請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88624
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林辰栖 | zh_TW |
dc.contributor.advisor | Chen-Si Lin | en |
dc.contributor.author | 蕭嘉美 | zh_TW |
dc.contributor.author | Ka-Mei Sio | en |
dc.date.accessioned | 2023-08-15T17:06:45Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-02 | - |
dc.identifier.citation | [1] A. McGuigan, P. Kelly, R.C. Turkington, C. Jones, H.G. Coleman, R.S. McCain, Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes, World journal of gastroenterology, 24 (2018) 4846.
[2] N. Goossens, S. Nakagawa, X. Sun, Y. Hoshida, Cancer biomarker discovery and validation, Translational cancer research, 4 (2015) 256. [3] M.S. Pepe, R. Etzioni, Z. Feng, J.D. Potter, M.L. Thompson, M. Thornquist, M. Winget, Y. Yasui, Phases of biomarker development for early detection of cancer, Journal of the National Cancer Institute, 93 (2001) 1054-1061. [4] K. Bensalah, F. Montorsi, S.F. Shariat, Challenges of cancer biomarker profiling, European urology, 52 (2007) 1601-1609. [5] N.L. Henry, D.F. Hayes, Cancer biomarkers, Molecular oncology, 6 (2012) 140-146. [6] B. Marte, Cell division and cancer, Nature, 432 (2004) 293-294. [7] A.K. Kashyap, S.K. Dubey, Molecular mechanisms in cancer development, Understanding Cancer, Elsevier2022, pp. 79-90. [8] A.L.V. Sávio, G.N. da Silva, D.M.F. Salvadori, Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil), Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 771 (2015) 29-35. [9] S.A.E.-F. Ibrahim, A. Abudu, E. Jonhson, N. Aftab, S. Conrad, M. Fluck, The role of AP-1 in self-sufficient proliferation and migration of cancer cells and its potential impact on an autocrine/paracrine loop, Oncotarget, 9 (2018) 34259. [10] K.S. Gill, P. Fernandes, T.R. O'Donovan, S.L. McKenna, K.K. Doddakula, D.G. Power, D.M. Soden, P.F. Forde, Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1866 (2016) 87-105. [11] A.M. Akim, Y.Y. Sung, T.M.T. Sifzizul, Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics, Frontiers in Pharmacology, 13 (2022). [12] S.Y. Loke, A.S.G. Lee, The future of blood-based biomarkers for the early detection of breast cancer, European journal of cancer, 92 (2018) 54-68. [13] A. Kerber, J. Trojan, K. Herrlinger, D. Zgouras, W. Caspary, B. Braden, The new DR‐70 immunoassay detects cancer of the gastrointestinal tract: a validation study, Alimentary pharmacology & therapeutics, 20 (2004) 983-987. [14] M.J. Lee, J.-W. Chung, M.-J. Ahn, S. Kim, J.M. Seok, H.M. Jang, G.-M. Kim, C.-S. Chung, K.H. Lee, O.Y. Bang, Hypercoagulability and mortality of patients with stroke and active cancer: the OASIS-CANCER study, Journal of stroke, 19 (2017) 77. [15] X. Zhang, X. Wang, W. Li, T. Sun, C. Dang, D. Diao, D-dimer, a predictor of bad outcome in gastric cancer patients undergoing radical resection, Scientific Reports, 12 (2022) 16432. [16] A.L. Small-Howard, H. Harris, Advantages of the AMDL-ELISA DR-70 (FDP) assay over carcinoembryonic antigen (CEA) for monitoring colorectal cancer patients, Journal of Immunoassay and Immunochemistry, 31 (2010) 131-147. [17] H.J. So, S.I. Hong, J.K. Lee, Y.H. Chang, S.J. Kang, Y.J. Hong, Comparison of the serum fibrin‑fibrinogen degradation products with cytokeratin 19 fragment as biomarkers in patients with lung cancer, Biomedical Reports, 2 (2014) 737-742. [18] C. Liu, Y. Ning, X. Chen, Q. Zhu, D-Dimer level was associated with prognosis in metastatic colorectal cancer: A Chinese patients based cohort study, Medicine, 99 (2020). [19] S.-Y. Park, J.-S. Nam, Kynurenine pathway enzyme KMO in cancer progression: A tip of the Iceberg, EBioMedicine, 55 (2020). [20] R.S. Phillips, E.C. Iradukunda, T. Hughes, J.P. Bowen, Modulation of enzyme activity in the kynurenine pathway by kynurenine monooxygenase inhibition, Frontiers in molecular biosciences, 6 (2019) 3. [21] Y. Lu, M. Shao, T. Wu, Kynurenine‐3‐monooxygenase: A new direction for the treatment in different diseases, Food Science & Nutrition, 8 (2020) 711-719. [22] E. Rojewska, K. Ciapała, A. Piotrowska, W. Makuch, J. Mika, Pharmacological inhibition of indoleamine 2, 3-dioxygenase-2 and kynurenine 3-monooxygenase, enzymes of the kynurenine pathway, significantly diminishes neuropathic pain in a rat model, Frontiers in Pharmacology, 9 (2018) 724. [23] M. Platten, E.A. Nollen, U.F. Röhrig, F. Fallarino, C.A. Opitz, Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond, Nature reviews Drug discovery, 18 (2019) 379-401. [24] M.-H. Lai, C.-H. Liao, N.-M. Tsai, K.-F. Chang, C.-C. Liu, Y.-H. Chiu, K.-C. Huang, C.-S. Lin, Surface expression of kynurenine 3-monooxygenase promotes proliferation and metastasis in triple-negative breast cancers, Cancer Control, 28 (2021) 10732748211009245. [25] M. A Thevandavakkam, R. Schwarcz, P. J Muchowski, F. Giorgini, Targeting kynurenine 3-monooxygenase (KMO): implications for therapy in Huntington's disease, CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 9 (2010) 791-800. [26] Y.-W. Tsang, C.-H. Liao, C.-H. Ke, C.-W. Tu, C.-S. Lin, Integrated Molecular Characterization to Reveal the Association between Kynurenine 3-Monooxygenase Expression and Tumorigenesis in Human Breast Cancers, Journal of Personalized Medicine, 11 (2021) 948. [27] C.-Y. Liu, T.-T. Huang, J.-L. Chen, P.-Y. Chu, C.-H. Lee, H.-C. Lee, Y.-H. Lee, Y.-Y. Chang, S.-H. Yang, J.-K. Jiang, Significance of kynurenine 3-monooxygenase expression in colorectal cancer, Frontiers in Oncology, 11 (2021) 620361. [28] Y.-H. Chiu, H.-J. Lei, K.-C. Huang, Y.-L. Chiang, C.-S. Lin, Overexpression of kynurenine 3-monooxygenase correlates with cancer malignancy and predicts poor prognosis in canine mammary gland tumors, Journal of oncology, 2019 (2019). [29] I.L. Liu, T.F. Chung, W.H. Huang, C.H. Hsu, C.C. Liu, Y.H. Chiu, K.C. Huang, A.T.C. Liao, C.S. Lin, Kynurenine 3‐monooxygenase (KMO), and signal transducer and activator of transcription 3 (STAT3) expression is involved in tumour proliferation and predicts poor survival in canine melanoma, Veterinary and Comparative Oncology, 19 (2021) 79-91. [30] S.S. Menon, C. Guruvayoorappan, K.M. Sakthivel, R.R. Rasmi, Ki-67 protein as a tumour proliferation marker, Clinica chimica acta, 491 (2019) 39-45. [31] T. Scholzen, J. Gerdes, The Ki‐67 protein: from the known and the unknown, Journal of cellular physiology, 182 (2000) 311-322. [32] W. Jonat, N. Arnold, Is the Ki-67 labelling index ready for clinical use?, Annals of oncology, 22 (2011) 500-502. [33] W. Pastuszewski, P. Dziegiel, T. Krecicki, M. Podhorska-Okolow, U. Ciesielska, E. Gorzynska, M. Zabel, Prognostic significance of metallothionein, p53 protein and Ki-67 antigen expression in laryngeal cancer, Anticancer Research, 27 (2007) 335-342. [34] S.H. Ryu, S.W. Min, J.H. Kim, H.J. Jeong, G.C. Kim, D.K. Kim, Y.-J. Sim, Diagnostic significance of fibrin degradation products and d-dimer in patients with breast cancer-related lymphedema, Annals of rehabilitation medicine, 43 (2019) 81-86. [35] S.S. Adam, N.S. Key, C.S. Greenberg, D-dimer antigen: current concepts and future prospects, Blood, The Journal of the American Society of Hematology, 113 (2009) 2878-2887. [36] L. Cai, M. Tu, X. Yin, S. Zhang, W. Zhuang, Y. Xia, Y. Zhang, L. Zhang, L. Yu, L. Chi, Combination of serum CST4 and DR-70 contributes to early diagnosis of colorectal cancer, Clinica Chimica Acta, 531 (2022) 318-324. [37] S.Z. Lin, C.C. Chen, K.C. Lee, C.W. Tseng, H.Y. Lin, Y.C. Chen, H.C. Lin, DR‐70 immunoassay for the surveillance of hepatocellular carcinoma, Journal of Gastroenterology and Hepatology, 27 (2012) 547-552. [38] S.P. Jones, N.F. Franco, B. Varney, G. Sundaram, D.A. Brown, J. De Bie, C.K. Lim, G.J. Guillemin, B.J. Brew, Expression of the kynurenine pathway in human peripheral blood mononuclear cells: implications for inflammatory and neurodegenerative disease, PloS one, 10 (2015) e0131389. [39] M. Amaral, C. Levy, D.J. Heyes, P. Lafite, T.F. Outeiro, F. Giorgini, D. Leys, N.S. Scrutton, Structural basis of kynurenine 3-monooxygenase inhibition, Nature, 496 (2013) 382-385. [40] T.-T. Huang, L.-M. Tseng, J.-L. Chen, P.-Y. Chu, C.-H. Lee, C.-T. Huang, W.-L. Wang, K.-Y. Lau, M.-F. Tseng, Y.-Y. Chang, Kynurenine 3-monooxygenase upregulates pluripotent genes through β-catenin and promotes triple-negative breast cancer progression, EBioMedicine, 54 (2020) 102717. [41] M. Carvalho, I. Pires, J. Prada, L. Lobo, F. Queiroga, Ki-67 and PCNA expression in canine mammary tumors and adjacent nonneoplastic mammary glands: prognostic impact by a multivariate survival analysis, Veterinary Pathology, 53 (2016) 1138-1146. [42] R. Yerushalmi, R. Woods, P.M. Ravdin, M.M. Hayes, K.A. Gelmon, Ki67 in breast cancer: prognostic and predictive potential, The lancet oncology, 11 (2010) 174-183. [43] I. Bergin, R. Smedley, D. Esplin, W. Spangler, M. Kiupel, Prognostic evaluation of Ki67 threshold value in canine oral melanoma, Veterinary pathology, 48 (2011) 41-53. [44] P. Li, Z.-T. Xiao, T.A. Braciak, Q.-J. Ou, G. Chen, F.S. Oduncu, Association between Ki67 index and clinicopathological features in colorectal cancer, Oncology Research and Treatment, 39 (2016) 696-702. [45] J.K. Aronson, R.E. Ferner, Biomarkers—a general review, Current protocols in pharmacology, 76 (2017) 9.23. 21-29.23. 17. [46] D.F. Hayes, Biomarker validation and testing, Molecular oncology, 9 (2015) 960-966. [47] M.I.A. Edoo, V.K. Chutturghoon, G.K. Wusu-Ansah, Z. Hai, T.Y. Zhen, H.Y. Xie, S.-S. Zheng, Serum biomarkers AFP, CEA and CA19-9 combined detection for early diagnosis of hepatocellular carcinoma, Iranian journal of public health, 48 (2019) 314. [48] S. Chen, Q. Zhao, L. Zhang, L. Wang, Y. Zeng, H. Huang, Combined detection of breast cancer biomarkers based on plasmonic sensor of gold nanorods, Sensors and Actuators B: Chemical, 221 (2015) 1391-1397. [49] N. Liu, W. Liang, X. Ma, X. Li, B. Ning, C. Cheng, G. Ou, B. Wang, J. Zhang, Z. Gao, Simultaneous and combined detection of multiple tumor biomarkers for prostate cancer in human serum by suspension array technology, Biosensors and Bioelectronics, 47 (2013) 92-98. [50] S. Saridemir, H.E. Güven, B. Aksel, L. Doğan, Serum AMDL DR-70 levels: a new concept in the diagnosis and follow-up of colorectal carcinoma, Biomarkers in Medicine, 14 (2020) 621-628. [51] H. Köklü, S. Köklü, Ö. Öztürk, DR-70 immunoassay in gastric cancer, Turk J Gastroenterol, 27 (2016) 88. [52] A.A. Badawy, Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects, International Journal of Tryptophan Research, 10 (2017) 1178646917691938. [53] M. Ala, The footprint of kynurenine pathway in every cancer: A new target for chemotherapy, European Journal of Pharmacology, 896 (2021) 173921. [54] J. Gerdes, H. Lemke, H. Baisch, H.-H. Wacker, U. Schwab, H. Stein, Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67, Journal of immunology (Baltimore, Md.: 1950), 133 (1984) 1710-1715. [55] J. Dobson, T. Scase, Advances in the diagnosis and management of cutaneous mast cell tumours in dogs, Journal of Small Animal Practice, 48 (2007) 424-431. [56] N.H. Gibbs, H. Michalski, D.E. Promislow, M. Kaeberlein, K.E. Creevy, Reasons for Exclusion of Apparently Healthy Mature Adult and Senior Dogs From a Clinical Trial, Frontiers in Veterinary Science, (2021) 528. [57] K.H. Diehl, R. Hull, D. Morton, R. Pfister, Y. Rabemampianina, D. Smith, J.M. Vidal, C.V.D. Vorstenbosch, A good practice guide to the administration of substances and removal of blood, including routes and volumes, Journal of Applied Toxicology: An International Journal, 21 (2001) 15-23. [58] A. Ariyibi, M. Oyeyemi, R. Ajadi, A comparative study of some hematology and biochemical parameters of clinically healthy Alsatian and local dogs, African Journal of Biomedical Research, 5 (2002). [59] M. Mohri, K. Sharifi, S. Eidi, Hematology and serum biochemistry of Holstein dairy calves: age related changes and comparison with blood composition in adults, Research in veterinary science, 83 (2007) 30-39. [60] Y. Fan, X. Ren, X. Liu, D. Shi, E. Xu, S. Wang, Y. Liu, Combined detection of CA15-3, CEA, and SF in serum and tissue of canine mammary gland tumor patients, Scientific Reports, 11 (2021) 1-9. [61] I.A. Gardner, M. Greiner, Receiver‐operating characteristic curves and likelihood ratios: improvements over traditional methods for the evaluation and application of veterinary clinical pathology tests, Veterinary clinical pathology, 35 (2006) 8-17. [62] D.T. Teachey, S.F. Lacey, P.A. Shaw, J.J. Melenhorst, S.L. Maude, N. Frey, E. Pequignot, V.E. Gonzalez, F. Chen, J. Finklestein, Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia, Cancer discovery, 6 (2016) 664-679. [63] R. Kuner, J.C. Brase, H. Sültmann, D. Wuttig, microRNA biomarkers in body fluids of prostate cancer patients, Methods, 59 (2013) 132-137. [64] J. Li, X. Guan, Z. Fan, L.-M. Ching, Y. Li, X. Wang, W.-M. Cao, D.-X. Liu, Non-invasive biomarkers for early detection of breast cancer, Cancers, 12 (2020) 2767. [65] D. Fernández-Lázaro, J.L. García Hernández, A.C. García, A. Córdova Martínez, J. Mielgo-Ayuso, J.J. Cruz-Hernández, Liquid biopsy as novel tool in precision medicine: Origins, properties, identification and clinical perspective of cancer’s biomarkers, Diagnostics, 10 (2020) 215. [66] A. Sansone, R. Lauretta, S. Vottari, A. Chiefari, A. Barnabei, F. Romanelli, M. Appetecchia, Specific and non-specific biomarkers in neuroendocrine gastroenteropancreatic tumors, Cancers, 11 (2019) 1113. [67] M. Plebani, Why C-reactive protein is one of the most requested tests in clinical laboratories?, Clinical Chemistry and Laboratory Medicine (CCLM), (2023). [68] P.C. Hart, I.M. Rajab, M. Alebraheem, L.A. Potempa, C-Reactive protein and cancer—Diagnostic and therapeutic insights, Frontiers in Immunology, 11 (2020) 595835. [69] L.M. Coussens, Z. Werb, Inflammation and cancer, Nature, 420 (2002) 860-867. [70] L. Huang, A.-M. Xu, S. Liu, W. Liu, T.-J. Li, Cancer-associated fibroblasts in digestive tumors, World journal of gastroenterology: WJG, 20 (2014) 17804. [71] K. Malin, O. Witkowska-Piłaszewicz, C-Reactive Protein as a Diagnostic Marker in Dogs: A Review, Animals, 12 (2022) 2888. [72] X. Li, Z. Qiao, X. Long, J. Wei, Y. Cheng, Serum concentration of AMDL DR-70 for the diagnosis and prognosis of carcinoma of the tongue, British Journal of Oral and Maxillofacial Surgery, 43 (2005) 513-515. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88624 | - |
dc.description.abstract | 癌症生物標誌物被視為腫瘤診斷和預後預測的強而有力工具。這些分子由腫瘤和腫瘤微環境產生,因此存在於患者的循環系統中。腫瘤在形成過程中會引發因為組織破壞而導致止血反應的活化,進而促進腫瘤的生長和擴散。止血功能障礙常常在人類癌症患者中被檢測到,通常會導致血漿纖維蛋白原- 纖維蛋白分解產物(DR-70)水平升高。酶犬尿氨酸3-單加氧酶(KMO)在色氨酸代謝中扮演重要之作用,先前KMO已被證實為神經退行性疾病和惡性腫瘤的主要標記物。Ki-67核蛋白在細胞增殖期間增加,為腫瘤細胞進展之指標。本研究旨在評估犬癌症中DR-70、KMO 和Ki-67水平的應用於犬癌診斷之可行性。本研究共蒐集641個臨床腫瘤犬樣本,並以58個健康個體作為對照組。通過酶聯免疫吸附法(ELISA)測定了血漿中KMO、DR-70和Ki-67值的濃度。結果顯示,腫瘤犬中DR-70、KMO 和Ki-67的濃度明顯高於健康犬 (P<0.001)。 每個生物標誌物的ROC (AUC) 面積分別是DR-70為0.898 (P<0.001), KMO 為0.809 (P<0.001) ,Ki-67為0.533 (P<0.05)。 與單一標誌物相比,三聯合檢測的AUC 值最高,初步判斷能有效增加腫瘤的診斷率(AUC 為0.934)。 在這三種生物標誌物中,我們發現不同的腫瘤類型,其表現量皆顯著高於健康對照組,包括淋巴瘤、乳腺腫瘤、黑色素瘤等。此外,在同一病患在不同時間檢測DR-70腫瘤標誌物的案例中,我們發現DR-70 的表現量與腫瘤進展相關,這表明其可作為追踪腫瘤發展具潛力的腫瘤標誌物。總結來說,這項研究建議DR-70、KMO 和Ki-67可作為犬癌症診斷和預測腫瘤發生的生物標記物,並且預期它們在未來臨床上的應用。這是目前唯一評估血液DR-70、KMO 和Ki-67在獸醫腫瘤學中作為診斷與癒後追蹤分子之研究。 | zh_TW |
dc.description.abstract | Cancer biomarkers are viewed as powerful tools for tumor diagnosis and prognosis prediction. These molecules are produced by tumors and the tumor microenvironments for them could be detected in the patient’s circulation. Tumor cells elicit a chronic hemostatic activation, and the pro-coagulant activities facilitate tumor growth and dissemination. Hemostatic dysfunctions are commonly detected in human cancer patients and usually result in a high plasma fibrinogen-fibrin degradation product (DR-70) level. The enzyme kynurenine 3-monooxygenase (KMO), which plays a central role in tryptophan metabolism, has previously been identified as the main factor in neurodegenerative diseases and malignant tumors. Ki-67 protein increased during cell proliferation. Therefore, this study aims to evaluate the diagnostic application of DR-70, KMO, and Ki-67 levels in canine cancers. A total of 641 clinically neoplastic canine samples and 58 healthy individuals were enrolled. The levels of plasma KMO, DR-70, and Ki-67 values were determined by the enzyme-linked immunosorbent assay (ELISA). The results showed that the expressions of DR-70, KMO, and Ki-67 were significantly increased in tumor dogs than those in healthy dogs (P<0.001). The determination of the area under the ROC (AUC) for each biomarker is 0.898 for DR-70 (P<0.001), 0.809 for KMO (P<0.001), and 0.533 for Ki-67 (P<0.05). The AUC value of combined detection increases the diagnostic rate compared to the single marker (AUC, 0.934). Different tumor types exhibited various levels of these three biomarkers, including lymphoma, mammary gland tumor, melanoma, etc. Furthermore, DR-70 values were correlated to tumor progression in several cases, which indicates its potential for tracing tumor development. In summary, this study suggested that DR-70, KMO, and Ki-67 levels are possible biomarkers for canine cancer diagnosis and prognosis, and their clinical application is expected which is the first study to evaluate the clinical significance of DR-70, KMO, and Ki-67 expressions in veterinary oncology. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:06:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:06:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iiv Contents vi Chapter 1. Background and Literature Review 1 1.1 Identification and validation of cancer biomarkers 1 1.2 Canine Biomarkers in cancer cell development 1 1.3 Fibrin and Fibrinogen Degradation Products (DR-70) producing pathway 2 1.4 The mechanism, pathway, and function of KMO 3 1.5 Ki-67 as a proliferation marker in cancer 4 1.6 The clinical use of DR-70, KMO and Ki-67 in cancer patients 4 Chapter 2. Introduction 6 Chapter 3. Materials and Methods 8 3.1 Study Design 8 3.2 Blood Sampling 9 3.3 Hematology and Biochemist 9 3.4 Biomarker measurement 9 3.5 Statistical Analysis 11 Chapter 4. Result 12 4.1 Patient Characteristics 12 4.2 Plasma DR-70, KMO, and Ki-67 in the tumor group are significantly higher than healthy group 13 4.3 DR-70, KMO, and Ki-67 presented in different types of cancer 13 4.4 The levels of DR-70, KMO, and Ki-67 in different conditions, including age, gender and breed, were not statistically significant in cancer patients. 14 4.5 Sensitivity and specificity of single or combined detections of plasma DR-70, KMO, and Ki-67 levels in tumor dogs 14 4.6 The expression of DR-70, KMO and Ki-67 was not statistically significant among the stages of tumor 15 4.7 Cancer monitoring: DR-70 concentration proportional to tumor burden or volume 15 Chapter 5. Discussion 17 Reference…………………………………………………………………………….22 Tables……………………………………...…………………………………………28 Figures……………………………………………………………………………….49 | - |
dc.language.iso | en | - |
dc.title | 研究血漿Ki-67、犬尿氨酸-3-單氧化脢和纖維蛋白原- 纖維蛋白降解產物作為犬癌症診斷的生物標誌物 | zh_TW |
dc.title | To Investigate Plasma Ki-67, Kynurenine 3-monooxygenase (KMO), and Fibrinogen-Fibrin Degradation Product (DR-70) As Biomarkers For Canine Cancer Diagnosis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖泰慶;王愈善 | zh_TW |
dc.contributor.oralexamcommittee | Tai-Ching Liao;Yu-Shan Wang | en |
dc.subject.keyword | 纖維蛋白原- 纖維蛋白分解產物,酶犬尿氨酸3-單加氧酶,Ki-67,犬,腫瘤,酵素聯免疫吸附法,血漿, | zh_TW |
dc.subject.keyword | DR-70,KMO,Ki-67,Canine,Cancer,ELISA,Plasma, | en |
dc.relation.page | 66 | - |
dc.identifier.doi | 10.6342/NTU202302143 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 獸醫學系 | - |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 3.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。