(12) (2005) 2817-2829. [88] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230. [89] H. Hosoda, S. Hanada, K. Inoue, T. Fukui, J. Mishima, T. Suzuki, Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions, Intermetallics 6(4) (1998) 291-301. [90] E. Kneller, Y. Khan, U. Gorres, The alloy system copper-zirconium, Z. Metallkd 77 (1) (1986) 43-48. [91] M. Qian, J. Inter, Powder Metall, 46 (2010) 29-44. [92] S. Li, C. Cong, Z. Chen, S.Li, C. Song, Y. Cao, Z. Nie, Y. Wang, A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery, Materials Research Letters 9(6) (2021) 263-269. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88667 | - |
| dc.description.abstract | 本研究針對經過時效處理之Ti20Zr15Hf15Ni35-xCoxCu15 (x= 0, 5, 10) 高熵形狀記憶合金之相變態溫度、顯微結構、晶體結構進行研究,使用400-700°C的時效溫度進行比較和探討。三種合金經過400、500°C時效,相變態溫度因為析出奈米級H相,使麻田散體相變態受到抑制,造成相變態溫度下降,而添加Co可以使相變態溫度下降趨緩。三種合金經過600、700°C時效,因為共析反應使基地成分改變,(Ti+Zr+Hf)之比例上升,造成相變態溫度上升。並發現添加Co可以使相變態溫度上升趨緩。因此在相變態溫度之結果可以顯示,添加Co減少了高溫和低溫時效的析出反應,所以相變態溫度變化較小。在SEM中,觀察到三種合金經過400、500°C時效之試片皆只有基地和擬二元Ti2Ni析出物所組成,因為H相析出物太細小難以觀察,也有進一步在TEM中觀察到Co5之H 相。三種合金經過600°C時效之試片除了基地和擬二元Ti2Ni,還有觀察到Zr7Cu10和Ti2Cu之共析結構,而添加Co會使共析受到抑制,因此添加Co後共析結構較少。三種合金經過700°C時效之試片除了基地和擬二元Ti2Ni,還有觀察到Zr7Cu10和新形成之擬二元Ti2Ni析出物,而添加Co會使析出受到抑制,因此添加Co後析出物較少。另外,也在TEM中觀察到Co5經過600°C時效168小時析出元素Ti。在XRD分析中,觀察到三種合金經過400、500°C時效之試片皆只含B2沃斯田體和B19’麻田散體;在600、700°C時效之試片則是產生了多又豐富的析出物,因此XRD結果皆和DSC、SEM十分吻合。因此,可以發現使用Co取代Ni會減少TiZrHfNiCoCu高熵形狀記憶合金在高溫、低溫時效的析出現象,因此使時效後相變態溫度變化較小。綜合上述這些結果顯示可透過不同成分和不同時效溫度析出不同的微結構以設計高熵形狀記憶合金不同的相變態溫度和應用。 | zh_TW |
| dc.description.abstract | This study focuses on the phase transformation temperature and microstructure of Ti20Zr15Hf15Ni35-xCoxCu15 (x= 0, 5, 10) high-entropy shape memory alloys after aging treatment. Aging temperatures of 400-700°C were applied to compare the effects of aging treatments. After aging at 400 and 500°C, the martensitic transformation was suppressed due to the precipitation of nanoscale H-phase, resulting in a decrease in phase transformation temperature. The addition of Co decreased the decline of phase transformation temperature after aging at these low temperatures. On the other hand, after aging at 600 and 700°C, the composition of the matrix changed due to the eutectoid reaction, which caused the ratio of (Ti+Zr+Hf) in the matrix to increase and thus increased the phase transformation temperature. It was confirmed that adding Co reduced the magnitude of the rise in phase transition temperature after aging treatments at high temperatures. The results of the phase transformation temperature showed that the addition of Co reduces the precipitation reaction of the alloy, so the change in the phase transformation temperature becomes less evident with increasing Co addition. SEM observations showed that the three alloys aged at 400 and 500°C were composed only of the matrix and pseudo-binary Ti2Ni precipitate. The H-phase precipitates were too small to be observed by SEM and were confirmed to form in the Co5 alloy aged at 500°C by TEM. On the other hand, for the aging treatment of 600°C, except the matrix and pseudo-binary Ti2Ni precipitate, the eutectoid structures of Zr7Cu10 and Ti2Cu were observed. It was noted that the addition of Co inhibited the eutectoid reaction, so the amount of eutectoid structure becomes less with increasing Co content. Similarly, for the aging treatment of 700°C, except the matrix and originally formed pseudo-binary Ti2Ni, Zr7Cu10 and newly formed pseudo-binary Ti2Ni precipitates were observed. It was found that the addition of Co also inhibited the precipitation phenomenon, so fewer precipitates were observed in the alloy with high Co content. In addition, it was also observed in TEM that Co5 precipitated elemental Ti after aging at 600°C for 168 hours. The XRD analysis demonstrated that all three alloys aged at 400 and 500°C contained only B2 austenite and B19' martensite. Nevertheless, precipitates were identified in all three alloys after aging at 600 and 700°C, which were consistent with DSC and SEM results. Therefore, it can be confirmed that replacing Ni with Co can reduce the precipitation reaction in TiZrHfNiCoCu high-entropy shape memory alloys during aging treatment so that the change in phase transformation temperature after aging became smaller with increasing Co addition. These experimental results showed that the microstructure and transformation temperatures of TiZrHfNiCoCu high-entropy shape memory alloys could be adjusted and modified by careful compositional design and aging treatments, which can be applied to design TiZrHfNiCoCu high-entropy shape memory alloys for various applications and circumstances. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:17:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:17:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 前言 1 第二章 文獻探討 3 2-1 形狀記憶合金簡介 3 2-2麻田散體相變態 4 2-3 形狀記憶效應 6 2-4 超彈性 6 2-5 TiNi基形狀記憶合金 8 2-6添加元素之影響 9 2-7高熵合金 9 2-7-2擴散遲緩效應(Sluggish diffusion effect) 11 2-7-3晶格扭曲效應(Lattice distortion effect) 12 2-7-4雞尾酒效應(Cocktail effect) 12 2-8 高熵形狀記憶合金 12 第三章 實驗方法 32 3-1 合金配置與熔煉 32 3-2固溶及時效熱處理 33 3-3 DSC量測 33 3-4 SEM觀察 34 3-5 XRD分析 34 3-6 EPMA量測 35 3-7 TEM觀察 35 第四章 時效處理之實驗結果與討論 38 4-1 Co0、Co5、Co10合金之相變態溫度(DSC) 38 4-1-1固溶處理之相變態溫度與行為 38 4-1-2 400°C與500°C時效之相變態曲線 38 4-1-3 600°C、700°C時效之相變態曲線 39 4-1-4 時效溫度對相變態溫度的影響 40 4-2 Co0、Co5、Co10顯微結構觀察結果(SEM、EDS、EPMA) 41 4-2-1 固溶處理之顯微結構 41 4-2-2 400°C、500°C時效之顯微結構 41 4-2-3 600°C時效之顯微結構 42 4-2-4 700°C時效之顯微結構 44 4-2-5 時效溫度對顯微結構之影響 46 4-3 TEM觀察結果 47 4-3-1 Co5經過500°C時效之TEM觀察結果 47 4-3-2 Co5經過600°C時效之TEM觀察結果 48 4-4 Co0、Co5、Co10晶體結構分析結果(XRD) 49 4-4-1 固溶處理之晶體結構 49 4-4-2 400°C時效之晶體結構 49 4-4-3 500°C時效之晶體結構 50 4-4-4 600°C時效之晶體結構 50 4-4-5 700°C時效之晶體結構 51 4-5 TiZrHfNiCoCu合金中以Co取代Ni對合金之影響 51 第五章 結論 114 參考文獻 116 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 時效處理 | zh_TW |
| dc.subject | 麻田散體相變態 | zh_TW |
| dc.subject | 高熵合金 | zh_TW |
| dc.subject | 形狀記憶合金 | zh_TW |
| dc.subject | shape memory alloy | en |
| dc.subject | high entropy alloy | en |
| dc.subject | martensitic transformation | en |
| dc.subject | aging treatment | en |
| dc.title | 時效處理對Ti20Zr15Hf15Ni35-xCoxCu15 (x= 0, 5, 10) 高熵形狀記憶合金之顯微結構與相變態的影響 | zh_TW |
| dc.title | Effect of Aging Treatment on The Microstructure and Phase Transformation on Ti20Zr15Hf15Ni35-xCoxCu15 (x= 0, 5, 10) High Entropy Shape Memory Alloys | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林新智;陳建彰 | zh_TW |
| dc.contributor.oralexamcommittee | HSIN-CHIH LIN;CHIEN-CHANG CHEN | en |
| dc.subject.keyword | 形狀記憶合金,高熵合金,麻田散體相變態,時效處理, | zh_TW |
| dc.subject.keyword | shape memory alloy,high entropy alloy,martensitic transformation,aging treatment, | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202302486 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2028-08-01 | - |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 24.15 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
