請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88663完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陸怡蕙 | zh_TW |
| dc.contributor.advisor | Yir-Hueih Luh | en |
| dc.contributor.author | 李宗樺 | zh_TW |
| dc.contributor.author | Tsung-Hua Lee | en |
| dc.date.accessioned | 2023-08-15T17:16:28Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | 王明妤、林玠恒、方治文、凃安蓉、張甄育、林倩如(2011)。農民持續採用有機耕種行為意圖之研究:以計畫行為理論為基礎。台灣農學會報,12 (1),68-88。
吳秉諭、何姿穎、陳琦玲(2013)。因應氣侯變遷-農業生產管理與溫室氣體減排。 農政與農情,252:6-10。 林宗弘、蕭新煌、許耿銘(2018)。邁向世界風險社會?台灣民眾的社會資本、風險感知與風險因應行為。調查研究-方法與應用,(40), 127-166。 林俊成(2022)。農業淨零碳排議題發展趨勢。臺中區農業改良場特刊,7-47。 林映彤(2022)。以計畫行為理論探討農民對植物醫師諮詢意願之研究。(碩士論文)國立屏東科技大學。 邱皓政(2011)。當 PLS 遇上 SEM: 議題與對話。αβγ量化研究學刊,3 (1) 20-53。 施雅惠、林旻頡、陳琦玲(2021a)。因應 2050 淨零排放農業部門減排策略初擬。技術服務,32 (4),1-6。 施雅惠、林旻頡、陳琦玲(2021b)。臺灣農業減碳作為與碳交易機制之探討。符合環境永續之作物友善管理研討會專刊,74-87。 郭雅紋、賴文龍(2011)。果園土壤綜合管理技術-草生栽培臺中區農業改良場特刊 ,131-137。https://doi.org/10.29563/zhwhgx.201109.0009 張紹勳(2017) Stata在結構方程模型及試題反應理論的應用。臺灣:五南圖書。 陳琦玲(2022)。農業部門減排與增匯技術。臺中區農業改良場特刊48-51。 詹永紳(2018)。以計畫行為理論探討臺中農民耕作環境行為之研究 。(碩士論文)國立臺灣師範大學。 蔡旻翰、陸怡蕙、方珍玲(2015)。計畫行為或經濟考量?富里鄉稻農有機農法採用之經濟分析。農業經濟叢刊,21(1&2),1-40。 Accounting, A. C. (2004). The Greenhouse Gas Protocol. World Resources Institute and World Business Council for Sustainable Development: Washington, DC, USA. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Springer. Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. Ajzen, I. (2002). Perceived behavioral control, self‐efficacy, locus of control, and the theory of planned behavior 1. Journal of applied social psychology, 32(4), 665-683. Andrade, C. (2021). The inconvenient truth about convenience and purposive samples. Indian Journal of Psychological Medicine, 43(1), 86-88. Arunrat, N., Wang, C., Pumijumnong, N., Sereenonchai, S., & Cai, W. (2017). Farmers' intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. Journal of Cleaner Production, 143, 672-685. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173. Barratt, M. J., Ferris, J. A., & Lenton, S. (2015). Hidden populations, online purposive sampling, and external validity: Taking off the blindfold. Field methods, 27(1), 3-21. Barrow, C. (2012). Biochar: potential for countering land degradation and for improving agriculture. Applied Geography, 34, 21-28. Basnet, S., Wood, A., Röös, E., Jansson, T., Fetzer, I., & Gordon, L. (2023). Organic agriculture in a low-emission world: exploring combined measures to deliver sustainable food system in Sweden. Sustainability Science, 1-19. Bell, S. M., Barriocanal, C., Terrer, C., & Rosell-Melé, A. (2020). Management opportunities for soil carbon sequestration following agricultural land abandonment. Environmental Science & Policy, 108, 104-111. Berlo, D. K. (1977). Communication as process: Review and commentary. Annals of the International Communication Association, 1(1), 11-27. Boazar, M., Yazdanpanah, M., & Abdeshahi, A. (2019). Response to water crisis: How do Iranian farmers think about and intent in relation to switching from rice to less water-dependent crops? Journal of hydrology, 570, 523-530. Borychowski, M., Grzelak, A., & Popławski, Ł. (2022). What drives low-carbon agriculture? The experience of farms from the Wielkopolska region in Poland. Environmental Science and Pollution Research, 29(13), 18641-18652. Breen, J., Clancy, D., Moran, B., & Thorne, F. (2009). Modelling the potential supply of energy crops in Ireland: results from a probit model examining the factors affecting willingness to adopt. Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming. Sage. Camarotto, C., Dal Ferro, N., Piccoli, I., Polese, R., Furlan, L., Chiarini, F., & Morari, F. (2018). Conservation agriculture and cover crop practices to regulate water, carbon and nitrogen cycles in the low-lying Venetian plain. Catena, 167, 236-249. Capa‐Aydin, Y., Uzuntiryaki‐Kondakci, E., & Ceylandag, R. (2018). The relationship between vicarious experience, social persuasion, physiological state, and chemistry self‐efficacy: The role of mastery experience as a mediator. Psychology in the Schools, 55(10), 1224-1238. Castillo, G. M. L., Engler, A., & Wollni, M. (2021). Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies. Agricultural Water Management, 243, 106524. Chang, L.-Y. (2005). Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network. Safety science, 43(8), 541-557. Chen, X.-P., Cui, Z.-L., Vitousek, P. M., Cassman, K. G., Matson, P. A., Bai, J.-S., Meng, Q.-F., Hou, P., Yue, S.-C., & Römheld, V. (2011). Integrated soil–crop system management for food security. Proceedings of the National Academy of Sciences, 108(16), 6399-6404. Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41-52. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336. Codur, A., & Watson, J. (2018). Climate smart or regenerative agriculture? Defining climate policies based on soil health. Clim. Policy Brief Glob. Dev. Environ. Inst. Tufts Univ, 9, 1-10. Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97, 2016-2036. Conner, M., & Norman, P. (2022). Understanding the intention-behavior gap: The role of intention strength. Frontiers in Psychology, 4249. Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: A gentle introduction to Poisson regression and its alternatives. Journal of personality assessment, 91(2), 121-136. Dahlstrand, U., & Biel, A. (1997). Pro‐environmental habits: Propensity levels in behavioral change Journal of applied social psychology, 27(7), 588-601. Damalas, C. A. (2021). Farmers’ intention to reduce pesticide use: The role of perceived risk of loss in the model of the planned behavior theory. Environmental Science and Pollution Research, 28(26), 35278-35285. Dang, H., Li, E., & Bruwer, J. (2012). Understanding Climate Change Adaptive Behaviour of Farmers: An Integrated Conceptual Framework. International Journal of Climate Change: Impacts & Responses, 3(2). Das, S., & Adhya, T. K. (2014). Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma, 213, 185-192. Das, S. K., Ghosh, G. K., & Avasthe, R. (2020). Application of biochar in agriculture and environment, and its safety issues. Biomass Conversion and Biorefinery, 1-11. Daxini, A., O'Donoghue, C., Ryan, M., Buckley, C., Barnes, A. P., & Daly, K. (2018). Which factors influence farmers' intentions to adopt nutrient management planning? Journal of environmental management, 224, 350-360. De Groot, J. I., & Steg, L. (2009). Morality and prosocial behavior: The role of awareness, responsibility, and norms in the norm activation model. The Journal of social psychology, 149(4), 425-449. de Moraes Sá, J. C., Lal, R., Cerri, C. C., Lorenz, K., Hungria, M., & de Faccio Carvalho, P. C. (2017). Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environment international, 98, 102-112. De Ruyter, K., & Wetzels, M. (2000). With a little help from my fans–Extending models of pro-social behaviour to explain supporters’ intentions to buy soccer club shares. Journal of economic psychology, 21(4), 387-409. Devi, P., & Saroha, A. K. (2014). Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresource technology, 162, 308-315. Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of business research, 61(12), 1203-1218. Dijkstra, T. K. (2009). Latent variables and indices: Herman Wold’s basic design and partial least squares. In Handbook of partial least squares: Concepts, methods and applications (pp. 23-46). Springer. Donkoh, S. A., Azumah, S. B., & Awuni, J. A. (2019). Adoption of improved agricultural technologies among rice farmers in Ghana: A multivariate probit approach. Ghana Journal of Development Studies, 16(1), 46-67. Ebojei, C., Ayinde, T., & Akogwu, G. (2012). Socio-economic factors influencing the adoption of hybrid maize in Giwa Local Government Area of Kaduna State, Nigeria. Eggleston, H., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Ertz, M., Karakas, F., & Sarigöllü, E. (2016). Exploring pro-environmental behaviors of consumers: An analysis of contextual factors, attitude, and behaviors. Journal of business research, 69(10), 3971-3980. Fan, S., & Ramirez, A. (2012). Achieving food security while switching to low carbon agriculture. Journal of Renewable and Sustainable Energy, 4(4), 041405. Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Fishbein, M., Hennessy, M., Yzer, M., & Douglas, J. (2003). Can we explain why some people do and some people do not act on their intentions? Psychology, health & medicine, 8(1), 3-18. Floyd, D. L., Prentice‐Dunn, S., & Rogers, R. W. (2000). A meta‐analysis of research on protection motivation theory. Journal of applied social psychology, 30(2), 407-429. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. Fraser, S., Parker, W., & Smith, A. (2008). Preparing for a low carbon agriculture. Primary Industry Management, 11(2), 16-19. Gadenne, D., Sharma, B., Kerr, D., & Smith, T. (2011). The influence of consumers' environmental beliefs and attitudes on energy saving behaviours. Energy policy, 39(12), 7684-7694. Geng, Y., Wang, J., Sun, Z., Ji, C., Huang, M., Zhang, Y., Xu, P., Li, S., Pawlett, M., & Zou, J. (2021). Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers. Geoderma, 383, 114730. Govaerts∗, B., Verhulst∗, N., Castellanos-Navarrete, A., Sayre, K. D., Dixon, J., & Dendooven, L. (2009). Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Critical Reviews in Plant Science, 28(3), 97-122. Greene, W. H. (1994). Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. Grist, N. (2014). Transformative adaptation in Africa’s agriculture. Contribution note for Africa progress panel meeting.“Expert Consultation: an African Agenda for Green, Low carbon development”, Geneva, Grothmann, T., & Patt, A. (2005). Adaptive capacity and human cognition: the process of individual adaptation to climate change. Global environmental change, 15(3), 199-213. Guagnano, G. A., Stern, P. C., & Dietz, T. (1995). Influences on attitude-behavior relationships: A natural experiment with curbside recycling. Environment and behavior, 27(5), 699-718. Guo, H.-D., Zhang, L., & Zhu, L.-W. (2015). Earth observation big data for climate change research. Advances in Climate Change Research, 6(2), 108-117. Hadi, A., Inubushi, K., & Yagi, K. (2010). Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy and Water Environment, 8, 319-324. Hair, J., Anderson, R., Tatham, R., & Black, W. (1998). Multivariate Data Analysis. Prentice-Hall, Inc. New Jersey. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., Ray, S., Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). Evaluation of reflective measurement models. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook, 75-90. Hayat, M. J., & Higgins, M. (2014). Understanding poisson regression. Journal of Nursing Education, 53(4), 207-215. He, J., Li, H. W., Wang, Q. J., Gao, H. W., Li, W. Y., Zhang, X. M., & McGiffen, M. (2010). The adoption of conservation tillage in China. Annals of the New York Academy of Sciences, 1195, E96-E106. Holka, M., Kowalska, J., & Jakubowska, M. (2022). Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change? Agriculture, 12(9), 1383. Horng, J.-S., Hu, M.-L. M., Teng, C.-C. C., & Lin, L. (2014). Energy saving and carbon reduction behaviors in tourism–a perception study of Asian visitors from a protection motivation theory perspective. Asia Pacific Journal of Tourism Research, 19(6), 721-735. Hou, J., & Hou, B. (2019). Farmers’ adoption of low-carbon agriculture in China: An extended theory of the planned behavior model. Sustainability, 11(5), 1399. Huang, Y., Ren, W., Wang, L., Hui, D., Grove, J. H., Yang, X., Tao, B., & Goff, B. (2018). Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agriculture, Ecosystems & Environment, 268, 144-153. Husin, Y. A., Murdiyarso, D., Khalil, M., Rasmussen, R., Shearer, M., Sabiham, S., Sunar, A., & Adijuwana, H. (1995). Methane flux from Indonesian wetland rice: the effects of water management and rice variety. Chemosphere, 31(4), 3153-3180. Jha, P., Biswas, A., Lakaria, B., & Rao, A. S. (2010). Biochar in agriculture–prospects and related implications. Current science, 1218-1225. Jiang, L., Huang, H., He, S., Huang, H., & Luo, Y. (2022). What motivates farmers to adopt low-carbon agricultural technologies? Empirical evidence from thousands of rice farmers in Hubei province, central China. Jordan, J. L. (2005). Farmers' choice of using sustainable agricultural practices: a social capital approach. Jöreskog, K. G. (1970). A general method for estimating a linear structural equation system. ETS Research Bulletin Series, 1970(2), i-41. Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43(4), 443-477. Kantola, S., Syme, G., & Nesdale, A. (1983). The effects of appraised severity and efficacy in promoting water conservation: An informational analysis. Journal of applied social psychology, 13(2), 164-182. Keiser, J., Utzinger, J., & Singer, B. H. (2002). The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in African rice fields. Journal of the American Mosquito Control Association, 18(4), 329-340. Khosa, M. K., Sidhu, B., & Benbi, D. (2010). Effect of organic materials and rice cultivars on methane emission from rice field. Journal of Environmental Biology, 31(3), 281-285. Kim, S. Y., Pramanik, P., Gutierrez, J., Hwang, H. Y., & Kim, P. J. (2014). Comparison of methane emission characteristics in air-dried and composted cattle manure amended paddy soil during rice cultivation. Agriculture, Ecosystems & Environment, 197, 60-67. Kimura, S., Chen, K., & Gong, B. (2022). Circular Agriculture for Sustainable and Low-Carbon Development in the People’s Republic of China. King, J. K. K., Granjou, C., Fournil, J., & Cecillon, L. (2018). Soil sciences and the French 4 per 1000 Initiative—The promises of underground carbon. Energy research & social science, 45, 144-152. Knox, G., & Knox, G. (2005). Landcare Australia: meeting the greenhouse challenge. Department of the Environment and Heritage, Australian Greenhouse Office. Kolady, D. E., Van der Sluis, E., Uddin, M. M., & Deutz, A. P. (2021). Determinants of adoption and adoption intensity of precision agriculture technologies: evidence from South Dakota. Precision Agriculture, 22, 689-710. Kuo, S., Sainju, U., & Jellum, E. (1997). Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Science Society of America Journal, 61(1), 145-152. Le Dang, H., Li, E., Nuberg, I., & Bruwer, J. (2014). Understanding farmers’ adaptation intention to climate change: A structural equation modelling study in the Mekong Delta, Vietnam. Environmental science & policy, 41, 11-22. Lehtonen, H., & Rämö, J. (2022). Development towards low carbon and sustainable agriculture in Finland is possible with moderate changes in land use and diets. Sustainability Science, 1-15. Leifeld, J. (2012). How sustainable is organic farming? Agriculture, Ecosystems & Environment, 150, 121-122. Li, H., He, J., Gao, H., Chen, Y., & Zhang, Z. (2015). The effect of conservation tillage on crop yield in China. Frontiers of Agricultural Science and Engineering, 2(2), 179-185. Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C., & van Groenigen, K. J. (2012). Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Research, 135, 10-21. Liu, C., & Zheng, H. (2021). How social capital affects willingness of farmers to accept low-carbon agricultural technology (LAT)? A case study of Jiangsu, China. International Journal of Climate Change Strategies and Management, 13(3), 286-301. Lockwood, C. M., & MacKinnon, D. P. (1998). Bootstrapping the standard error of the mediated effect. Proceedings of the 23rd annual meeting of SAS Users Group International, Luh, Y.-H., Tsai, M.-H., & Chang, Y.-C. (2023). Actions Speak Louder Than Words: Adoption of Sustainable Farming Practices Based on an Integrated Model. . Journal of Cleaner Production, forthcoming. Macintosh, A., & Waugh, L. (2012). An introduction to the carbon farming initiative: Key principles and concepts. Madden, T. J., Ellen, P. S., & Ajzen, I. (1992). A comparison of the theory of planned behavior and the theory of reasoned action. Personality and social psychology Bulletin, 18(1), 3-9. Maes, J., & Jacobs, S. (2017). Nature‐based solutions for Europe's sustainable development. Conservation letters, 10(1), 121-124. Magalhães, M. M. d., & Lima, D. A. L. L. (2014). Low-Carbon Agriculture in Brazil: The Environmental and Trade Impact of Current Farm Policies. Marcoulides, G. A., Chin, W. W., & Saunders, C. (2009). A critical look at partial least squares modeling. MIS quarterly, 33(1), 171-175. Maseeh, H. I., Sangroya, D., Jebarajakirthy, C., Adil, M., Kaur, J., Yadav, M. P., & Saha, R. (2022). Anti‐consumption behavior: A meta‐analytic integration of attitude behavior context theory and well‐being theory. Psychology & Marketing, 39(12), 2302-2327. Mateos-Aparicio, G. (2011). Partial least squares (PLS) methods: Origins, evolution, and application to social sciences. Communications in Statistics-Theory and Methods, 40(13), 2305-2317. Matteoli, F., Schnetzer, J., & Jacobs, H. (2020). Climate-Smart Agriculture (CSA): An Integrated Approach for Climate Change Management in the Agriculture Sector. Handbook of Climate Change Management: Research, Leadership, Transformation, 1-29. Mattila, T. J., Hagelberg, E., Söderlund, S., & Joona, J. (2022). How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil and Tillage Research, 215, 105204. Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., & Schloss, A. L. (1993). Global climate change and terrestrial net primary production. Nature, 363(6426), 234-240. Mi, S. (2013). Study on China Low Carbon Modern Agriculture Development: From Views of Carbon Footprint Calculation and Applicable Mitigation Technology Application Zhejiang University Hangzhou, China]. Milne, S., Sheeran, P., & Orbell, S. (2000). Prediction and intervention in health‐related behavior: A meta‐analytic review of protection motivation theory. Journal ofapplied social psychology, 30(1), 106-143. Minami, K., & Neue, H.-U. (1994). Rice paddies as a methane source. Climatic Change, 27(1), 13-26. Mittal, S., & Mehar, M. (2016). Socio-economic factors affecting adoption of modern information and communication technology by farmers in India: Analysis using multivariate probit model. The Journal of Agricultural Education and Extension, 22(2), 199-212. Moser, S. C. (2010). Communicating climate change: history, challenges, process and future directions. Wiley Interdisciplinary Reviews: Climate Change, 1(1), 31-53. Neue, H.-U. (1993). Methane emission from rice fields. Bioscience, 43(7), 466-474. Newton, P., Gomez, A. E. A., Jung, S., Kelly, T., de Araújo Mendes, T., Rasmussen, L. V., dos Reis, J. C., Rodrigues, R. d. A. R., Tipper, R., & van der Horst, D. (2016). Overcoming barriers to low carbon agriculture and forest restoration in Brazil: The Rural Sustentável project. World Development Perspectives, 4, 5-7. Niggli, U. (2010). Organic agriculture: a productive means of low-carbon and high biodiversity food production. Trade and Environment Review-Promoting poles of clean growth to foster the transition to a more sustainable economy. United Nations Conference on Trade and Development (UNCTAD), Norse, D. (2012). Low carbon agriculture: Objectives and policy pathways. Environmental Development, 1(1), 25-39. Olson, K. R., Ebelhar, S. A., & Lang, J. M. (2010). Cover crop effects on crop yields and soil organic carbon content. Soil Science, 175(2), 89-98. Onwezen, M. C., Antonides, G., & Bartels, J. (2013). The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. Journal of economic psychology, 39, 141-153. Opara, U. N. (2008). Agricultural information sources used by farmers in Imo State, Nigeria. Information Development, 24(4), 289-295. Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J.-K., Koutsospyros, A., & Moon, D. H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52-64. Paldam, M. (2000). Social capital: one or many? Definition and measurement. Journal of economic surveys, 14(5), 629-653. Pan, G., Zhang, A., Zou, J., Li, L., Zhang, X., & Zheng, J. (2010). Biochar from agro-byproducts used as amendment to croplands: an option for low carbon agriculture. Journal of ecology and rural environment, 26(4), 394-400. Pan, S.-Y., He, K.-H., Lin, K.-T., Fan, C., & Chang, C.-T. (2022). Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Climate and Atmospheric Science, 5(1), 43. Payne, J., Fernandez-Cornejo, J., & Daberkow, S. (2003). Factors affecting the likelihood of corn rootworm Bt seed adoption. Pechmann, C., Zhao, G., Goldberg, M. E., & Reibling, E. T. (2003). What to convey in antismoking advertisements for adolescents: The use of protection motivation theory to identify effective message themes. Journal of marketing, 67(2), 1-18. Perosa, B., Newton, P., & da Silva, R. F. B. (2023). A monitoring, reporting and verification system for low carbon agriculture: A case study from Brazil. Environmental Science & Policy, 140, 286-296. Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33-41. Putnam, R. D. (1995). Tuning in, tuning out: The strange disappearance of social capital in America. PS: Political science & politics, 28(4), 664-683. Qin, K. (2012). Construction of Low-Carbon Agriculture. Management & Engineering(9), 87. Raykov, T., Tomer, A., & Nesselroade, J. R. (1991). Reporting structural equation modeling results in Psychology and Aging: some proposed guidelines. Psychology and aging, 6(4), 499. Raza, M. H., Abid, M., Yan, T., Naqvi, S. A. A., Akhtar, S., & Faisal, M. (2019). Understanding farmers’ intentions to adopt sustainable crop residue management practices: A structural equation modeling approach. Journal of Cleaner Production, 227, 613-623. Rezaei, R., Safa, L., Damalas, C. A., & Ganjkhanloo, M. M. (2019). Drivers of farmers' intention to use integrated pest management: integrating theory of planned behavior and norm activation model. Journal of Environmental Management, 236, 328-339. Roberts, R. K., English, B. C., & Larson, J. A. (2002). Factors affecting the location of precision farming technology adoption in Tennessee. The Journal of Extension, 40(1), 12. Roberts, R. K., English, B. C., Larson, J. A., Cochran, R. L., Goodman, W. R., Larkin, S. L., Marra, M. C., Martin, S. W., Shurley, W. D., & Reeves, J. M. (2004). Adoption of site-specific information and variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics, 36(1), 143-158. Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The journal of psychology, 91(1), 93-114. Rogers, R. W. (1983). Cognitive and psychological processes in fear appeals and attitude change: A revised theory of protection motivation. Social psychophysiology: A sourcebook, 153-176. Sapp, S. G. (2002). Incomplete knowledge and attitude-behavior inconsistency. Social Behavior and Personality: an international journal, 30(1), 37-44. Savari, M., Abdeshahi, A., Gharechaee, H., & Nasrollahian, O. (2021). Explaining farmers’ response to water crisis through theory of the norm activation model: Evidence from Iran. International Journal of Disaster Risk Reduction, 60, 102284. Schmidt, H. P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D., Sánchez Monedero, M. A., & Cayuela, M. L. (2021). Biochar in agriculture–A systematic review of 26 global meta‐analyses. GCB Bioenergy, 13(11), 1708-1730. Schwartz, S. H. (1977). Normative influences on altruism. In Advances in experimental social psychology (Vol. 10, pp. 221-279). Elsevier. Schwartz, S. H., & Howard, J. A. (1981). A normative decision-making model of altruism. Altruism and helping behavior, 189-211. Seiler, W., Holzapfel-Pschorn, A., Conrad, R., & Scharffe, D. (1983). Methane emission from rice paddies. Journal of Atmospheric Chemistry, 1, 241-268. Sevier, B. J., & Lee, W. S. (2004). Precision agriculture in citrus: A probit model analysis for technology adoption. 2004 ASAE Annual Meeting, Shi, H., Wang, S., & Guo, S. (2019). Predicting the impacts of psychological factors and policy factors on individual’s PM2. 5 reduction behavior: An empirical study in China. Journal of Cleaner Production, 241, 118416. Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a typology. Mitigation and adaptation strategies for global change, 7(1), 85-114. Spulbar, C., Ehsanifar, M., Birau, R., Babaie, A., & Doagă, D. I. (2021). Advanced empirical research based on structural equation modeling (SEM) regarding the impact of tax revenue on GDP dynamics at EU-28 level. Scientific Annals of Economics and Business, 68(3), 285-307. Stern, P. C. (2000). New environmental theories: toward a coherent theory of environmentally significant behavior. Journal of social issues, 56(3), 407-424. Stern, P. C. (2005). Understanding individuals' environmentally significant behavior. Envtl. L. Rep. News & Analysis, 35, 10785. Suvedi, M., Ghimire, R., & Kaplowitz, M. (2017). Farmers’ participation in extension programs and technology adoption in rural Nepal: a logistic regression analysis. The Journal of Agricultural Education and Extension, 23(4), 351-371. Tarka, P. (2018). An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences. Quality & quantity, 52, 313-354. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53. Tenenhaus, M. (2008). Component-based structural equation modelling. Total quality management, 19(7-8), 871-886. Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational statistics & data analysis, 48(1), 159-205. Thu, T. N., Phuong, L. B. T., Van, T. M., & Hong, S. N. (2016). Effect of water regimes and organic matter strategies on mitigating Greenhouse Gas Emission from rice cultivation and co-benefits in agriculture in Vietnam. Int. J. Environ. Sci. Dev, 7, 85-90. Torbett, J. C., Roberts, R. K., Larson, J. A., & English, B. C. (2007). Perceived importance of precision farming technologies in improving phosphorus and potassium efficiency in cotton production. Precision agriculture, 8, 127-137. Tracey, U., Baker, D., Young, J., & Arocena, J. (2004). Ajzen, I. and Fishbein, M.(1980) Understanding Attitudes and Predicting Social Behavior. Prentice-Hall, Englewood Cliffs, New Jersey. Alberta Forestry Resource Evaluation and Planning Division (1986) Kananoskis Country Sub-regional Integrated Resource Plan. Queen's Printer, Edmonton, Alberta, Canada. Integrated Resource and Environmental Management: The Human Dimension, 28(1), 265. Triandis, H. C. (1979). Values, attitudes, and interpersonal behavior. Nebraska symposium on motivation, Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. Tuomisto, H. L., Hodge, I., Riordan, P., & Macdonald, D. W. (2012). Does organic farming reduce environmental impacts?–A meta-analysis of European research. Journal of Environmental Management, 112, 309-320. Van Der Gon, H. D., & Neue, H. (1995). Influence of organic matter incorporation on the methane emission from a wetland rice field. Global biogeochemical cycles, 9(1), 11-22. Venkat, K. (2012). Comparison of twelve organic and conventional farming systems: a life cycle greenhouse gas emissions perspective. Journal of Sustainable Agriculture, 36(6), 620-649. Verplanken, B., & Orbell, S. (2003). Reflections on past behavior: a self‐report index of habit strength 1. Journal of applied social psychology, 33(6), 1313-1330. Vinholis, M. d. M. B., Saes, M. S. M., Carrer, M. J., & de Souza Filho, H. M. (2021). The effect of meso-institutions on adoption of sustainable agricultural technology: A case study of the Brazilian Low Carbon Agriculture Plan. Journal of Cleaner Production, 280, 124334. Wang, S. W., Lee, W.-K., & Son, Y. (2017). An assessment of climate change impacts and adaptation in South Asian agriculture. International Journal of Climate Change Strategies and Management, 9(4), 517-534. Wang, W., Guo, L., Li, Y., Su, M., Lin, Y., De Perthuis, C., Ju, X., Lin, E., & Moran, D. (2015). Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Climatic Change, 128(1), 57-70. Wang, X., & Lu, P. (2021). Drivers of Farmers’ Intentions to Use Eco-Breeding: Integrating the Theory of Planned Behavior and the Norm Activation Model. Wicker, A. W. (1971). An examination of the" other variables" explanation of attitude-behavior inconsistency. Journal of personality and social psychology, 19(1), 18. Wiedmann, T., & Minx, J. (2008). A definition of ‘carbon footprint’. Ecological economics research trends, 1(2008), 1-11. Wisner, J. D. (2003). A structural equation model of supply chain management strategies and firm performance. Journal of Business logistics, 24(1), 1-26. Wold, H. (1975). Path models with latent variables: The NIPALS approach. In Quantitative sociology (pp. 307-357). Elsevier. Woldegebrial, Z., Huylenbroeck, G. v., Girmay, T., & Speelman, S. (2017). Smallholder farmers' behavioural intentions towards sustainable agricultural practices. Journal of Environmental Management, 187, 71-81. Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing bulletin, 24(1), 1-32. Wuepper, D., Yesigat Ayenew, H., & Sauer, J. (2018). Social capital, income diversification and climate change adaptation: Panel data evidence from rural Ethiopia. Journal of agricultural economics, 69(2), 458-475. Xu, X., Maki, A., Chen, C.-f., Dong, B., & Day, J. K. (2017). Investigating willingness to save energy and communication about energy use in the American workplace with the attitude-behavior-context model. Energy research & social science, 32, 13-22. Yan, X., Cai, Z., Ohara, T., & Akimoto, H. (2003). Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. Journal of Geophysical Research: Atmospheres, 108(D16). Yang, X., Zhou, X., & Deng, X. (2022). Modeling farmers’ adoption of low-carbon agricultural technology in Jianghan Plain, China: An examination of the theory of planned behavior. Technological Forecasting and Social Change, 180, 121726. Yazdanpanah, M., Hayati, D., Hochrainer-Stigler, S., & Zamani, G. H. (2014). Understanding farmers' intention and behavior regarding water conservation in the Middle-East and North Africa: A case study in Iran. Journal of Environmental Management, 135, 63-72. Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T. M., Miltner, A., & Schroth, G. (1997). Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 79(1-4), 117-161. Zepeda, L., & Deal, D. (2009). Organic and local food consumer behaviour: Alphabet theory. International Journal of Consumer Studies, 33(6), 697-705. Zhang, L., Ruiz-Menjivar, J., Luo, B., Liang, Z., & Swisher, M. E. (2020). Predicting climate change mitigation and adaptation behaviors in agricultural production: A comparison of the theory of planned behavior and the Value-Belief-Norm Theory. Journal of Environmental Psychology, 68, 101408. Zheng, H., Liu, B., Liu, G., Cai, Z., & Zhang, C. (2019). Potential toxic compounds in biochar: Knowledge gaps between biochar research and safety. In Biochar from biomass and waste (pp. 349-384). Elsevier. Zheng, W., Sharma, B., & Rajagopalan, N. (2010). Using biochar as a soil amendment for sustainable agriculture. Waste utilization--Biochar. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88663 | - |
| dc.description.abstract | 瞭解驅動或阻礙農民採用永續友善農業技術的影響因子,對於政府達成2040農業淨零政策目標具有重要參考價值。本研究提出一整合計畫行為理論(theory of planned behavior)、規範激起模型(norm activation model)與態度-行為-情境(attitude-behavior-context)模型的理論架構,以解釋農民的利環境行為,並以臺灣青年農民為研究母體,聚焦探討能促進青年農民採用能減少溫室氣體排放量、增匯等的低碳農業相關技術之驅動或阻礙因子。本文首先應用偏最小平方法結構方程模型(partial least square structural equation model),探討採用意圖與其前置變量間的因果關係,接著利用probit模型及負二項迴歸(negative binomial regression)方法,探討控制社會經濟變數後,不同影響因子對實際採用行為(包括採用傾向及採用種類多寡)的效果。實證結果顯示,青年農民的利環境態度能顯著提升其對於低碳農業技術之採用意圖,而經濟誘因政策及教育輔導政策兩情境因子都能對低碳農業採用意圖產生顯著且正向的影響。此外,以理性選擇為基礎的計畫行為理論對於實際行為較具影響效果,顯示青年農民的利環境態度雖然能有效解釋採用意圖,但對於其實際行為的影響仍然效果有限,而青年農民對氣候變遷的知覺風險,則有助於其採用多種的低碳農業相關技術。值得一提的是,農業主管機關的低碳農業輔導政策對青年農民的採用行為會產生顯著的影響,而農民過去的栽培習慣則是其採用低碳農業的主要障礙。 | zh_TW |
| dc.description.abstract | Understanding the factors that drive or hinder farmers' adoption of sustainable and environmentally friendly agricultural technologies is of significant value for the Taiwanese government to achieve its "2040 Agricultural Net Zero Policy" goals. This study proposes an integrated theoretical framework combining the Theory of Planned Behavior (TPB), the Norm Activation Model (NAM), and the Attitude-Behavior-Context (ABC) Model to explain farmers' pro-environmental behavior. Focusing on Taiwanese young farmers, this research investigates the drivers and barriers that influence the adoption of low-carbon agricultural technologies, which can reduce greenhouse gas emissions and increase carbon sinks.
This study employs Partial Least Squares Structural Equation Modeling (PLS-SEM) to explore the causal relationships between adoption intentions and their antecedents. Furthermore, the probit model and negative binomial regression method are used to examine the effects of different influencing factors on actual adoption behavior (including adoption propensity and the diversity of adopted technologies), while controlling farmers’ socioeconomic characteristics. On one hand, the empirical results demonstrate that young farmers' pro-environmental attitudes significantly enhance their intentions to adopt low-carbon agricultural technologies. Additionally, two contextual factors, namely economic incentive policies and educational guidance policies, are found to have a significant and positive impact on intentions to adopt low-carbon agriculture. On the other hand, the Theory of Planned Behavior, which is based on rational choices, exhibits a more pronounced influence on actual behavior, indicating that although pro-environmental attitudes effectively explain intentions, their impact on actual behavior remains limited. Moreover, young farmers' perceived risk toward climate change contributes to the adoption of a variety of low-carbon agricultural technologies. It is worth mentioning that while the education and guidance policies aimed at promoting low-carbon agriculture are found to significantly influence both the adoption intentions and behaviors of young farmers, farmers' past cultivation habits emerge as the primary obstacle to adopting low-carbon agriculture. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:16:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:16:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
謝辭 ii 摘要 iii ABSTRACT iv 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 2 第二章 文獻回顧 6 第一節 國內外低碳農業技術的發展 6 第二節 低碳農業技術採用的行為模式 24 第三節 探討低碳農業技術採用影響因子的研究方法 31 第三章 實證設計、資料概述與變數說明 34 第一節 研究架構及研究假說 34 第二節 研究方法 42 第三節 問卷設計、變數定義與敘述統計 47 第四章 實證結果討論 57 第一節 偏最小平方法結構方程模型實證分析 57 第二節 採用行為分析 71 第五章 結論與建議 82 參考文獻 87 表目錄 表2-1氣候智慧型農業與林業減緩活動清單 9 表2-2以自然為本的解決方案之溫室氣體減排類型與管理變化 12 表3-1本研究構面定義與發展文獻來源 48 表3-2衡量農民對低碳農業採用意圖之構面問項 49 表3-3變數定義與樣本敘述統計 53 表3-4低碳農業技術採用行為 55 表4-1信度及收斂效度分析 58 表4-2測量項目因素負荷量 59 表4-3區別效度分析表 62 表4-4路徑關係檢定表 63 表4-5中介效果檢定表 65 表4-6假設2至5檢定結果 67 表4-7假設6至9檢定結果 68 表4-8假設10至11檢定結果 69 表4-9假設13至14檢定結果 70 表4-10採用傾向PROBIT模型 77 表4-11採用種類負二項迴歸模型 80 表4-12假設1及假設10至12檢定表 81 圖目錄 圖2-1計畫行為理論架構圖 26 圖2-2規範激起模型:調節與中介模型 28 圖3-1本研究整合計畫行為理論(TPB)、規範激起模型(NAM)及態度-行為-情境模型(ABC)之理論架構 36 圖3-2 PLS-SEM模型 44 圖4-1偏最小平方法結構方程模型路徑關係圖 66 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 低碳農業採用 | zh_TW |
| dc.subject | 態度-行為-情境模型 | zh_TW |
| dc.subject | 計畫行為理論 | zh_TW |
| dc.subject | 氣候變遷調適 | zh_TW |
| dc.subject | 推廣輔導政策 | zh_TW |
| dc.subject | 規範激起模型 | zh_TW |
| dc.subject | Agricultural Extension and Guidance Policies | en |
| dc.subject | Norm Activation Model | en |
| dc.subject | Attitude-Behavior-Context Model | en |
| dc.subject | Theory of Planned Behavior | en |
| dc.subject | Climate Change Adaptation | en |
| dc.subject | Low-carbon Agriculture Adoption | en |
| dc.title | 低碳農業推廣輔導政策效果:青年農民採用意圖與行為之分析 | zh_TW |
| dc.title | Effects of Low-carbon Agriculture Promotion Policies: Analyses of Young Farmers’ Adoption Intention and Behavior | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 方珍玲;邱敬仁 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Ling Fang;Ching-Ren Chiu | en |
| dc.subject.keyword | 氣候變遷調適,推廣輔導政策,計畫行為理論,規範激起模型,態度-行為-情境模型,低碳農業採用, | zh_TW |
| dc.subject.keyword | Climate Change Adaptation,Agricultural Extension and Guidance Policies,Theory of Planned Behavior,Norm Activation Model,Attitude-Behavior-Context Model,Low-carbon Agriculture Adoption, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202302946 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業經濟學系 | - |
| 顯示於系所單位: | 農業經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
