請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88658完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李允中 | zh_TW |
| dc.contributor.advisor | Jonathan Lee | en |
| dc.contributor.author | 張馨尹 | zh_TW |
| dc.contributor.author | Hsin-Yin Chang | en |
| dc.date.accessioned | 2023-08-15T17:15:12Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | A. H. a. M. N. Alistair Mavin, Philip Wilkinson. Easy approach to requirements syntax (EARS). In 2009 17th IEEE International Requirements Engineering Conference, pages 317–322. IEEE, 2009.
S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy, K. McDonell, J. Phang, M. Pieler, U. Sai Prashanth, S. Purohit, L. Reynolds, J. Tow, B. Wang, and S. Weinbach. GPT-NeoX-20B: An Open-Source Autoregressive Lan- guage Model. arXiv e-prints, Apr. 2022. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee- lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language Models are Few-Shot Learners. arXiv e-prints, page arXiv:2005.14165, May 2020. M. A. B. Deva Kumar Deeptimahanti. Semi-automatic generation of uml models from natural language requirements. In Proceedings of the 4th India Software Engineering Conference, pages 165–174, 2011. A. Ferrari, G. O. Spagnolo, and S. Gnesi. Pure: A dataset of public requirements documents. pages 502–505, 2017. GPT-NeoX-20B. https://www.github.com/eleutherai/gpt-neox. PlantUML. https://github.com/plantuml/plantuml. R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, V. Zhao, Y. Zhou, C.-C. Chang, I. Krivokon, W. Rusch, M. Pickett, P. Srinivasan, L. Man, K. Meier-Hellstern, M. Ringel Morris, T. Doshi, R. Delos Santos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil, B. Aguera- Arcas, C. Cui, M. Croak, E. Chi, and Q. Le. LaMDA: Language Models for Dialog Applications. arXiv e-prints, page arXiv:2201.08239, Jan. 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88658 | - |
| dc.description.abstract | 過往將軟體工程需求自動構建類別圖的方法,都是使用建立規則和自然語言處 理技術來抓取類別、類別的屬性和方法和類別之間的關係。然而,此類方法會因 為每個人書寫需求方式的不同,而遺漏屬性或是方法等等,並且也沒有辦法完整 的找到所有類別間的關係。 因此,本研究提出了一個自動化的流程,能夠從軟 體 需求完整地辨別出類別、類別的屬性和方法和類別之間的關係,其包含以下四 個 步驟:將自然語言書寫的軟體需求改寫為EARS(Easy Approach to Requirements Syntax)格式;利用Transformer-based的模型以及自然語言處理技術分析需求; 生成 描述類別圖的UML文件;使用開源軟體工具PlantUML產出類別圖。 | zh_TW |
| dc.description.abstract | The previous methods of automatically converting software engineering require- ments into class diagrams involved using rule-based approaches and natural language processing techniques to extract the classes, attributes, methods, and relationships between classes. However, such methods may miss attributes or methods and cannot fully find all relationships between classes due to different writing styles of individ- uals. Therefore, in this research work, we propose an automated process that can identify classes, attributes, methods, and relationships between classes from soft- ware requirements comprehensively with the following four steps: 1. rewrite the software requirements written in natural language into EARS (Easy Approach to Requirements Syntax) format, 2. Use Transformer-based models and natural lan- guage processing techniques to analyze requirements, 3. Generate UML documents to describe class diagrams, 4. Use the open-source tool PlantUML to produce class diagrams. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:15:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:15:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Related Work 3 2.1 Related Work 3 2.2 Background Work 4 2.2.1 Easy Approach to Requirements Syntax 4 2.2.2 NLP Tools 5 2.2.3 Few-shot Learning 5 2.2.4 PlantUML 6 2.3 Transformer Model 6 2.3.1 Test Requirements 7 2.3.2 Fine-tuning model 8 2.3.3 Few-shot Learning Transformer Model 9 2.3.4 Experiment Results 10 Chapter 3 Constructing Class Diagram 12 3.1 System Architecture 12 3.2 Lexical level process 13 3.3 Syntactic level process 13 3.4 Semantic level process 14 3.5 Extract classname, methods, and attributes 15 3.6 Extract relationship 16 3.6.1 Association and Multiplicity 16 3.6.2 Dependency 17 3.6.3 Generalization 18 3.6.4 Composition, Aggregation, Association Class 19 3.6.5 Generate Class Diagram 20 Chapter 4 Result 21 4.1 Pontis SRS 21 4.1.1 Our Model 22 4.1.2 GPT-3 23 4.1.3 BARD 30 4.2 TACHOnet SRS 38 4.2.1 Our Model 38 4.2.2 GPT-3 40 4.2.3 BARD 41 Chapter 5 Conclusion 42 5.1 Summary 42 5.2 Future work 43 Bibliography 44 | - |
| dc.language.iso | en | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 類別圖 | zh_TW |
| dc.subject | Transfomer模型 | zh_TW |
| dc.subject | Class Diagram | en |
| dc.subject | Machine Learning | en |
| dc.subject | Transformer Model | en |
| dc.title | 從需求建構類別圖:應用Transformer為基礎的機器學習方法 | zh_TW |
| dc.title | Constructing Class Diagram from Requirements with a Transformer-Based Machine Learning Approach | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭忠義;劉建宏;薛念林;李信杰 | zh_TW |
| dc.contributor.oralexamcommittee | Jong-Yih Kuo;Chien-Hung Liu;Nien-Lin Hsueh;Shin-Jie Lee | en |
| dc.subject.keyword | 類別圖,機器學習,Transfomer模型, | zh_TW |
| dc.subject.keyword | Class Diagram,Machine Learning,Transformer Model, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202303318 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 6.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
