Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88596
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐zh_TW
dc.contributor.advisorMario Hofmannen
dc.contributor.author陳楷淇zh_TW
dc.contributor.authorKai-Chi Chenen
dc.date.accessioned2023-08-15T16:59:34Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citation[1] Subhash Singh, Kartikey Verma, Chander Prakash, (2021), Advanced Applications of 2D Nanostructures: Emerging Research and Opportunities, Springer Nature
[2] Drake Austin, Kimberly Gliebe, Christopher Muratore, Bryce Boyer, Timothy S. Fisher, Lucas K. Beagle, Anna Benton, Paige Look, David Moore, Emilie Ringe, Benjamin Treml, Ali Jawaid, Richard Vaia, W. Joshua Kennedy, Philip Buskohl, Nicholas R. Glavin, (2021), Laser writing of electronic circuitry in thin film molybdenum disulfide: A transformative manufacturing approach, Materials Today, Volume 43, Pages 17-26, https://doi.org/10.1016/j.mattod.2020.09.036
[3] Jiang, J., Xu, T., Lu, J., Sun, L., & Ni, Z. (2019). Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. Research (Washington, D.C.). https://doi.org/10.34133/2019/4641739
[4] Long, Mingsheng & Wang, Peng & Fang, Hehai. (2019). Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials. 29. https://doi.org/10.1002/adfm.201803807
[5] Dong, Tao & Simões, João & Yang, Zhaochu. (2020). Flexible Photodetector Based on 2D Materials: Processing, Architectures, and Applications. Advanced Materials Interfaces. 7. https://doi.org/10.1002/admi.201901657
[6] Khan, Irfan & Chattha, Muhammad & Khan, Zeeshan & Mateen, Abdul. (2018). Optimization of Thin Film Thicknesses in Tandem Solar Cells. Journal of Nanoelectronics and Optoelectronics. 13. 104-110. https://doi.org/10.1166/jno.2018.2202
[7] Wikipedia (n.d.)., thermal evaporation. Retrieved from https://en.wikipedia.org/wiki/Evaporation_(deposition)
[8] Waremra, Richard & Betaubun, Philipus. (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences. 73. 13019. https://doi.org/10.1051/e3sconf/20187313019
[9] Wikipedia (n.d.)., Sheet resistance. Retrieved from https://en.wikipedia.org/wiki/Sheet_resistance
[10] Ossila. (n.d.). Calculate Sheet Resistance Using the Four-Probe Method. Retrieved from https://www.ossila.com/pages/sheet-resistance-theory
[11] Wikipedia (n.d.)., Van der Pauw method. Retrieved from https://en.wikipedia.org/wiki/Van_der_Pauw_method
[12] Ophir Optronics Solutions Ltd. (n.d.). Nova II. Retrieved from https://www.ophiropt.com/laser--measurement/laser-power-energy-meters/products/smart-displays/nova2
[13] National Taiwan University MY Lab. (n.d.). Equipment. Retrieved from https://mylab-ch1.weebly.com/3537320633.html
[14] Wikipedia (n.d.)., Raman spectroscopy. Retrieved from https://en.wikipedia.org/wiki/Raman_spectroscopy
[15] Brett Smith. (October 18, 2019). A Guide to Reading Raman Spectra. Retrieved from https://www.azom.com/article.aspx?ArticleID=18610
[16] PL spectroscopy. (n.d.). Light absorption and photoluminescence (PL) spectroscopy. Retrieved from https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Spectroscopy/Light_absorption_and_photoluminescence_(PL)_spectroscopy
[17] KP Technology. (n.d.). What is a Kelvin Probe? Retrieved from https://www.kelvinprobe.com/the-kelvin-probe/
[18] KP Technology. (n.d.). KP020 specification. Retrieved from https://www.kelvinprobe.com/product/kp020/
[19] Yuehui Wang, Shengyao Li, Jia Cao, Yucheng Jiang, Yang Zhang, Weihua Tang, Zhenping Wu, Improved response speed of β-Ga2O3 solar-blind photodetectors by optimizing illumination and bias, Materials & Design, Volume 221, 2022, 110917, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2022.110917.
[20] Yim, Woongbin & Nguyen, Tu & Phung, Quynh & Kim, Hwan Sik & Ahn, Yeong & Lee, Soonil & Park, Ji-Yong. (2022). Imaging Spatial Distribution of Photogenerated Carriers in Monolayer MoS 2 with Kelvin Probe Force Microscopy. ACS Applied Materials & Interfaces. 14. https://doi.org/10.1021/acsami.2c06315
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88596-
dc.description.abstract本研究與美國空軍研究實驗室合作,他們提供的樣品上有條列式分布的MoO_3、non-crystalline MoO_3、MoO_2、2H-MoS_2、a-MoS_2以及Mo_4 O_11。我們的研究主要是針對這些二維材料進行電性的量測以及光響應的探討。我們設計了一種蒸鍍罩,讓我們得以在每一條材料上進行兩點和四點探針的測量。由於這些條列分布的材料數量眾多,我們利用LabVIEW程式進行自動化的大規模測量,並稱這個方法為auto probe。我們只需輸入一些設定,即可讓其開始自動測量。而利用auto probe的i-v結果,我們計算出電阻並用MATLAB畫出圖形幫助我們比較各材料電阻間之差異。除此之外,我們利用顯微鏡的燈以及不同功率的雷射進行i-v和i-t的測量,並計算響應度、電流的上升時間和衰減時間來研究材料的光響應。在i-v的結果中顯示有光照的情形下,材料的電阻會比無光照時的電阻低。在更高的雷射功率下,i-t 測量結果顯示電流不穩定的情形有顯著改善。在i-t測量時,若有施加電壓,電流會隨著光源被打開而上升、關閉而下降。當無施加電壓時,我們只觀察到MoO_3、non-crystalline MoO_3和Mo_4 O_11隨光源開關有產生光電流。然而,此時的電流在光源被關閉時上升、打開時下降。基於這些結果,我們討論了造成這些材料具如此光響應的機制為何。對於MoO_3、non-crystalline MoO_3和Mo_4 O_11而言,它們產生光電流的機制為光閘效應。至於MoO_2、2H-MoS_2和a-MoS_2,它們的光電流產生機制為光電導效應。另外,當施加電壓上升時,各個材料的響應度、電流的上升時間和衰減時間皆上升。材料響應度上升是因為在更高的施加電壓之下,電場的強度增加使得電子電洞對的分離被加強,形成更多光電流讓響應度上升。電流的上升時間和衰減時間增加則是因為載子在材料的價帶和導帶之間跳躍時,受到途中因材料缺陷而生的陷阱態影響,並且困在其中,進而導致電流的上升時間和衰減時間被延長。當光照功率增加時,各個材料的響應度、電流的上升時間和衰減時間皆下降。在更高的光照功率下,雖然產生更多的電子電洞對,但是光照功率的增加仍然大於光電流增加的幅度,因此響應度下降。電流的上升時間和衰減時間下降是因為在更高的光照下,陷阱態逐漸被載子填滿,導致更多載子可以不受拘束地在導帶和價帶中穿梭,因此電流的上升時間和衰減時間縮短。zh_TW
dc.description.abstractIn collaboration with the Air Force Research Laboratory (AFRL), we have the sample with MoO_3, non-crystalline MoO_3, MoO_2, 2H-MoS_2, a-MoS_2 and Mo_4 O_11 strips on it. Our work focuses on the electrical measurement and study the photoresponse of these 2D materials. We design a shadow mask that allows us to do the 2-probe and the 4-probe measurement on each strip of material. Given that there are several sample stripes to measure, we use a LabVIEW program to do the large-scale measurement automatically which is called “auto probe”. We just need to put in some simple settings, and the measurement is ready to go. We use the i-v results of auto probe to calculate and compare the resistances of the materials, and they are shown in a heat map generated by a MATLAB code. Besides, we use the microscope light and the 532nm laser with different power of illumination to do the i-v and i-t measurements, and we study the photoresponse of the materials by calculating the responsivity, rise time and decay time. The i-v results show that the resistances of the materials are lower under illumination than with no illumination. With much higher laser power, the i-t results indicate that the situation of the current fluctuation improves a lot. When there is applied bias voltage during the i-t measurement, the current increases as the light source is turned on and decreases as it is turned off. When there is no applied bias voltage, we can only see the photocurrent in MoO_3, non-crystalline MoO_3 and Mo_4 O_11 as the laser is turned on and off continuously. However, their current increases when the light source is turned off and decreases when it is turned on. Based on the results, we discuss the mechanisms of the photoresponse for the materials. For MoO_3, non-crystalline MoO_3 and Mo_4 O_11, the photocurrent generation mechanism is the photogating effect. As for MoO_2, 2H-MoS_2, and a-MoS_2, the photocurrent generation mechanism is the photoconductive effect. Moreover, as the applied voltage increases, the responsivity, rise time and decay time of all six materials increase. The responsivity increases because the separation of the electron-hole pairs are enhanced by the stronger electric field as the voltage increases, resulting in more photocurrent and higher responsivity. The rise time and decay time increase because the carriers are trapped in trap states due to the defects in materials as they transit between the valence band and the conduction band. When the power of illumination increases, the responsivity, rise time and decay time of all the materials decrease. Although there are more photogenerated electron-hole pairs as the power increases, the increase of the power is still much larger than that of the photocurrent. Therefore, the responsivity decreases as the power increases. The rise time and decay time decrease because the trap states between the valence band and the conduction band are gradually filled by the carriers as the power increases, allowing more carriers to transit between two bands freely. As a result, the rise time and the decay time are shortened.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:59:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:59:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xx
Chapter 1 Introduction 1
Chapter 2 Equipment and Theory 8
2.1 Sample 8
2.2 Aligner 9
2.3 Thermal evaporator 10
2.4 I-V System 12
2.4.1 Two-probe measurement 13
2.4.2 Four-probe measurement 13
2.5 Power and Energy Meters 19
2.6 Raman spectroscopy 21
2.7 Photoluminescence (PL) spectroscopy 22
2.8 Kelvin Probe 23
Chapter 3 Experimental method and results 25
3.1 Contacts preparation 25
3.1.1 Shadow mask 25
3.1.2 Thermal evaporation 27
3.2 I-V measurement 29
3.2.1 Auto probe 30
3.2.2 Photoresponse 35
3.3 Raman and photoluminescence (PL) spectroscopy 81
3.4 Kelvin Probe 86
Chapter 4 Discussion 92
Chapter 5 Conclusion 103
REFERENCE 105
-
dc.language.isoen-
dc.subject光電導效應zh_TW
dc.subject二維材料zh_TW
dc.subject電性量測zh_TW
dc.subject光響應zh_TW
dc.subject光電流zh_TW
dc.subject光閘效應zh_TW
dc.subjectelectrical measurementen
dc.subjectphotogating effecten
dc.subjectphotocurrenten
dc.subjectphotoresponseen
dc.subject2D materialsen
dc.subjectphotoconductive effecten
dc.title材料組成對二維載子傳導機制之影響zh_TW
dc.titleImpact of phase and composition on 2D carrier conduction mechanismsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁初稷;謝雅萍;陳永芳zh_TW
dc.contributor.oralexamcommitteeChu-Chi Ting;Ya-Ping Hsieh;Yang-Fang Chenen
dc.subject.keyword二維材料,電性量測,光響應,光電流,光閘效應,光電導效應,zh_TW
dc.subject.keyword2D materials,electrical measurement,photoresponse,photocurrent,photogating effect,photoconductive effect,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202301891-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved