請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88638完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文中 | zh_TW |
| dc.contributor.advisor | Wen-Jong Wu | en |
| dc.contributor.author | 鍾詠年 | zh_TW |
| dc.contributor.author | Yung-Nien Chung | en |
| dc.date.accessioned | 2023-08-15T17:10:23Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-05 | - |
| dc.identifier.citation | [1] P. K. W. S. Roundy, and J. Rabaey "study Of 10w level vibrations as a power source for wireless sensor nodes," Computer Communications vol. 26, pp. 1131-1144, 2003.
[2] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, "Adaptive piezoelectric energy harvesting circuit for wireless remote power supply," IEEE Transactions on power electronics, vol. 17, no. 5, pp. 669-676, 2002. [3] G. A. Lesieutre, G. K. Ottman, H. F. J. J. o. s. Hofmann, and vibration, "Damping as a result of piezoelectric energy harvesting," vol. 269, no. 3-5, pp. 991-1001, 2004. [4] S. Roundy and P. K. Wright, "A piezoelectric vibration based generator for wireless electronics," Smart Materials and structures, vol. 13, no. 5, p. 1131, 2004. [5] Y. K. Ramadass, "Energy processing circuits for low-power applications," Massachusetts Institute of Technology, 2009. [6] W. Wu, A. Wickenheiser, T. Reissman, E. J. S. M. Garcia, and Structures, "Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers," vol. 18, no. 5, p. 055012, 2009. [7] E. Lefeuvre, A. Badel, C. Richard, D. J. J. o. I. M. S. Guyomar, and Structures, "Piezoelectric energy harvesting device optimization by synchronous electric charge extraction," vol. 16, no. 10, pp. 865-876, 2005. [8] Y. K. Ramadass and A. P. J. I. j. o. s.-s. c. Chandrakasan, "An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor," vol. 45, no. 1, pp. 189-204, 2009. [9] M. Lallart, W.-J. Wu, Y. Hsieh, L. J. S. M. Yan, and Structures, "Synchronous inversion and charge extraction (SICE): a hybrid switching interface for efficient vibrational energy harvesting," vol. 26, no. 11, p. 115012, 2017. [10] J. Dicken, P. D. Mitcheson, I. Stoianov, and E. M. J. I. T. o. p. e. Yeatman, "Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications," vol. 27, no. 11, pp. 4514-4529, 2012. [11] M. Lallart and D. J. A. P. L. Guyomar, "Piezoelectric conversion and energy harvesting enhancement by initial energy injection," vol. 97, no. 1, p. 014104, 2010. [12] J. Liang, Y. Zhao, and K. J. I. T. o. P. E. Zhao, "Synchronized triple bias-flip interface circuit for piezoelectric energy harvesting enhancement," vol. 34, no. 1, pp. 275-286, 2018. [13] R. Elfrink et al., "First autonomous wireless sensor node powered by a vacuum-packaged piezoelectric MEMS energy harvester," in 2009 IEEE International Electron Devices Meeting (IEDM), 2009: IEEE, pp. 1-4. [14] P. Gasnier et al., "An autonomous piezoelectric energy harvesting IC based on a synchronous multi-shot technique," IEEE Journal of Solid-State Circuits, vol. 49, no. 7, pp. 1561-1570, 2014. [15] J. C. a. P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces," Bull. soc. min. de France, vol. 3, p. 90, 1880. [16] S. C. Lin, "High Performance Piezoelectric MEMS Generators based on StainlessSteel Substrate," PHD, Department of Engineering Science and Ocean Engineering College of Engineering, National Taiwan University, Taipei, 2014. [17] Y. F. C. Chen, W. Tang, S. Lin, and W. Wu, "The output power improvement and durability with different shape of MEMS piezoelectric energy harvester," presented at the Structures and NDE for Industry 4.0, 2018. [18] C. W. a. R. B. Yates, "Analysis Of a mlcro-electnc generator for microsystemsY," sensors and actuators A: Physical, vol. 52, pp. 8-11, 1996. [19] D. G. a. M. Lallart, "Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation," Micromachines, vol. 2, pp. 274-294, 2011. [20] J. Liang, "Synchronized bias-flip interface circuits for piezoelectric energy harvesting enhancement: A general model and prospects," Intelligent Material Systems and Structures vol. 28, pp. 339-356, 2017. [21] S. Du and A. A. Seshia, "An inductorless bias-flip rectifier for piezoelectric energy harvesting," IEEE Journal of Solid-State Circuits, vol. 52, no. 10, pp. 2746-2757, 2017. [22] Y. K. Ramadass and A. P. Chandrakasan, "An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor," IEEE journal of solid-state circuits, vol. 45, no. 1, pp. 189-204, 2009. [23] D. A. Sanchez, J. Leicht, F. Hagedorn, E. Jodka, E. Fazel, and Y. Manoli, "A parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations," IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2867-2879, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88638 | - |
| dc.description.abstract | 物聯網(IoT)透過連接我們周遭的每個東西改變我們的生活與工作方式,這些連接使我們能夠透過傳感器收集和分析數據,從而實現決策與自動化流程。所以簡化感測器供電以及回收數據成為降低建置與維護成本的關鍵,微機電壓電擷取技術有高能量密度的特性,因此替換笨重的電池為感測器節點供電;此外感測器節點的數據無線傳輸也能取代複雜的實體佈線。
本論文以壓電能量擷取介面電路的分析、晶片設計實作與系統設計實作為主。在傳統上,壓電能量擷取介面電路往往使用翻轉因子較差的全橋整流器;然而因二極體之順向跨壓使得全橋整流器之輸出功率較差,因此便有了同步切換能量擷取介面電路的提出,使用電感或電容作為偏壓翻轉元件。若使用電感作為偏壓翻轉元件,則有電磁干擾且體積過大的缺點;若使用電容作為偏壓翻轉元件,則有開關切換次數多的缺點。因此本論文提出改善架構 – 共用開關式之飛電容整流能量擷取介面電路(Switching Sharing Flying Capacitor Rectifier Interface Circuit),在使用電容的條件下解決開關切換次數的缺點。在系統整合上實作了一從壓電能量擷取器開始,透過微控制器整合多感測器,並使用無線傳輸資料至手機之伺服器之無線傳感器系統。 本論文以台積電180 nm高壓BCD製程完成電路實作,依佈局後模擬所顯示,電壓翻轉因子達到63.3 %,且與電路中的主動整流器相比具有641 %的輸出增益。無線傳感器全系統以Nordic nrf51822做為核心,能夠在能量平衡的條件下每4分鐘傳輸一次資料。 | zh_TW |
| dc.description.abstract | The Internet of Things (IoT) is revolutionizing the way we live and work by connecting our daily life to the internet. This connectivity allows us to collect and analyze data through sensors, enabling informed decision-making and the implementation of automated processes. Therefore, adopting a low maintenance cost power supply method and implementing wireless data collection becomes crucial for reducing setup and maintenance costs. MEMS (Micro-Electro-Mechanical Systems) energy harvesting technology has high energy density characteristics, which makes it a suitable replacement for bulky batteries to power sensor nodes. The convenience of wireless data transmission from sensor nodes also surpasses the complexity of physical wiring.
This work focuses on the analysis of a piezoelectric energy harvesting interface circuit, its chip implementation, and system integration. Traditionally, the piezoelectric energy harvesting interface circuit often utilizes a full-bridge rectifier, but it has a poor flipping factor due to the diode's forward voltage, which reduces the output power. To address this issue, a synchronous switching energy harvesting interface circuit is proposed, employing either an inductor or a capacitor as a bias flipping medium. However, using an inductor as the bias flipping medium results in electromagnetic interference and a bulky size, while using a capacitor leads to the disadvantage of frequent switching. Therefore, this work introduces an improved architecture called the "Switching Sharing Flying Capacitor Rectifier Interface Circuit" to overcome the frequent switching drawback when using capacitors while benefiting from energy concentration. For system integration, a wireless sensor system was implemented, starting from a piezoelectric energy harvester. It integrates multiple sensors through a microcontroller and wirelessly transmits data to a server connected to a mobile phone. In this work, the circuit is implemented in TSMC's 180 nm high-voltage BCD process, and the post-layout simulation shows a voltage flipping factor of 63.3 % and an output gain of 641 % compared to the active rectifier in the circuit. The wireless sensor system is based on the Nordic nrf51822 microcontroller, which is capable of transmitting data every 4 minutes under energy balance condition. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:10:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:10:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 xi 第1章 緒論 1 1.1 研究動機 1 1.2 論文目標 2 1.3 文獻回顧 2 1.3.1 壓電能量擷取介面電路拓樸架構 2 1.3.2 能量擷取無線傳感器系統 4 1.4 論文架構 4 第2章 壓電能量擷取系統與介面電路 6 2.1 壓電材料與壓電效應簡介 6 2.1.1 壓電效應簡介 6 2.2 壓電元件等效模型 9 2.3 壓電能量擷取介面電路 12 2.3.1 標準能量擷取介面電路 13 2.3.2 同步電荷擷取介面電路 17 2.3.3 並聯電感式同步切換能量擷取介面電路 22 2.3.4 傳統飛電容同步切換能量擷取介面電路 28 2.3.5 介面電路特性比較與討論 36 第3章 共用開關之飛電容同步切換介面電路 38 3.1 電路設計目標與考量 38 3.2 全電路架構 40 3.3 功率級電路 42 3.3.1 功率級開關 42 3.3.2 負電壓轉換器 43 3.3.3 飛電容開關陣列 43 3.3.4 偏壓產生電路與極性偵測電路 44 3.3.5 主被動充電路徑 46 3.3.6 浮動歸零電路 48 3.3.7 開關驅動電路 49 3.4 控制電路 50 3.4.1 數位邏輯電壓域轉換器 51 3.4.2 主動式二極體控制電路 52 3.4.3 翻轉極性偵測電路 53 3.4.4 零電流偵測電路與時脈產生器控制電路 54 3.4.5 第一位元產生器 55 3.4.6 時脈產生電路與時脈緩衝電路 56 3.4.7 開關控制位移暫存器及脈波排序電路 58 3.4.8 輸出入緩衝電路 59 3.4.9 非同步復位電路 60 3.5 模擬結果與量測結果 61 3.5.1 第一版晶片模擬結果與量測結果 62 3.5.2 第二版晶片模擬結果 72 3.5.3 晶片效能比較 81 第4章 壓電能量無線複合感測器系統 83 4.1 無線傳輸模組架構選擇 83 4.2 無線傳輸模組整合驅動設計及電路功耗分析 85 4.3 多功能自供電感測裝置整合測試與分析 90 第5章 結論與未來展望 96 5.1 結論 96 5.2 未來展望 96 參考資料 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 無電感整流器 | zh_TW |
| dc.subject | 壓電能量擷取系統 | zh_TW |
| dc.subject | 同步切換介面電路 | zh_TW |
| dc.subject | 自供電無線能量平衡感測器 | zh_TW |
| dc.subject | Self-powered wireless energy balanced sensor | en |
| dc.subject | Piezoelectric energy harvesting system | en |
| dc.subject | Inductor-less rectifier | en |
| dc.subject | Synchronized switching interface circuit | en |
| dc.title | 應用於壓電能量擷取系統之飛電容同步切換能量擷取電路與壓電能量無線傳感器系統 | zh_TW |
| dc.title | Synchronous Switching Harvesting Using Flying Capacitors for Piezoelectric Energy Harvesting System and Piezoelectric Energy Wireless Sensor System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李世光;陳信樹;林致廷 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Kung Lee;Hsin-Shu Chen;Chih-Ting Lin | en |
| dc.subject.keyword | 壓電能量擷取系統,同步切換介面電路,無電感整流器,自供電無線能量平衡感測器, | zh_TW |
| dc.subject.keyword | Piezoelectric energy harvesting system,Synchronized switching interface circuit,Inductor-less rectifier,Self-powered wireless energy balanced sensor, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202302288 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
