Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88622
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹魁元zh_TW
dc.contributor.advisorKuei-Yuan Chanen
dc.contributor.author彭啟瑞zh_TW
dc.contributor.authorChi-Jui Pengen
dc.date.accessioned2023-08-15T17:06:08Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citation[1] T. Grube, S. Kraus, J. Reul, and D. Stolten, "Passenger car cost development through 2050," Transportation Research Part D: Transport and Environment, vol. 101, p. 103110, 2021/12/01/ 2021, doi: 10.1016/j.trd.2021.103110.
[2] E. Parliament. "Deal confirms zero-emissions target for new cars and vans in 2035." https://www.europarl.europa.eu/news/en/press-room/20221024IPR45734/deal-confirms-zero-emissions-target-for-new-cars-and-vans-in-2035 (accessed Jun. 10, 2023).
[3] E. Parliament. "Fit for 55: zero CO2 emissions for new cars and vans in 2035." https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035 (accessed Jun. 10, 2023).
[4] M. Armstrong, "Most Important Factors When Buying a Car [Digital image]," ed. Statista, 2022.
[5] M.-B. Ricardo, P. Apostolos, and M. Yang, "Overview of boosting options for future downsized engines," Science China Technological Sciences, vol. 54, no. 2, pp. 318-331, 2011/02/01 2011, doi: 10.1007/s11431-010-4272-1.
[6] D. W. Gao, C. Mi, and A. Emadi, "Modeling and Simulation of Electric and Hybrid Vehicles," Proceedings of the IEEE, vol. 95, no. 4, pp. 729-745, 2007, doi: 10.1109/JPROC.2006.890127.
[7] L. Canals Casals, E. Martinez-Laserna, B. Amante García, and N. Nieto, "Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction," Journal of Cleaner Production, vol. 127, pp. 425-437, 2016/07/20/ 2016, doi: 10.1016/j.jclepro.2016.03.120.
[8] A. Ghosh, "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, vol. 13, no. 10, doi: 10.3390/en13102602.
[9] R. Barnitt, "FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report," United States, 2011-01-01 2011. [Online]. Available: https://www.osti.gov/biblio/1007342 https://www.osti.gov/servlets/purl/1007342
[10] W. Feng and M. Figliozzi, "An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market," Transportation Research Part C: Emerging Technologies, vol. 26, pp. 135-145, 2013/01/01/ 2013, doi: 10.1016/j.trc.2012.06.007.
[11] CMC. "中華 ZINGER PICKUP 皮卡貨車." https://www.china-motor.com.tw/zingerpickup (accessed Jun. 20, 2023).
[12] BoE. "車輛油耗指南-111年度車輛油耗指南." https://www.moeaboe.gov.tw/ECW/populace/content/wfrmStatistics.aspx?type=5&menu_id=1303 (accessed Jun. 20, 2023).
[13] Rivian. "R1T." https://rivian.com/r1t (accessed Jun. 10, 2023).
[14] Tesla. "Cybertruck." https://www.tesla.com/cybertruck/design#battery (accessed Jul. 28, 2021).
[15] Ford. "2023 FORD F-150 LIGHTNING." https://www.ford.com/trucks/f150/f150-lightning/ (accessed Jun. 10, 2023).
[16] GMC. "GMC HUMMER EV PICKUP." https://www.gmc.com/electric/hummer-ev/pickup-truck (accessed Jun. 10, 2023).
[17] Bollinger. "All-Electric Bollinger B4 & B5 Commercial Trucks." https://bollingermotors.com/trucks/ (accessed Jun. 10, 2023).
[18] gov.uk. "Vehicle licensing statistics: 2021 Licensed vehicles by body type, including annual difference in licensed vehicles and vehicles with a SORN, United Kingdom, end of December 2021." www.gov.uk. https://www.gov.uk/government/statistics/vehicle-licensing-statistics-2021/vehicle-licensing-statistics-2021#headline-figures (accessed May 21, 2023).
[19] H. Ritchie. "Cars, planes, trains: where do CO2 emissions from transport come from?" https://ourworldindata.org/co2-emissions-from-transport (accessed May 21, 2023).
[20] M. K. Yoong et al., "Studies of regenerative braking in electric vehicle," in 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, 20-21 Nov. 2010 2010, pp. 40-45, doi: 10.1109/STUDENT.2010.5686984.
[21] M. U. Cuma, Ç. D. Ünal, and M. M. Savrun, "Design and implementation of algorithms for one pedal driving in electric buses," Engineering Science and Technology, an International Journal, vol. 24, no. 1, pp. 138-144, 2021/02/01/ 2021, doi: 10.1016/j.jestch.2020.12.014.
[22] J. J. P. Boekel, I. Besselink, and H. Nijmeijer, "Design and realization of a One-Pedal-Driving algorithm for the TU/e Lupo EL," World Electric Vehicle Journal, vol. 7, pp. 226-237, 06/26 2015, doi: 10.3390/wevj7020226.
[23] J. Wang, I. J. M. Besselink, J. J. P. van Boekel, and H. Nijmeijer, "Evaluating the energy efficiency of a one pedal driving algorithm," presented at the 2015 European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2015), 2015/12, 2015, Paper.
[24] x-engineer.org. "What is the V model for software development." https://x-engineer.org/v-model-software-development/ (accessed Jun. 20, 2023).
[25] F. Peter, "Introduction to Modeling and Simulation," in Principles of Object-Oriented Modeling and Simulation with Modelica 2.1: IEEE, 2004, pp. 2-18.
[26] Passenger cars - Simulation model classification - Part 1: Vehicle dynamics, ISO, 2022. [Online]. Available: https://www.iso.org/standard/75910.html
[27] K. B. Wipke, M. R. Cuddy, and S. D. Burch, "ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach," IEEE Transactions on Vehicular Technology, vol. 48, no. 6, pp. 1751-1761, 1999, doi: 10.1109/25.806767.
[28] T. Markel et al., "ADVISOR: a systems analysis tool for advanced vehicle modeling," Journal of Power Sources, vol. 110, no. 2, pp. 255-266, 2002/08/22/ 2002, doi: 10.1016/S0378-7753(02)00189-1.
[29] L. CYBERNET SYSTEMS TAIWAN Co. "CarSim 小型車輛模擬分析軟體." https://www.cybernet-ap.com.tw/?m=449&t=92 (accessed Jun.10, 2023).
[30] M. S. Corporation. "CarSim Mechanical Simulator." https://www.carsim.com/products/carsim/index.php (accessed Jun.10, 2023).
[31] F. An and A. Rousseau, "Integration of a Modal Energy and Emissions Model into a PNGV Vehicle Simulation Model, PSAT," SAE Transactions, vol. 110, pp. 781-793, 2001. [Online]. Available: http://www.jstor.org/stable/44724353.
[32] Y. Kongjeen and K. Bhumkittipich, "Modeling of electric vehicle loads for power flow analysis based on PSAT," in 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 28 June-1 July 2016 2016, pp. 1-6, doi: 10.1109/ECTICon.2016.7561430.
[33] K. L. Butler, M. Ehsani, and P. Kamath, "A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design," IEEE Transactions on Vehicular Technology, vol. 48, no. 6, pp. 1770-1778, 1999, doi: 10.1109/25.806769.
[34] A. N. Laboratory. "Simulate state-of-the-art vehicle energy consumption, performance, and cost with Autonomie." https://vms.taps.anl.gov/tools/autonomie/ (accessed Jun.10, 2023).
[35] d. GmbH. "Automotive Simulation Models (ASM)." https://www.dspace.com/en/pub/home/products/sw/automotive_simulation_models.cfm#176_26302_2 (accessed Jun.10, 2023).
[36] M. Bacic, "On hardware-in-the-loop simulation," in Proceedings of the 44th IEEE Conference on Decision and Control, 15-15 Dec. 2005 2005, pp. 3194-3198, doi: 10.1109/CDC.2005.1582653.
[37] D. Bullock, B. Johnson, R. B. Wells, M. Kyte, and Z. Li, "Hardware-in-the-loop simulation," Transportation Research Part C: Emerging Technologies, vol. 12, no. 1, pp. 73-89, 2004/02/01/ 2004, doi: 10.1016/j.trc.2002.10.002.
[38] K. E. Bailey, B. K. Powell, and G. N. Villec, "ABS/traction assist/regenerative braking application of hardware-in-the-loop," in Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 26-26 June 1998 1998, vol. 1, pp. 503-507 vol.1, doi: 10.1109/ACC.1998.694718.
[39] R. Isermann, J. Schaffnit, and S. Sinsel, "Hardware-in-the-loop simulation for the design and testing of engine-control systems," Control Engineering Practice, vol. 7, no. 5, pp. 643-653, May 1 1999, doi: 10.1016/S0967-0661(98)00205-6.
[40] O. Sung Chul, "Evaluation of motor characteristics for hybrid electric vehicles using the hardware-in-the-loop concept," IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 817-824, 2005, doi: 10.1109/TVT.2005.847228.
[41] A. Bouscayrol, "Different types of Hardware-In-the-Loop simulation for electric drives," in 2008 IEEE International Symposium on Industrial Electronics, 30 June-2 July 2008 2008, pp. 2146-2151, doi: 10.1109/ISIE.2008.4677304.
[42] Road vehicles - Vehicle dynamics test methods - Part 1: General conditions for passenger cars, ISO, 2019. [Online]. Available: https://www.iso.org/standard/70164.html
[43] Road vehicles - Vehicle dynamics test methods - Part 2: General conditions for heavy vehicles and buses, ISO, 2002. [Online]. Available: https://www.iso.org/standard/28824.html
[44] Road vehicles - Vehicle dynamics test methods - Part 3: General conditions for passenger cars ride comfort tests, ISO, 2022. [Online]. Available: https://www.iso.org/standard/81225.html
[45] E. Glaessgen and D. Stargel, "The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles," in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, (Structures, Structural Dynamics, and Materials and Co-located Conferences: American Institute of Aeronautics and Astronautics, 2012.
[46] G. Bhatti, H. Mohan, and R. Raja Singh, "Towards the future of smart electric vehicles: Digital twin technology," Renewable and Sustainable Energy Reviews, vol. 141, p. 110801, 2021/05/01/ 2021, doi: 10.1016/j.rser.2021.110801.
[47] A. Rassõlkin, T. Vaimann, A. Kallaste, and V. Kuts, "Digital twin for propulsion drive of autonomous electric vehicle," in 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 7-9 Oct. 2019 2019, pp. 1-4, doi: 10.1109/RTUCON48111.2019.8982326.
[48] NVIDIA. "NVIDIA DRIVE Sim Powered by Omniverse." https://www.nvidia.com/en-us/self-driving-cars/simulation/ (accessed Jun. 10, 2023).
[49] D. Shapiro. "Mercedes-Benz Taking Vehicle Product Lifecycle Digital With NVIDIA AI and Omniverse." https://blogs.nvidia.com/blog/2023/02/23/mercedes-benz-digitalization/ (accessed Jun. 10, 2023).
[50] M. Geyer. "BMW Group Starts Global Rollout of NVIDIA Omniverse." https://blogs.nvidia.com/blog/2023/03/21/bmw-group-nvidia-omniverse/ (accessed Jun.10, 2023).
[51] G. P. Technology. "LFP20100140-30Ah Specification Approval Sheet." http://hf-gotion.com/products/case5/7.html (accessed May. 23, 2023).
[52] M.-K. Tran, A. DaCosta, A. Mevawalla, S. Panchal, and M. Fowler, "Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA," Batteries, vol. 7, no. 3, 2021, doi: 10.3390/batteries7030051.
[53] G. Saldaña, J. I. San Martín, I. Zamora, F. J. Asensio, and O. Oñederra, "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, vol. 12, no. 14, doi: 10.3390/en12142750.
[54] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, "Thermal runaway mechanism of lithium ion battery for electric vehicles: A review," Energy Storage Materials, vol. 10, pp. 246-267, 2018/01/01/ 2018, doi: 10.1016/j.ensm.2017.05.013.
[55] K. Kitoh and H. Nemoto, "100 Wh Large size Li-ion batteries and safety tests," Journal of Power Sources, vol. 81-82, pp. 887-890, 1999/09/01/ 1999, doi: 10.1016/S0378-7753(99)00125-1.
[56] MathWorks. "Battery Table-Based (Simscape Block)." https://www.mathworks.com/help/releases/R2022b/simscape-battery/ref/batterytablebased.html#mw_2ef23792-871a-40e1-af30-7bde82626ac2_vh (accessed May 5, 2023).
[57] FWC, "LiFePO4 cell C-rate discharge curves at 25 °C," 1st ed. Open Roads Forum, 2021.
[58] S. J. Clegg, "A Review of Regenerative Braking Systems," Institute of Transport Studies, University of Leeds, Leeds, UK, 1996, vol. Working Paper 471. [Online]. Available: http://www.its.leeds.ac.uk/
[59] APRDC. "Hybrid Powertrain Test Platform." https://aprdc.ntu.edu.tw/%E4%B8%AD%E5%BF%83%E8%A8%AD%E5%82%99/ (accessed April 5, 2023).
[60] E. Inc. "Emission Test Cycles." https://dieselnet.com/standards/cycles/index.php#eu-ld (accessed Jun 1, 2023).
[61] E. Inc. "ECE 15 + EUDC / NEDC." https://dieselnet.com/standards/cycles/ece_eudc.php (accessed Jun 1, 2023).
[62] E. Inc. "Worldwide Harmonized Light Vehicles Test Cycle (WLTC)." https://dieselnet.com/standards/cycles/wltp.php#hev (accessed Jun 1, 2023).
[63] L. Eckstein and A. Zlocki, "Safety potential of ADAS–combined methods for an effective evaluation," in 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV) Seoul, South Korea, 2013, pp. 15-25.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88622-
dc.description.abstract隨著歐盟通過2035年起新售車輛零碳排的標準,以及世界各國政府相繼宣告禁售燃油車輛政策的驅使下,車輛驅動系統電動化已成為必然的發展方向。然而目前對於電動車之研究,主要集中於乘用車之系統開發、模擬與驗證,相較之下,對於商用車電動化領域之研究尚顯不足。同時,電動商用車在推廣上由於受限於續航里程及充電時間,成為大規模部署前之最大阻礙,這使得商用車自內燃機轉換至電動驅動系統的目標尚有改善的空間。
本研究選以電動貨車作為研究對象,探討動力元件以及其他因素對於電動貨車之續航里程影響,改善當前電動貨車缺乏專屬駕駛與能耗評估模型之現況。為此,本研究開發一個基於實際車輛之整合模型,包含三種經過驗證之動力系統,並透過嵌入車輛控制策略,搭建基於MATLAB/Simulink環境之車輛模型與控制系統之驗證平台,嘗試解決目前電動貨車續航不足之困境。模擬結果表示,透過選擇特定之動力系統以及駕駛邏輯組合,能夠降低總體能源消耗達30%。同時,本研究延伸探討基於電動貨車開發模型之在環模擬科技應用推廣。此外,藉由記錄開發電動貨車整合模型建立方法,包含自參數取得,驗證以及模擬與評估等一系列流程,同步開源本研究中之電動貨車模型,作為未來車輛產業與教育應用之參考方案。
zh_TW
dc.description.abstractAs the European Union passes the zero-carbon emission standards for new vehicles starting in 2035, and governments worldwide continue to announce policies banning the sale of fossil-fuel powered vehicles, the electrification of vehicle propulsion systems has become an inevitable path for development. However, the current focus of research on electric vehicles primarily revolves around the development, simulation, and validation of passenger vehicle systems. In contrast, the realm of electrifying commercial vehicles still lacks sufficient attraction and attention. Furthermore, the widespread adoption of electric commercial vehicles faces a significant challenge due to limitations in driving range and charging time, presenting a need for improvement in transitioning from internal combustion engines to electric propulsion systems.
This study focuses on investigating the impact of power components and other factors on the driving range of electric trucks, aiming to address the current lack of specialized driver and energy consumption assessment models for these vehicles. To achieve this, an integrated model based on the real-world vehicle is developed, incorporating three validated powertrain system options. By incorporating vehicle control strategies, a verification platform is established using the MATLAB/Simulink environment, creating a robust vehicle model and control system to tackle the issue of limited driving range in electric trucks. Under configuration of specified powertrain and strategy combination, can provide up to 30% of power savings. Furthermore, this research extends its exploration to the application and promotion of in-the-loop simulation technology based on the electric truck model. Additionally, by documenting the process for developing the integrated model of electric trucks, including parameter acquisition, verification, simulation, and evaluation processes, this study provides an open-sourced reference for the future vehicle industry and educational applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:06:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:06:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
ABSTRACT IV
摘要 VI
LIST OF CONTENTS VII
LIST OF FIGURES XI
LIST OF TABLES XIII
LIST OF SYMBOLS XV
LIST OF ABBREVIATIONS XVIII
CHAPTER 1 INTRODUCTION 1
1.1 Preface 1
1.2 Research Motivation and Purpose 3
1.2.1 Research Motivation 3
1.2.2 Research Purpose 7
1.3 Literature Review 10
1.3.1 Vehicle Modeling and Simulation 11
1.3.2 Vehicle Simulation and Hardware Real-Time Collocation 17
1.3.3 Vehicle Real-World Test and Standards 20
1.3.4 Contemporary Technologies Applications on Vehicles 21
1.3.5 Applications Based on Digital Twin 23
1.4 Research Structure 25
CHAPTER 2 BASELINE VEHICLE 27
2.1 Target Research Vehicle Overview 27
2.2 Accumulator System 32
2.3 Traction Motor and Controller System Specification 35
2.4 Braking System 37
CHAPTER 3 VEHICLE SYSTEM AND SUBSYSTEM MODELING 39
3.1 Vehicle Model Overview 39
3.2 Accumulator System 41
3.2.1 Battery Pack and Fail-Safe Mechanism 42
3.2.2 Power Estimator 45
3.3 Motor and Motor Control Unit System 47
3.3.1 Motor Torque Mapping and MCU Limiter 47
3.3.2 Power and Efficiency Estimator 49
3.4 Vehicle Dynamics System 52
3.4.1 Power Delivery and Braking System 53
3.4.2 Vehicle Body System 55
3.5 Vehicle Model Input and Output 58
3.5.1 User Control Interface, Visualization and Data Logging 58
3.5.2 CAN Bus Vehicle Communication Network Interface 61
3.6 Vehicle Control Strategies 62
3.6.1 Torque Mapping Strategy 63
3.6.2 Regenerative Braking Strategy with OPD Application 64
3.6.3 Cruise Control Strategy 65
CHAPTER 4 SIMULATION BASIS 67
4.1 Modeling Platform and Testbench Hardware 68
4.1.1 Dynamometer Testbench for Motor and Controller 69
4.1.2 Simulation Environment and Testbench 71
4.1.3 Details of Data Logging 72
4.2 Simulation: Vehicle Model Validation 74
4.2.1 Drive-Brake Test 74
4.2.2 Cruise Controller Test 75
4.3 Simulation: Drive Cycle and Mileage Estimation 77
4.3.1 Drive Cycle Operating Condition 77
4.3.2 Simulation Criteria Composition 79
4.4 In-the-loop Tests and Applications 82
4.4.1 One Pedal Drive Control Simulation with DiL Concept 82
4.4.2 Adaptive Cruise Control Simulation with HiL 83
CHAPTER 5 RESULTS ANALYSIS AND DISCUSSION 85
5.1 Results: Vehicle Model Verification 85
5.1.1 Drive-Brake Test 85
5.1.2 Cruise Controller Test 87
5.2 Results: Drive Cycle and Mileage Estimation 89
5.2.1 Analysis of Simulation Result under NEDC 90
5.2.2 Analysis of Simulation Result under WLTP Class 3 93
5.3 Discussion: In-the-Loop Applications 96
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 98
6.1 Conclusions 98
6.2 Future Works 99
REFERENCE 101
APPENDIX 107
Appendix A: Result of Test Data for Motor and Controller - Configuration A 107
Appendix B: Result of Test Data for Motor and Controller - Configuration B 108
Appendix C: Result of Test Data for Motor and Controller - Configuration C 109
Appendix D: Pseudo Code of Accumulator System 110
Appendix E: Pseudo Code of MCU and Motor System 111
Appendix F: Pseudo Code of Vehicle Dynamics 112
Appendix G: Result of Drive-Brake Test 113
Appendix H: Result of Cruise Controller Test 114
Appendix I: Result of Mileage Estimation - NEDC 115
Appendix J: Result of Mileage Estimation - WLTP Class 3 122
-
dc.language.isoen-
dc.subject電動貨車zh_TW
dc.subject車輛模型開發zh_TW
dc.subject能耗管理zh_TW
dc.subject車輛模擬zh_TW
dc.subject在環模擬科技zh_TW
dc.subjectenergy managementen
dc.subjectvehicle model developmenten
dc.subjectvehicle simulationen
dc.subjectelectric trucken
dc.subjectin-the-loop simulationen
dc.title一融合在環模擬科技之現代電動貨卡模型zh_TW
dc.titleModeling of a modern electric truck with the integration of in-the-loop simulation technologiesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇偉儁;洪翊軒zh_TW
dc.contributor.oralexamcommitteeWei-Jiun Su;Yi-Hsuan Hungen
dc.subject.keyword電動貨車,能耗管理,車輛模型開發,車輛模擬,在環模擬科技,zh_TW
dc.subject.keywordelectric truck,energy management,vehicle model development,vehicle simulation,in-the-loop simulation,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202302383-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf69.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved