請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫 | zh_TW |
| dc.contributor.advisor | Kai-Wun Yeh | en |
| dc.contributor.author | 呂學翰 | zh_TW |
| dc.contributor.author | Hsueh-Han Lu | en |
| dc.date.accessioned | 2023-08-15T17:02:37Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | Albert, M., Jehle, A.K., Mueller, K., Eisele, C., Lipschis, M., and Felix, G. (2010). Arabidopsis thaliana pattern recognition receptors for bacterial elongation factor Tu and flagellin can be combined to form functional chimeric receptors. Journal of Biological Chemistry, 285, 19035-19042.
Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415, 977-983. Bartels, S., and Boller, T. (2015). Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. Journal of Experimental Botany, 66, 5183-5193. Bartels, S., Lori, M., Mbengue, M., van Verk, M., Klauser, D., Hander, T., Boni, R., Robatzek, S., and Boller, T. (2013). The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. Journal of Experimental Botany, 64, 5309-5321. Beloshistov, R.E., Dreizler, K., Galiullina, R.A., Tuzhikov, A.I., Serebryakova, M.V., Reichardt, S., Shaw, J., Taliansky, M.E., Pfannstiel, J., Chichkova, N.V., Stintzi, A., Schaller, A., and Vartapetian, A.B. (2018). Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New Phytologist, 218, 1167-1178. Binder, A., Lambert, J., Morbitzer, R., Popp, C., Ott, T., Lahaye, T., and Parniske, M. (2014). A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants. Plos One, 9, e88218. Boehm, H., Albert, I., Fan, L., Reinhard, A., and Nuernberger, T. (2014). Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology, 20, 47-54. Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379-406. Brutus, A., Sicilia, F., Macone, A., Cervone, F., and De Lorenzo, G. (2010). A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proceedings of the National Academy of Sciences of the United States of America, 107, 9452-9457. Butenko, M.A., Wildhagen, M., Albert, M., Jehle, A., Kalbacher, H., Aalen, R.B., and Felix, G. (2014). Tools and strategies to match peptide-ligand receptor pairs. Plant Cell, 26, 1838-1847. Cederholm, H.M., and Benfey, P.N. (2015). Distinct sensitivities to phosphate deprivation suggest that RGF peptides play disparate roles in Arabidopsis thaliana root development. New Phytologist, 207, 683-691. Chen, H.J., Wang, S.J., Chen, C.C., and Yeh, K.W. (2006). New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Science, 171, 367-374. Chen, S.P., Kuo, C.H., Lu, H.H., Lo, H.S., and Yeh, K.W. (2016a). The sweet potato NAC-Domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounding. Plos Genetics, 12, e1006397. Chen, S.P., Lin, I.W., Chen, X.Y., Huang, Y.H., Chang, S.C., Lo, H.S., Lu, H.H., and Yeh, K.W. (2016b). Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Plant Journal, 86, 234-248. Chen, Y.C., Siems, W.F., Pearce, G., and Ryan, C.A. (2008). Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. Journal of Biological Chemistry, 283, 11469-11476. Chen, Y.L., Lee, C.Y., Cheng, K.T., Chang, W.H., Huang, R.N., Nam, H.G., and Chen, Y. R. (2014). Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell, 26, 4135-4148. Chen, Y.L., Fan, K.T., Hung, S.C., and Chen, Y.R. (2020). The role of peptides cleaved from protein precursors in eliciting plant stress reactions. New Phytologist, 225, 2267-2282. Chien, P.S., Nam, H.G., and Chen, Y.R. (2015). A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. Journal of Experimental Botany, 66, 5301-5313. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell, 18, 465-476. Choi, J., Tanaka, K., Cao, Y., Qi, Y., Qiu, J., Liang, Y., Lee, S.Y., and Stacey, G. (2014). Identification of a plant receptor for extracellular ATP. Science, 343, 290-294. Costa, L.M., Marshall, E., Tesfaye, M., Silverstein, K.A.T., Mori, M., Umetsu, Y., Otterbach, S.L., Papareddy, R., Dickinson, H.G., Boutiller, K., VandenBosch, K.A., Ohki, S., and Gutierrez-Marcos, J.F. (2014). Central cell-derived peptides regulate early embryo patterning in flowering plants. Science, 344, 168-172. Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology, 133, 462-469. Grienenberger, E., and Fletcher, J.C. (2015). Polypeptide signaling molecules in plant development. Current Opinion in Plant Biology, 23, 8-14. Hander, T., Fernandez-Fernandez, A.D., Kumpf, R.P., Willems, P., Schatowitz, H., Rombaut, D., Staes, A., Nolf, J., Pottie, R., Yao, P.F., Goncalves, A., Pavie, B., Boller, T., Gevaert, K., Van Breusegem, F., Bartels, S., and Stael, S. (2019). Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science, 363, eaar7486. Huffaker, A. (2015). Plant elicitor peptides in induced defense against insects. Current Research in Insect Science, 9, 44-50. Huffaker, A., Pearce, G., and Ryan, C.A. (2006). An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 103, 10098-10103. Huffaker, A., Pearce, G., Veyrat, N., Erb, M., Turlings, T.C., Sartor, R., Shen, Z., Briggs, S.P., Vaughan, M.M., Alborn, H.T., Teal, P.E., and Schmelz, E.A. (2013). Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proceedings of the National Academy of Sciences of the United States of America, 110, 5707-5712. Iizasa, E., Mitsutomi, M., and Nagano, Y. (2010). Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. Journal of Biological Chemistry, 285, 2996-3004. Imanishi, S., KitoNakamura, K., Matsuoka, K., Morikami, A., and Nakamura, K. (1997). A major jasmonate-inducible protein of sweet potato, ipomoelin, is an ABA-independent wound-inducible protein. Plant and Cell Physiology, 38, 643-652. Kim, J.S., Jeon, B.W., and Kim, J. (2021). Signaling Peptides Regulating Abiotic Stress Responses in Plants. Frontiers in Plant Science, 12. Klauser, D., Desurmont, G.A., Glauser, G., Vallat, A., Flury, P., Boller, T., Turlings, T.C.J., and Bartels, S. (2015). The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. Journal of Experimental Botany, 66, 5327-5336. Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., Postel, S., Arents, M., Jeworutzki, E., Al-Rasheid, K.A.S., Becker, D., and Hedrich, R. (2010). Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. Journal of Biological Chemistry, 285, 13471-13479. Kunert, M., David, A., Becher, J., and Boland, W. (2009). Volatile sampling from biological sources by the closed-loop-stripping technique. Cold Spring Harbor Protocols, 2009, pdb.prot5233. Li, Y.C., Wan, W.L., Lin, J.S., Kuo, Y.W., King, Y.C., Chen, Y.C., and Jeng, S.T. (2016). Signal transduction and regulation of IbpreproHypSys in sweet potato. Plant Cell and Environment, 39, 1576-1587. Liu, P. L., Du, L., Huang, Y., Gao, S. M., and Yu, M. (2017). Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evolutionary Biology, 17, 47. Lori, M., van Verk, M.C., Hander, T., Schatowitz, H., Klauser, D., Flury, P., Gehring, C.A., Boller, T., and Bartels, S. (2015). Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling. Journal of Experimental Botany, 66, 5315-5325. Ma, D., Endo, S., Betsuyaku, S., Shimotohno, A., and Fukuda, H. (2020). CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. Plant Molecular Biology, 104, 561-574. Madina, M.H., Zheng, H.Q., and Germain, H. (2018). New insight into bulb dynamics in the vacuolar lumen of Arabidopsis cells. Botany, 96, 511-520. Meents, A.K., and Mithofer, A. (2020). Plant-plant communication: is there a role for volatile damage-associated molecular patterns? Frontiers in Plant Science, 11, 583275. Meents, A.K., Chen, S.P., Reichelt, M., Lu, H.H., Bartram, S., Yeh, K.W., and Mithofer, A. (2019). Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. Scientific Reports, 9, 17431. Murphy, E., and De Smet, I. (2014). Understanding the RALF family: a tale of many species. Trends in Plant Science, 19, 664-671. Narvaez-Vasquez, J., Pearce, G., and Ryan, C.A. (2005). The plant cell wall matrix harbors a precursor of defense signaling peptides. Proceedings of the National Academy of Sciences of the United States of America, 102, 12974-12977. Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant Journal, 51, 1126-1136. Orozcocardenas, M., Mcgurl, B., and Ryan, C.A. (1993). Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca Sexta larvae. Proceedings of the National Academy of Sciences of the United States of America, 90, 8273-8276. Patharkar, O.R., and Walker, J.C. (2016). Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission. Plant Physiology, 172, 510-520. Pearce, G. (2011). Systemin, hydroxyproline-rich systemin and the induction of protease Inhibitors. Current Protein and Peptide Science, 12, 399-408. Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A. (1991). A polypeptide from tomato leaves induces wound-inducible proteinase-inhibitor proteins. Science, 253, 895-898. Pearce, G., Siems, W.F., Bhattacharya, R., Chen, Y.C., and Ryan, C.A. (2007). Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. Journal of Biological Chemistry, 282, 17777-17784. Rajendran, S., Lin, I.W., Chen, M.J., Chen, C.Y., and Yeh, K.W. (2014). Differential activation of sporamin expression in response to abiotic mechanical wounding and biotic herbivore attack in the sweet potato. BMC Plant Biology, 14, 112. Ron, M., and Avni, A. (2004). The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 16, 1604-1615. Ross, A., Yamada, K., Hiruma, K., Yamashita-Yamada, M., Lu, X.L., Takano, Y., Tsuda, K., and Saijo, Y. (2014). The Arabidopsis PEPR pathway couples local and systemic plant immunity. Embo Journal, 33, 62-75. Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., Furuya, M., and Nakano, A. (2002). A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant Journal, 29, 245-255. Schmelz, E.A., Carroll, M.J., LeClere, S., Phipps, S.M., Meredith, J., Chourey, P.S., Alborn, H.T., and Teal, P.E.A. (2006). Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences of the United States of America, 103, 8894-8899. Segami, S., Makino, S., Miyake, A., Asaoka, M., and Maeshima, M. (2014). Dynamics of vacuoles and H+-Pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. Plant Cell , 26, 3416-3434. Sher Khan, R., Iqbal, A., Malak, R., Shehryar, K., Attia, S., Ahmed, T., Ali Khan, M., Arif, M., and Mii, M. (2019). Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech, 9, 192. Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., and Shibuya, N. (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant Journal, 64, 204-214. Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H., and Matsubayashi, Y. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science, 346, 343-346. Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2018). A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 556, 235-238. Tang, J., Han, Z., Sun, Y., Zhang, H., Gong, X., and Chai, J. (2015). Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Research, 25, 110-120. Tavormina, P., De Coninck, B., Nikonorova, N., De Smet, I., and Cammue, B.P.A. (2015). The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. Plant Cell, 27, 2095-2118. Thuerig, B., Felix, G., Binder, A., Boller, T., and Tamm, L. (2005). An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signalling pathways. Physiological and Molecular Plant Pathology, 67, 180-193. Wang, L., Albert, M., Einig, E., Furst, U., Krust, D., and Felix, G. (2016). The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants, 2, 16185. Wang, L., Einig, E., Almeida-Trapp, M., Albert, M., Fliegmann, J., Mithofer, A., Kalbacher, H., and Felix, G. (2018). The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nature Plants, 4, 152-156. Xie, H., Zhao, W., Li, W., Zhang, Y., Hajný, J., and Han, H. (2022). Small signaling peptides mediate plant adaptions to abiotic environmental stress. Planta, 255, 72. Yamaguchi, Y., Huffaker, A., Bryan, A.C., Tax, F.E., and Ryan, C.A. (2010). PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell, 22, 508-522. Yamaguchi, Y.L., Ishida, T., and Sawa, S. (2016). CLE peptides and their signaling pathways in plant development. Journal of Experimental Botany, 67, 4813-4826. Yeh, K.W., Chen, J.C., Lin, M.I., Chen, Y.M., and Lin, C.Y. (1997a). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam): A tuber storage protein with trypsin inhibitory activity. Plant Molecular Biology, 33, 565-570. Yeh, K.W., Lin, M.I., Tuan, S.J., Chen, Y.M., Lin, C.Y., and Kao, S.S. (1997b). Sweet potato (Ipomoea batatas) trypsin inhibitors expressed in transgenic tobacco plants confer resistance against Spodoptera litura. Plant Cell Reports, 16, 696-699. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572. Zhao, C., Zayed, O., Yu, Z., Jiang, W., Zhu, P., Hsu, C.-C., Zhang, L., Tao, W.A., Lozano-Durán, R., and Zhu, J.-K. (2018). Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 115, 13123-13128. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125, 749-760. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88608 | - |
| dc.description.abstract | 甘藷(Ipomoea batatas)是重要的塊根作物,卻時常受到各種蟲害的威脅,而甘藷塊根富含高量具有胰蛋白酶抑制活性之儲藏蛋白 SPORAMIN,為其重要抗蟲機制之一,且在甘藷葉片中 SPORAMIN 基因表現會被機械性損傷、昆蟲取食或防禦相關揮發物誘導而快速表現,進而藉由抑制昆蟲腸道之消化力以增強植物對昆蟲之抵抗能力。不過,儘管目前對於受傷誘導 SPORAMIN 表現的信號傳導途徑已有一些了解,但關於其受體如何辨識逆境訊號卻仍無相關報導。本研究發現一個在甘藷葉中能被受傷/蟲咬誘導而表現之受體激酶 IbLRR-RK1 (leucine-rich repeat receptor kinase1),此受體蛋白質富含亮胺酸重複(leucine-rich repeat),親源分析顯示其屬於相近於番茄SlPEPR1以及阿拉伯芥AtPEPR1/2之peptide-elicitor receptors (PEPRs) 受體蛋白質家族。功能性研究發現激活此 IbLRR-RK1 受體能誘導許多典型的植物受傷天然免疫 (Damage-Associated Molecular Pattern (DAMP)-triggered immunity,簡稱DTI) 反應,包括: 過氧化物大量累積以及植物賀爾蒙乙烯之生合成。此外,本研究進一步發現能激活 IbLRR-RK1 之胜肽配體 IbPep1 與其前體蛋白 IbPROPEP1;利用人工合成的IbPep1與其衍伸胜肽進行試驗證實甘藷 IbPep1/IbLRR-RK1 為新的配體/受體系統並近似於其他植物典型的Pep/PEPRs系統。更重要的是,IbPep1 可能與另一參與 DTI 之胜肽 IbHypSys 協力或並行地傳遞訊號,以調控並增強甘藷抵抗昆蟲的能力。此外本研究也發現 IbLRR-RK1 與 SlPEPR1 能交叉識別其各自之配體 IbPep1 與 SlPep6,第一次揭示了旋花科與茄科 Pep/PEPR 系統之間的家族相容性。綜上所述,本研究以分子生物的方式更深入的揭示了甘藷在面對傷害和食草動物攻擊時的綜合防禦機制。 | zh_TW |
| dc.description.abstract | Sweet potato (Ipomoea batatas) is an important crop with tuberous roots that is vulnerable to various insect pests. To defense off herbivores, the tuberous roots of sweet potato contain a storage protein called sporamin, which exhibits inherent trypsin inhibitory activity. Transcription of SPORAMIN in sweet potato leaves can be rapidly induced by herbivore attack, wounding, or defense-related volatiles, leading to enhanced resistance against insects by suppressing their digestion. The signaling transduction network regulating SPORAMIN expression in wounding response to stress has been partially elucidated; however, the perception of stress-related signals by receptors in sweet potato remains unknown. In this study, a wound/herbivory-inducible pattern recognition receptor (PRR), namely IbLRR-RK1 (leucine-rich repeat receptor kinase1), was identified. Phylogenetic analysis revealed that IbLRR-RK1 belongs to the peptide-elicitor receptors (PEPRs), and is related to the receptors AtPEPR1/2 in Arabidopsis and SlPEPR1 in tomato. Functional assays demonstrated the activation of IbLRR-RK1 triggered typical Damage-Associated Molecular Pattern (DAMP)-triggered immunity (DTI) defense responses such as the oxidative burst or the synthesis of the phytohormone ethylene. Furthermore, a precursor protein, namely IbPROPEP1, was discovered, and this protein contains a peptide ligand named IbPep1 that can activate IbLRR-RK1. Experiments utilizing synthetic IbPep1 and its derivatives provided evidence for a novel ligand/receptor pair in sweet potato that is related to canonical Pep/PEPRs in other plant species. IbPep1 serves as a distinct signaling peptide in sweet potato and may function in conjunction with, or in parallel to, the previously identified HypSys peptides to enhance resistance against insects. Interestingly, IbLRR-RK1 and SlPEPR1 exhibit cross-recognition of their respective ligands, IbPep1 and SlPep6, revealing inter-family compatibility of the Pep/PEPR systems within the Convolvulaceae and Solanaceae families for the first time. In summary, this research provides insights into the comprehensive defense mechanisms of sweet potato in the face of injury and herbivore attack, shedding light on the molecular processes involved in these responses. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:02:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:02:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Index
口試委員審定書 謝辭……………………………………………………………………………………....I 中文摘要………………………………………………………………………………..II Abstract……………………………………………………………...…..III Introduction 1 Materials and methods 13 Plant material and growth conditions 13 Peptides 13 RNA extraction and qRT-PCR analyses 14 RNA-Seq analysis and processing 15 Wounding, insect feeding, and peptide spray treatments 16 VOC collection and quantification 17 Cloning of receptor and propeptide gene candidates 17 Generation of chimeric receptors 18 Transient expression of receptor constructs 19 Oxidative burst and ethylene production measurement 20 Transient activation assay 20 Subcellular localization 21 Immunoblotting 22 Crude endogenous ligand extraction 23 Phytohormone extraction and quantification 23 Agrobacterium-mediated transformation in sweet potato 24 Statistical analysis 25 Results 26 Comparison of the putative DAMP receptors in sweet potato 26 The putative IbLRR-RK1 receptor is related to PEPRs 27 Investigating the functionality of the IbLRR-RK1 receptor in defense responses 29 IbLRR-RK1 perceives endogenous ligands from sweet potato leaves 31 IbPep1 peptide ligand activates IbLRR-RK1 receptor 32 IbLRR-RK1 receptor perceives IbPep1 with high sensitivity and specificity 34 IbPROPEP1 localizes to the tonoplast and forms aggregates within the vacuole 36 A specific IbLRR-RK1-activating DAMP is present in sweet potato leaves 36 Wounding triggers IbPROPEP1 processing 37 IbHypSysIV and IbPep1 activate complementary signaling cascades to induce defense responses 38 Differentially expressed genes (DEGs) between IbPep1 and IbHypSysIV treatment in sweet potato leaves 40 Establishment of transgenic sweet potato lines 42 Discussion 44 Activation of IbLRR-RK1 receptor starts up plant immune responses 44 IbPep1 is a functional peptide ligand for IbLRR-RK1 receptor. 44 The activity of IbPep1 requires specific amino acid residues and structure 45 Is IbPROPEP1 stored in the bulb, in addition to the tonoplast? 47 IbPep1 might work in a complementary and/or parallel pathway with IbHypSys to regulate defense responses. 48 Conclusions and future perspectives 51 References 56 Appendix………………………………………………………………..113 Index of tables Tables 66 Table 1. List of peptides used for signaling activity experiments 66 Table 2. List of oligonucleotides used for this study 67 Table 3. Comparison of the full-length amino acid sequence of IbLRR-RK1 with related sequences, calculation of % identity by Vector NTI 69 Table 4. Comparison of the amino acid sequence of the extracellular domain of IbLRR-RK1 with AtPEPR1, SlPEPR1, and SlSYR1, calculation of % identity by Vector NTI 70 Table 5. Identity table of IbPep1 and other Peps by Vector NTI 71 Index of figures Figures 72 Figure 1. Phylogenetic tree of Ipomoea trifida receptor-like kinases. 72 Figure 2. Expression levels of IbLRR-RKs in response to wound treatments. 73 Figure 3. Expression levels of IbLRR-RK1 in response to herbivory attack. 74 Figure 4. Primary structure of the IbLRR-RK1 receptor kinase from sweet potato. 75 Figure 5. Chimeric receptors localized on the cell membrane.. 77 Figure 6. Phylogenetic tree established with IbLRR-RK1-related receptors in different plant species. 79 Figure 7. The oxidative burst assays demonstrated the kinase activity of IbLRR-RK1. 80 Figure 8. Activation of IbLRR-RK1 by SlPep6 from tomato induced ROS burst. 81 Figure 9. Activation of IbLRR-RK1 by SlPep6 from tomato induced Ethylene production. 82 Figure 10. Activation of IbLRR-RK1 by SlPep6 from tomato induced the expression of defense genes. 83 Figure 11. Activation of IbLRR-RK1 by crude extracts from sweet potato induced ROS burst. 84 Figure 12. PROPEPs and Peps in Solanaceae family plants. 85 Figure 13. Identification of putative IbPeps ligands for IbLRR-RK. 86 Figure 14. The amino acid sequence of IbPep1 and its precursor protein IbPROPEP1. 87 Figure 15. Phylogenetic tree established with IbPROPEP1-related PROPEPs in different plant species. 88 Figure 16. IbLRR-RK1 and SlPEPR1 exhibit cross-recognition of each other's ligands. 89 Figure 17. The amino acid sequence of IbPROPEP1, SlPROPEP6 and their derived Peps. 90 Figure 18. Sequences and ROS-inducing activities of different peptide derivatives derived from IbPep1. 91 Figure 19. Activity of peptide derivatives derived from IbPep1. 93 Figure 20. IbPROPEP1 predominantly localizes to the tonoplast membrane. 94 Figure 21. Subcellular localization of IbPROPEP1 in N. benthamiana leaves. 95 Figure 22. IbLRR-RK1 recognized wound-induced endogenous compounds extracted from sweet potato leaves. 97 Figure 23. Wounding induced the processing of IbPROPEP1. 98 Figure 24. Induction of defense-related genes in response to IbPep1 and IbHypSysIV in sweet potato. 99 Figure 25. Comparison of Peps from Convolvulaceae and Solanaceae. 100 Figure 26. Proposed model of IbPep1 and IbHypSysIV triggered defense responses in sweet potato leaves. 101 Video 1. Subcellular localization and movement of GFP-tagged IbPROPEP1. 103 Index of supplementary figures Supplementary Figures 104 Supplementary Figure S1. Generation of chimeric receptors IbLRR-RK1-GFP and SYR1-IbK-GFP. 104 Supplementary Figure S2. Identification of putative Peps and PROPEPs in sweet potato. 106 Supplementary Figure S3. Induction of defense-related DMNT volatiles in response to IbPep1 and IbHypSysIV in sweet potato. 107 Supplementary Figure S4. Phytohormone accumulation patterns in I. batatas leaves after treatment with IbPep1 or IbHypSysIV. 109 Supplementary Figure S5. IbPep1 and IbHypSysIV peptides exhibit differential effects on gene expression patterns in sweet potato leaves. 111 Supplementary Figure S6. Generation of transgenic sweet potato plants overexpressing IbLRR-RK1.. 112 | - |
| dc.language.iso | en | - |
| dc.subject | 胜肽配體 | zh_TW |
| dc.subject | 植物受體 | zh_TW |
| dc.subject | 甘藷 | zh_TW |
| dc.subject | 植物防禦 | zh_TW |
| dc.subject | 損傷相關分子模式 | zh_TW |
| dc.subject | 蟲害 | zh_TW |
| dc.subject | plant receptor | en |
| dc.subject | DAMP | en |
| dc.subject | sweet potato | en |
| dc.subject | plant DTI | en |
| dc.subject | herbivore | en |
| dc.subject | peptide ligand | en |
| dc.title | IbPep1激活IbLRR-RK1所調控之甘藷防禦反應 | zh_TW |
| dc.title | IbPep1-mediated Activation of IbLRR-RK1 Receptor Regulates Defense Responses in Sweet Potato | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | Axel Mithöfer;鄭秋萍 | zh_TW |
| dc.contributor.coadvisor | Axel Mithöfer;Chiu-Ping Cheng | en |
| dc.contributor.oralexamcommittee | 謝旭亮;鄭貽生;葉國楨;陳賢明;陳盈嵐;陳仕朋 | zh_TW |
| dc.contributor.oralexamcommittee | Hsu-Liang Hsieh;Yi-Sheng Cheng;Kuo-Chen Yeh;Hieng-Ming Ting;Ying-Lan Chen;Shi-Peng Chen | en |
| dc.subject.keyword | 損傷相關分子模式,甘藷,植物防禦,蟲害,胜肽配體,植物受體, | zh_TW |
| dc.subject.keyword | DAMP,sweet potato,plant DTI,herbivore,peptide ligand,plant receptor, | en |
| dc.relation.page | 130 | - |
| dc.identifier.doi | 10.6342/NTU202302113 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 7.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
