請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88601完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐治平 | zh_TW |
| dc.contributor.advisor | Jyh-Ping Hsu | en |
| dc.contributor.author | 莊帛諺 | zh_TW |
| dc.contributor.author | Po-Yen Chuang | en |
| dc.date.accessioned | 2023-08-15T17:00:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | Chapter 1
[1] T. Ma, J.M. Janot, S. Balme, Track‐etched nanopore/membrane: from fundamental to applications, Small Methods 4 (9) (2020) 2000366. [2] Z. Zhang, L. Wen, L. Jiang, Bioinspired smart asymmetric nanochannel membranes, Chem. Soc. Rev. 47 (2) (2018) 322-356. [3] M. Ali, B. Yameen, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries, J. Am. Chem. Soc. 130 (48) (2008) 16351-16357. [4] G. Pérez-Mitta, A.S. Peinetti, M.L. Cortez, M.E. Toimil-Molares, C. Trautmann, O. Azzaroni, Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties, Nano Lett. 18 (5) (2018) 3303-3310. [5] S. Baek, S.-R. Kwon, K. Fu, P.W. Bohn, Ion gating in nanopore electrode arrays with hierarchically organized pH-responsive block copolymer membranes, ACS Appl. Mater. Interfaces 12 (49) (2020) 55116-55124. [6] K. Lin, C.-Y. Lin, J.W. Polster, Y. Chen, Z.S. Siwy, Charge inversion and calcium gating in mixtures of ions in nanopores, J. Am. Chem. Soc. 142 (6) (2020) 2925-2934. [7] W. Chen, Q. Wang, J. Chen, Q. Zhang, X. Zhao, Y. Qian, C. Zhu, L. Yang, Y. Zhao, X.-Y. Kong, Improved ion transport and high energy conversion through hydrogel membrane with 3D interconnected nanopores, Nano Lett. 20 (8) (2020) 5705-5713. [8] V.-P. Mai, W.-H. Huang, R.-J. Yang, Enhancing ion transport through nanopores in membranes for salinity gradient power generation, ACS ES&T Engineering 1 (12) (2021) 1725-1752. [9] B. Balannec, A. Ghoufi, A. Szymczyk, Nanofiltration performance of conical and hourglass nanopores, J. Membr. Sci. 552 (2018) 336-340. [10] M. Elshof, W. de Vos, J. de Grooth, N. Benes, On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes, J. Membr. Sci. 615 (2020) 118532. [11] R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys. 80 (3) (2008) 839. [12] A. Gubbiotti, M. Baldelli, G. Di Muccio, P. Malgaretti, S. Marbach, M. Chinappi, Electroosmosis in nanopores: computational methods and technological applications, Adv. Phys.: X 7 (1) (2022) 2036638. [13] X. Wu, P. Ramiah Rajasekaran, C.R. Martin, An alternating current electroosmotic pump based on conical nanopore membranes, Acs Nano 10 (4) (2016) 4637-4643. [14] X. Wang, C. Cheng, S. Wang, S. Liu, Electroosmotic pumps and their applications in microfluidic systems, Microfluidics and nanofluidics 6 (2) (2009) 145-162. [15] S. Kusama, K. Sato, Y. Matsui, N. Kimura, H. Abe, S. Yoshida, M. Nishizawa, Transdermal electroosmotic flow generated by a porous microneedle array patch, Nat. Commun. 12 (1) (2021) 1-11. [16] A. Mondal, G. Shit, Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application, J. Magn. Magn. Mater. 442 (2017) 319-328. [17] G. Huang, K. Willems, M. Soskine, C. Wloka, G. Maglia, Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores, Nat. Commun. 8 (1) (2017) 1-11. [18] A. Asandei, I. Schiopu, M. Chinappi, C.H. Seo, Y. Park, T. Luchian, Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation, ACS Appl. Mater. Interfaces 8 (20) (2016) 13166-13179. [19] J.-P. Hsu, H.-H. Wu, C.-Y. Lin, S. Tseng, Importance of polyelectrolyte modification for rectifying the ionic current in conically shaped nanochannels, Phys. Chem. Chem. Phys. 19 (7) (2017) 5351-5360. [20] Z.S. Siwy, Ion‐current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater. 16 (6) (2006) 735-746. [21] C.-Y. Lin, J.-P. Hsu, L.-H. Yeh, Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes, Sens. Actuat. B 258 (2018) 1223-1229. [22] H. Daiguji, Y. Oka, K. Shirono, Nanofluidic diode and bipolar transistor, Nano Lett. 5 (11) (2005) 2274-2280. [23] W.-J. Lan, D.A. Holden, H.S. White, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc. 133 (34) (2011) 13300-13303. [24] Y.-T. Chen, J.-P. Hsu, Space charge modulation and ion current rectification of a cylindrical nanopore functionalized with polyelectrolyte brushes subject to an applied pH-gradient, J. Colloid Interface Sci. 605 (2022) 571-581. [25] L. Wang, W. Guo, Y. Xie, X. Wang, J. Xue, Y. Wang, Nanofluidic diode generated by pH gradient inside track-etched conical nanopore, Radiat. Meas. 44 (9-10) (2009) 1119-1122. [26] L.-J. Cheng, L.J. Guo, Rectified ion transport through concentration gradient in homogeneous silica nanochannels, Nano Lett. 7 (10) (2007) 3165-3171. [27] L. Cao, W. Guo, Y. Wang, L. Jiang, Concentration-gradient-dependent ion current rectification in charged conical nanopores, Langmuir 28 (4) (2012) 2194-2199. [28] L.-J. Cheng, L.J. Guo, Nanofluidic diodes, Chem. Soc. Rev. 39 (3) (2010) 923-938. [29] J.-P. Hsu, T.-W. Lin, C.-Y. Lin, S. Tseng, Salt-dependent ion current rectification in conical nanopores: impact of salt concentration and cone angle, J. Phys. Chem. C 121 (50) (2017) 28139-28147. [30] Z.-Q. Li, Y. Wang, Z.-Q. Wu, M.-Y. Wu, X.-H. Xia, Bioinspired multivalent ion responsive nanopore with ultrahigh ion current rectification, J. Phys. Chem. C 123 (22) (2019) 13687-13692. [31] P. Ramirez, P.Y. Apel, J. Cervera, S. Mafé, Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties, Nanotechnology 19 (31) (2008) 315707. [32] S. Tseng, S.-C. Lin, C.-Y. Lin, J.-P. Hsu, Influences of cone angle and surface charge density on the ion current rectification behavior of a conical nanopore, J. Phys. Chem. C 120 (44) (2016) 25620-25627. [33] M. Karimzadeh, Z. Seifollahi, M. Khatibi, S.N. Ashrafizadeh, Impacts of the shape of soft nanochannels on their ion selectivity and current rectification, Electrochim. Acta 399 (2021) 139376. [34] K. Xiao, P. Li, G. Xie, Z. Zhang, L. Wen, L. Jiang, Fabrication and ionic transportation characterization of funnel-shaped nanochannels, RSC Adv. 6 (60) (2016) 55064-55070. [35] K. Xiao, G. Xie, Z. Zhang, X.Y. Kong, Q. Liu, P. Li, L. Wen, L. Jiang, Enhanced stability and controllability of an ionic diode based on funnel‐shaped nanochannels with an extended critical region, Adv. Mater. 28 (17) (2016) 3345-3350. [36] H. Zhang, Y. Tian, J. Hou, X. Hou, G. Hou, R. Ou, H. Wang, L. Jiang, Bioinspired smart gate-location-controllable single nanochannels: experiment and theoretical simulation, ACS Nano 9 (12) (2015) 12264-12273. [37] M. Ali, P. Ramirez, H.Q. Nguyen, S. Nasir, J. Cervera, S. Mafe, W. Ensinger, Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization, ACS Nano 6 (4) (2012) 3631-3640. [38] H. Zhang, X. Hou, L. Zeng, F. Yang, L. Li, D. Yan, Y. Tian, L. Jiang, Bioinspired artificial single ion pump, J. Am. Chem. Soc. 135 (43) (2013) 16102-16110. [39] K. Xiao, L. Chen, G. Xie, P. Li, X.-Y. Kong, L. Wen, L. Jiang, A bio-inspired dumbbell-shaped nanochannel with a controllable structure and ionic rectification, Nanoscale 10 (15) (2018) 6850-6854. [40] K. Xiao, L. Chen, Z. Zhang, G. Xie, P. Li, X.Y. Kong, L. Wen, L. Jiang, A tunable ionic diode based on a biomimetic structure‐tailorable nanochannel, Angew. Chem. Int. Ed. 56 (28) (2017) 8168-8172. [41] L.-H. Yeh, M. Zhang, S. Qian, Ion transport in a pH-regulated nanopore, Anal. Chem. 85 (15) (2013) 7527-7534. [42] A. Alinezhad, M. Khatibi, S.N. Ashrafizadeh, Impact of asymmetry soft layers and ion partitioning on ionic current rectification in bipolar nanochannels, J. Mol. Liq. 347 (2022) 118324. [43] K. Pal Singh, K. Kumari, M. Kumar, Ion current rectification in a fluidic bipolar nanochannel with smooth junction, Appl. Phys. Lett. 99 (11) (2011) 113103. [44] K.P. Singh, Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location, Phys. Chem. Chem. Phys. 18 (40) (2016) 27958-27966. [45] J.-P. Hsu, Y.-M. Chen, S.-T. Yang, C.-Y. Lin, S. Tseng, Influence of salt valence on the rectification behavior of nanochannels, J. Colloid Interface Sci. 531 (2018) 483-492. [46] J.-P. Hsu, Y.-C. Chen, Y.-M. Chen, S. Tseng, Influence of temperature and electroosmotic flow on the rectification behavior of conical nanochannels, J. Taiwan Inst. Chem. Eng. 93 (2018) 142-149. [47] J.-P. Hsu, S.-T. Yang, C.-Y. Lin, S. Tseng, Ionic current rectification in a conical nanopore: influences of electroosmotic flow and type of salt, J. Phys. Chem. C 121 (8) (2017) 4576-4582. [48] D.-H. Lin, C.-Y. Lin, S. Tseng, J.-P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore, Nanoscale 7 (33) (2015) 14023-14031. [49] M. Valisko, B. Matejczyk, Z. Hato, T. Kristof, E. Madai, D. Fertig, D. Gillespie, D. Boda, Multiscale analysis of the effect of surface charge pattern on a nanopore's rectification and selectivity properties: From all-atom model to Poisson-Nernst-Planck, J. Chem. Phys. 150 (14) (2019). [50] D. Fertig, M. Valiskó, D. Boda, Rectification of bipolar nanopores in multivalent electrolytes: Effect of charge inversion and strong ionic correlations, Phys. Chem. Chem. Phys 22 (34) (2020) 19033-19045. [51] M. Konieczna, E. Markiewicz, J. Jurga, Dielectric properties of polyethylene terephthalate/polyphenylene sulfide/barium titanate nanocomposite for application in electronic industry, Polym. Eng. Sci 50 (8) (2010) 1613-1619. [52] W.-K. Yen, J.-P. Hsu, Electrokinetic behavior of a pH-regulated dielectric cylindrical nanopore, J. Colloid Interface Sci. 588 (2021) 94-100. Chapter 2 [1] T. Ma, J.M. Janot, S. Balme, Track‐etched nanopore/membrane: from fundamental to applications, Small Methods 4 (9) (2020) 2000366. [2] J.P. Fried, J.L. Swett, B.P. Nadappuram, J.A. Mol, J.B. Edel, A.P. Ivanov, J.R. Yates, In situ solid-state nanopore fabrication, Chem. Soc. Rev 50 (8) (2021) 4974-4992. [3] K. Lin, C. Chen, C. Wang, P. Lian, Y. Wang, S. Xue, J. Sha, Y. Chen, Fabrication of solid-state nanopores, Nanotechnology 33 (27) (2022) 272003. [4] R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys. 80 (3) (2008) 839. [5] M. Nazari, A. Davoodabadi, D. Huang, T. Luo, H. Ghasemi, Transport phenomena in nano/molecular confinements, ACS nano 14 (12) (2020) 16348-16391. [6] L. Liang, F. Qin, S. Wang, J. Wu, R. Li, Z. Wang, M. Ren, D. Liu, D. Wang, D. Astruc, Overview of the materials design and sensing strategies of nanopore devices, Coordination Chem. Rev. 478 (2023) 214998. [7] Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion, Nat. Rev. Mater. 6 (7) (2021) 622-639. [8] X. Feng, D. Peng, J. Zhu, Y. Wang, Y. Zhang, Recent advances of loose nanofiltration membranes for dye/salt separation, Sep. Purif. Technol. 285 (2022) 120228. [9] Y. Zhou, X. Liao, J. Han, T. Chen, C. Wang, Ionic current rectification in asymmetric nanofluidic devices, Chin. Chem. Lett. 31 (9) (2020) 2414-2422. [10] L.-J. Cheng, L.J. Guo, Nanofluidic diodes, Chem. Soc. Rev 39 (3) (2010) 923-938. [11] C.-T. Wu, J.-P. Hsu, Electrokinetic behavior of bullet-shaped nanopores modified by functional groups: Influence of finite thickness of modified layer, J. Colloid Interface Sci. 582 (2021) 741-751. [12] L. Rosentsvit, W. Wang, J. Schiffbauer, H.-C. Chang, G. Yossifon, Ion current rectification in funnel-shaped nanochannels: Hysteresis and inversion effects, J. Chem. Phys. 143 (22) (2015) 12B626_1. [13] R. Karnik, C. Duan, K. Castelino, H. Daiguji, A. Majumdar, Rectification of ionic current in a nanofluidic diode, Nano Lett. 7 (3) (2007) 547-551. [14] C.Y. Li, F.X. Ma, Z.Q. Wu, H.L. Gao, W.T. Shao, K. Wang, X.H. Xia, Solution‐pH‐Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions, Adv. Funct. Mater. 23 (31) (2013) 3836-3844. [15] L. Wang, W. Guo, Y. Xie, X. Wang, J. Xue, Y. Wang, Nanofluidic diode generated by pH gradient inside track-etched conical nanopore, Radiat. Meas. 44 (9-10) (2009) 1119-1122. [16] T.-W. Lin, J.-P. Hsu, C.-Y. Lin, S. Tseng, Dual pH gradient and voltage modulation of ion transport and current rectification in biomimetic nanopores functionalized with a pH-Tunable POLYELECTROLYTE, J. Phys. Chem. C 123 (19) (2019) 12437-12443. [17] L.-J. Cheng, L.J. Guo, Rectified ion transport through concentration gradient in homogeneous silica nanochannels, Nano Lett. 7 (10) (2007) 3165-3171. [18] L. Cao, W. Guo, Y. Wang, L. Jiang, Concentration-gradient-dependent ion current rectification in charged conical nanopores, Langmuir 28 (4) (2012) 2194-2199. [19] A. Gubbiotti, M. Baldelli, G. Di Muccio, P. Malgaretti, S. Marbach, M. Chinappi, Electroosmosis in nanopores: computational methods and technological applications, Adv. Phys. X 7 (1) (2022) 2036638. [20] L. Li, X. Wang, Q. Pu, S. Liu, Advancement of electroosmotic pump in microflow analysis: A review, Anal. Chim. Acta 1060 (2019) 1-16. [21] C.-C. Chang, R.-J. Yang, Electrokinetic mixing in microfluidic systems, Microfluid. Nanofluid. 3 (2007) 501-525. [22] R. Pardehkhorram, A. Andrieu-Brunsen, Pushing the limits of nanopore transport performance by polymer functionalization, Chem. Commun. 58 (34) (2022) 5188-5204. [23] L. Yang, J. Hu, M.C. Li, M. Xu, Z.Y. Gu, Solid‐state Nanopores: Chemical Modifications, Interactions, and Functionalities, Chem. Asian J. 17 (22) (2022) e202200775. [24] W. Lu, Y. Cao, G. Qing, Recent Advances in the Modification and Characterization of Solid‐State Nanopores, Chem. Asian J. 17 (19) (2022) e202200675. [25] O.M. Eggenberger, C. Ying, M. Mayer, Surface coatings for solid-state nanopores, Nanoscale 11 (42) (2019) 19636-19657. [26] H. Zhang, Y. Tian, J. Hou, X. Hou, G. Hou, R. Ou, H. Wang, L. Jiang, Bioinspired smart gate-location-controllable single nanochannels: experiment and theoretical simulation, ACS nano 9 (12) (2015) 12264-12273. [27] J.-P. Hsu, H.-H. Wu, C.-Y. Lin, S. Tseng, Importance of polyelectrolyte modification for rectifying the ionic current in conically shaped nanochannels, Phys. Chem. Chem. Phys. 19 (7) (2017) 5351-5360. [28] Z. Zhang, P. Li, X.-Y. Kong, G. Xie, Y. Qian, Z. Wang, Y. Tian, L. Wen, L. Jiang, Bioinspired heterogeneous ion pump membranes: unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution, J. Am. Chem. Soc. 140 (3) (2018) 1083-1090. [29] L.-H. Yeh, M. Zhang, N. Hu, S.W. Joo, S. Qian, J.-P. Hsu, Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes, Nanoscale 4 (16) (2012) 5169-5177. [30] L.-H. Yeh, M. Zhang, S. Qian, J.-P. Hsu, S. Tseng, Ion concentration polarization in polyelectrolyte-modified nanopores, J. Phys. Chem. C 116 (15) (2012) 8672-8677. [31] M. Ali, P. Ramirez, S. Mafé, R. Neumann, W. Ensinger, A pH-tunable nanofluidic diode with a broad range of rectifying properties, ACS nano 3 (3) (2009) 603-608. [32] M. Lepoitevin, B. Jamilloux, M. Bechelany, E. Balanzat, J.-M. Janot, S. Balme, Fast and reversible functionalization of a single nanopore based on layer-by-layer polyelectrolyte self-assembly for tuning current rectification and designing sensors, RSC Adv. 6 (38) (2016) 32228-32233. [33] X. Hou, F. Yang, L. Li, Y. Song, L. Jiang, D. Zhu, A biomimetic asymmetric responsive single nanochannel, J. Am. Chem. Soc. 132 (33) (2010) 11736-11742. [34] Z. Zeng, Y. Ai, S. Qian, pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes, Phys. Chem. Chem. Phys. 16 (6) (2014) 2465-2474. [35] J.-Y. Lin, C.-Y. Lin, J.-P. Hsu, S. Tseng, Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient, Anal. Chem. 88 (2) (2016) 1176-1187. [36] A. Alinezhad, A. Alinezhad, Influence of location junction on ion transfer behavior in conical nanopores with bipolar polyelectrolyte brushes, Electrochim. Acta 425 (2022) 140699. [37] J.-P. Hsu, S.-T. Yang, C.-Y. Lin, S. Tseng, Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes, J. Colloid Interface Sci. 537 (2019) 496-504. [38] J.F. Duval, H. Ohshima, Electrophoresis of diffuse soft particles, Langmuir 22 (8) (2006) 3533-3546. [39] J.F. Duval, F. Gaboriaud, Progress in electrohydrodynamics of soft microbial particle interphases, Curr. Opin. Colloid Interface Sci. 15 (3) (2010) 184-195. [40] S. Das, M. Banik, G. Chen, S. Sinha, R. Mukherjee, Polyelectrolyte brushes: theory, modelling, synthesis and applications, Soft Matter 11 (44) (2015) 8550-8583. [41] W.M. de Vos, Brushes and particles, Wageningen University and Research 2009 [42] Y. Xie, J. Xue, L. Wang, X. Wang, K. Jin, L. Chen, Y. Wang, Surface modification of single track-etched nanopores with surfactant CTAB, Langmuir 25 (16) (2009) 8870-8874. [43] Z. Seifollahi, S.N. Ashrafizadeh, Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel, Chem. Eng. Sci. 261 (2022) 117986. [44] L.-H. Yeh, M. Zhang, S. Qian, Ion transport in a pH-regulated nanopore, Anal. Chem. 85 (15) (2013) 7527-7534. [45] M. Tagliazucchi, Y. Rabin, I. Szleifer, Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores, J. Am. Chem. Soc. 133 (44) (2011) 17753-17763. [46] Z. Zeng, L.-H. Yeh, M. Zhang, S. Qian, Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes, Nanoscale 7 (40) (2015) 17020-17029. [47] Y. Ai, M. Zhang, S.W. Joo, M.A. Cheney, S. Qian, Effects of electroosmotic flow on ionic current rectification in conical nanopores, J. Phys. Chem. C 114 (9) (2010) 3883-3890. [48] J.-P. Hsu, S.-T. Yang, C.-Y. Lin, S. Tseng, Ionic current rectification in a conical nanopore: Influences of electroosmotic flow and type of salt, J. Phys. Chem. C 121 (8) (2017) 4576-4582. [49] D.-H. Lin, C.-Y. Lin, S. Tseng, J.-P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore, Nanoscale 7 (33) (2015) 14023-14031. [50] P. Ramirez, P.Y. Apel, J. Cervera, S. Mafé, Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties, Nanotechnology 19 (31) (2008) 315707. [51] M. Khatibi, S.N. Ashrafizadeh, A. Sadeghi, Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification, Anal. Chim. Acta 1122 (2020) 48-60. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88601 | - |
| dc.description.abstract | 受益於近年來奈米科技的發展,孔道半徑得以達奈米尺度,而發生特殊的離子選擇性現象,基於此現象所做成的奈米流體裝置廣泛的被應用在包括,除鹽、過濾、鹽濃差及壓差發電、離子檢測以及離子電流整流。許多個別文獻在實驗中都已經能蝕刻出不同的孔道形狀,但缺乏在相同基準之下的性能比較。第一節中透過理論計算,在盡可能相同的條件與基準下,比較不同的孔道形狀以及帶電條件對於離子傳輸現象的影響。我們觀察到整流比大小主要受孔道內部體積的影響、選擇性同時會受孔道內部體積與狹窄區間範圍的影響。在不對稱雙極孔道中,孔道選擇性為零時的壁上正負電的交界處位置,同時也是整流比最大值發生的位置,另外也觀察到雙極孔道中心處與孔道壁處會有相反方向的電滲流。以上的研究成果已發表於期刊 Colloids and Surfaces A: Physicochemical and Engineering Aspects.而我們為了近一步提升奈米孔道的性能,會在孔道壁上修飾一層聚電解質。第二節中,我們在一個錐形孔道壁上修飾一層帶電會受 pH 值影響的聚電解質,並且探討其中的官能基若是均勻分布、集中在孔道壁一側或是集中在聚電解質與液體的交界處,對於電動力學現象的影響。結果發現官能基若集中在壁側,會使得整體流體阻力下降,進而提升電滲流大小,這樣的官能基分布,也會使得孔道內部離子濃度分布較不均勻,導致較大的擴散通量,進而影響其它電動力學的表現。 | zh_TW |
| dc.description.abstract | Benefiting from the recent advancements in nanotechnology, the radius of nanopores has reached the nanoscale, leading to unique ion selective phenomena. Based on this phenomenon, nanofluidic devices have been widely applied in various areas, including desalination, filtration, salinity gradient and pressure-driven energy generation, ion detection, and ion current rectification. While individual studies have successfully etched nanopores with different shapes, there is a lack of performance comparison under the same basic. In chapter 1, through theoretical calculations, we compare the effects of different nanopore shapes and charged conditions on ion transport phenomena under conditions as similar as possible. We observe that the rectification factor is mainly influenced by the internal volume of the nanopore, while selectivity is influenced by both the internal volume and the narrow region of the pore. In asymmetric bipolar nanopores, the position of junction location between positive and negative charges on the pore walls, where selectivity is zero, also corresponds to the maximum rectification factor. Additionally, we observe opposing electroosmotic flow directions at the center and the wall of the bipolar nanopores. These research findings have been published in the journal Colloids and Surfaces A: Physicochemical and Engineering Aspects. In recent years, to further enhance the performance of nanopores, a layer of polyelectrolyte is often modified on the pore surface. In chapter 2, we investigate the electrokinetic phenomena on a conical nanopore surface modified with a pH-regulated polyelectrolyte. We explore the effects of the functional groups are clustered near the PE- liquid interface, and near the nanopore surface on the electrokinetic phenomena. The results show that the functional groups are clustered near the nanopore surface reduces the overall fluid resistance, thereby enhancing the electroosmotic flow. This kind of distribution of functional groups also leads to uneven ion concentration distribution inside the nanopore, resulting in a larger diffusion flux and affecting other electrokinetic performances. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:00:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:00:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書..I
致謝..II 中文摘要..III Abstract..IV Contents..VI List of Tables..VII List of Figures..III Chapter 1 Influence of shape and charged conditions of nanopores on their ionic current rectification, electroosmotic flow, and selectivity..1 References of Chapter 1..17 Chapter 2 Electroosmotic flow, ionic current rectification, and selectivity of a conical nanopore modified with a pH-regulated polyelectrolyte layer: Influence of functional groups profile..37 References of Chapter 2..52 Conclusion..69 | - |
| dc.language.iso | en | - |
| dc.subject | 帶電分布 | zh_TW |
| dc.subject | 奈米孔道形狀 | zh_TW |
| dc.subject | 奈米流體裝置 | zh_TW |
| dc.subject | 電滲流 | zh_TW |
| dc.subject | 離子選擇性 | zh_TW |
| dc.subject | 離子電流整流 | zh_TW |
| dc.subject | 聚電解質 | zh_TW |
| dc.subject | 官能基分布 | zh_TW |
| dc.subject | functional group distribution | en |
| dc.subject | Electroosmotic flow | en |
| dc.subject | Ion selectivity | en |
| dc.subject | Ion current rectification | en |
| dc.subject | Nanofluidic devices | en |
| dc.subject | Polyelectrolyte layer | en |
| dc.subject | Charged distribution | en |
| dc.subject | Nanopore shapes | en |
| dc.title | 奈米孔道內之離子傳輸現象:孔道形狀、帶電條件與聚電解質內官能基分布之影響 | zh_TW |
| dc.title | Ionic Transport Phenomena in a Nanopore: Influence of Shape, Charged Conditions, and Profile of Functional Groups | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾琇瑱 ; 劉宣良;郭勇志 | zh_TW |
| dc.contributor.oralexamcommittee | Shio-Jenn Tseng ;Hsuan-Liang Liu;Kuo-Yung Chih | en |
| dc.subject.keyword | 奈米流體裝置,奈米孔道形狀,帶電分布,聚電解質,官能基分布,離子電流整流,離子選擇性,電滲流, | zh_TW |
| dc.subject.keyword | Nanofluidic devices,Nanopore shapes,Charged distribution,Polyelectrolyte layer,functional group distribution,Ion current rectification,Ion selectivity,Electroosmotic flow, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202302027 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-03 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 7.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
