Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳柏仰zh_TW
dc.contributor.advisorPao-Yang Chenen
dc.contributor.author謝若微zh_TW
dc.contributor.authorJo-Wei Allison Hsiehen
dc.date.accessioned2023-08-15T16:58:17Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citationAbdeen A, Miki B (2009) The pleiotropic effects of the bar gene and glufosinate on the Arabidopsis transcriptome. Plant Biotechnol J 7: 266-282
Ahmad A, Zhang Y, Cao XF (2010) Decoding the epigenetic language of plant development. Mol Plant 3: 719-728
Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166-169
Atlasi Y, Stunnenberg HG (2017) The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 18: 643-658
Bajic M, Maher KA, Deal RB (2018) Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq. Methods Mol Biol 1675: 183-201
Bardini M, Labra M, Winfield M, Sala F (2003) Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture 72: 157-162
Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4: 22
Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12: R10
Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 115: 1454-1459
Bewick AJ, Hofmeister BT, Powers RA, Mondo SJ, Grigoriev IV, James TY, Stajich JE, Schmitz RJ (2019) Diversity of cytosine methylation across the fungal tree of life. Nat Ecol Evol 3: 479-490
Bhosale R, Giri J, Pandey BK, Giehl RFH, Hartmann A, Traini R, Truskina J, Leftley N, Hanlon M, Swarup K, Rashed A, Voss U, Alonso J, Stepanova A, Yun J, Ljung K, Brown KM, Lynch JP, Dolan L, Vernoux T, Bishopp A, Wells D, von Wiren N, Bennett MJ, Swarup R (2018) A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat Commun 9: 1409
Biemont C (2010) From genotype to phenotype. What do epigenetics and epigenomics tell us? Heredity (Edinb) 105: 1-3
Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16: 6-21
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120
Borgognone A, Castanera R, Morselli M, Lopez-Varas L, Rubbi L, Pisabarro AG, Pellegrini M, Ramirez L (2018) Transposon-associated epigenetic silencing during Pleurotus ostreatus life cycle. DNA Res 25: 451-464
Brettingham-Moore KH, Taberlay PC, Holloway AF (2015) Interplay between transcription factors and the epigenome: insight from the role of RUnX1 in leukemia. Front Immunol 6: 1664-3224
Cao J, Duan X, McEiroy D, Wu R (1992) Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep 11: 586-591
Cao X, Jacobsen SE (2002) Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12: 1138-1144
Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6: 351-360
Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A (2022) Recent advances in crop transformation technologies. Nat Plants 8: 1343-1351
Choi J, Lyons DB, Zilberman D (2021) Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin. Elife 10
Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215-219
Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, Kundaje A, Greenleaf WJ, Majeti R, Chang HY (2016) Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48: 1193-1203
Daugherty AC, Yeo RW, Buenrostro JD, Greenleaf WJ, Kundaje A, Brunet A (2017) Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans. Genome Res 27: 2096-2107
de Vocht F, Suderman M, Tilling K, Heron J, Howe LD, Campbell R, Hickman M, Relton C (2018) DNA methylation from birth to late adolescence and development of multiple-risk behaviours. J Affect Disord 227: 588-594
Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38: W64-70
Dubois M, Van den Broeck L, Claeys H, Van Vlierberghe K, Matsui M, Inze D (2015) The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically Regulate Mannitol-Induced Growth Inhibition in Arabidopsis. Plant Physiol 169: 166-179
Edillor CR, Parks BW, Mehrabian M, Lusis AJ, Pellegrini M (2019) DNA Methylation Changes More Slowly Than Physiological States in Response to Weight Loss in Genetically Diverse Mouse Strains. Front Endocrinol (Lausanne) 10: 882
Elango N, Hunt BG, Goodisman MA, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci U S A 106: 11206-11211
Farquharson KL (2008) Phosphate-deprived roots are hypersensitive to auxin. Plant Cell 20: 3183
Feng J, Liu T, Qin B, Zhang Y, Liu XS (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7: 1728-1740
Ferreira LJ, Azevedo V, Maroco J, Oliveira MM, Santos AP (2015) Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress. PLoS One 10: e0124060
Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9: 397-405
Gasparis S, Bregier C, Orczyk W, Nadolska-Orczyk A (2008) Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants. Plant Cell Rep 27: 1721-1729
Gehring M, Henikoff S (2008) DNA methylation and demethylation in Arabidopsis. Arabidopsis Book 6: e0102
Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK (2013) CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res 23: 628-637
Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y, Xu J, Chen CJ, Kaplan N, Chang HY, Heard E, Dekker J (2016) Structural organization of the inactive X chromosome in the mouse. Nature 535: 575-579
Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111: 803-814
Gray LT, Yao Z, Nguyen TN, Kim TK, Zeng H, Tasic B (2017) Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex. Elife 6
Guo W, Fiziev P, Yan W, Cokus S, Sun X, Zhang MQ, Chen PY, Pellegrini M (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 14: 774
Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130: 639-648
He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62: 411-435
He L, Zhao C, Zhang Q, Zinta G, Wang D, Lozano-Duran R, Zhu JK (2021) Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proc Natl Acad Sci U S A 118
Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447: 418-424
Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19: 1419-1428
Hood E, Gelvin S, Melchers L, Hoekema A (1993) NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2: 208-218
Hsieh JA, Chang P, Kuang LY, Hsing YC, Chen PY (2023) Rice transformation treatments leave specific epigenome changes beyond tissue culture. Plant Physiol
Hsieh JA, Yen MR, Chen PY (2020) Epigenomic regulation of OTU5 in Arabidopsis thaliana. Genomics 112: 3549-3559
Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, Huang WL, Ko SS, Chen S, Chen JL, Chung CI, Lin YC, Hour AL, Wang YW, Chang YC, Tsai MW, Lin YS, Chen YC, Yen HM, Li CP, Wey CK, Tseng CS, Lai MH, Huang SC, Chen LJ, Yu SM (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63: 351-364
Hsu F-M, Gohain M, Allishe A, Huang Y-J, Liao J-L, Kuang L-Y, Chen P-Y (2018) Dynamics of the Methylome and Transcriptome during the Regeneration of Rice. Epigenomes 2: 14
Hsu FM, Gohain M, Chang P, Lu JH, Chen PY (2018) Bioinformatics of Epigenetic Data Generated from Next-Generation Sequencing, Vol 6
Hung FY, Chen C, Yen MR, Hsieh JA, Li C, Shih YH, Chen FF, Chen PY, Cui Y, Wu K (2020) The expression of long non-coding RNAs is associated with H3Ac and H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex in Arabidopsis. NAR Genom Bioinform 2: lqaa066
Hung FY, Chen FF, Li C, Chen C, Lai YC, Chen JH, Cui Y, Wu K (2018) The Arabidopsis LDL1/2-HDA6 histone modification complex is functionally associated with CCA1/LHY in regulation of circadian clock genes. Nucleic Acids Res 46: 10669-10681
Inagaki S, Takahashi M, Takashima K, Oya S, Kakutani T (2021) Chromatin-based mechanisms to coordinate convergent overlapping transcription. Nat Plants 7: 295-302
Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52: 39
Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2: 1614-1621
Isono E, Nagel MK (2014) Deubiquitylating enzymes and their emerging role in plant biology. Front Plant Sci 5: 56
Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22: 143-151
Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl: 245-254
Jalmi SK, Sinha AK (2015) ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Front Plant Sci 6: 769
Jiang D, Yang W, He Y, Amasino RM (2007) Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19: 2975-2987
Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421: 163-167
Johnson L, Cao X, Jacobsen S (2002) Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12: 1360-1367
Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13: 484-492
Jupe F, Rivkin AC, Michael TP, Zander M, Motley ST, Sandoval JP, Slotkin RK, Chen H, Castanon R, Nery JR, Ecker JR (2019) The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet 15: e1007819
Khan GA, Vogiatzaki E, Glauser G, Poirier Y (2016) Phosphate Deficiency Induces the Jasmonate Pathway and Enhances Resistance to Insect Herbivory. Plant Physiol 171: 632-644
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37: 907-915
Kim JS, Lim JY, Shin H, Kim BG, Yoo SD, Kim WT, Huh JH (2019) ROS1-Dependent DNA Demethylation Is Required for ABA-Inducible NIC3 Expression. Plant Physiol 179: 1810-1821
Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51: 779-791
Komaki S, Sugimoto K (2012) Control of the plant cell cycle by developmental and environmental cues. Plant Cell Physiol 53: 953-964
Krichevsky A, Zaltsman A, Lacroix B, Citovsky V (2011) Involvement of KDM1C histone demethylase-OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression. Proc Natl Acad Sci U S A 108: 11157-11162
Lacroix B, Citovsky V (2020) Biolistic Approach for Transient Gene Expression Studies in Plants. Methods Mol Biol 2124: 125-139
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359
Latham JR, Wilson AK, Steinbrecher RA (2006) The mutational consequences of plant transformation. J Biomed Biotechnol 2006: 25376
Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11: 204-220
Le TN, Schumann U, Smith NA, Tiwari S, Au PC, Zhu QH, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, Dennis ES, Wang MB (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15: 458
Lea AJ, Vockley CM, Johnston RA, Del Carpio CA, Barreiro LB, Reddy TE, Tung J (2018) Genome-wide quantification of the effects of DNA methylation on human gene regulation. Elife 7
Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146: 325-332
Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R (2006) Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol 26: 6395-6402
Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437: 432-435
Lee Y-J, Chang P, Lu J-H, Chen P-Y, Wang C-JR (2019) Assessing chromatin accessibility in maize using ATAC-seq. bioRxiv: 526079
Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3: 662-673
Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: 523-536
Liu X, Yu CW, Duan J, Luo M, Wang K, Tian G, Cui Y, Wu K (2012) HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol 158: 119-129
Liu YC, Lin YC, Kanehara K, Nakamura Y (2018) A pair of phospho-base methyltransferases important for phosphatidylcholine biosynthesis in Arabidopsis. Plant J 96: 1064-1075
Liu YC, Lin YC, Kanehara K, Nakamura Y (2019) A Methyltransferase Trio Essential for Phosphatidylcholine Biosynthesis and Growth. Plant Physiol 179: 433-445
Lu RJ, Liu YT, Huang CW, Yen MR, Lin CY, Chen PY (2020) ATACgraph: Profiling Genome-Wide Chromatin Accessibility From ATAC-seq. Front Genet 11: 618478
Lu Z, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ (2017) Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res 45: e41
Mager S, Ludewig U (2018) Massive Loss of DNA Methylation in Nitrogen-, but Not in Phosphorus-Deficient Zea mays Roots Is Poorly Correlated With Gene Expression Differences. Front Plant Sci 9: 497
Maher KA, Bajic M, Kajala K, Reynoso M, Pauluzzi G, West DA, Zumstein K, Woodhouse M, Bubb K, Dorrity MW, Queitsch C, Bailey-Serres J, Sinha N, Brady SM, Deal RB (2018) Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules. Plant Cell 30: 15-36
Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11: e1004915
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17: 3
Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15: 394-408
Milazzo G, Mercatelli D, Di Muzio G, Triboli L, De Rosa P, Perini G, Giorgi FM (2020) Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 11
Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53: 256-264
Montanini B, Chen PY, Morselli M, Jaroszewicz A, Lopez D, Martin F, Ottonello S, Pellegrini M (2014) Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content. Genome Biol 15: 411
Montoya AL, Moore LW, Gordon MP, Nester EW (1978) Multiple genes coding for octopine-degrading enzymes in Agrobacterium. J Bacteriol 136: 909-915
Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38: 23-38
Murfett J, Wang XJ, Hagen G, Guilfoyle TJ (2001) Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13: 1047-1061
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K (2019) Transposable elements contribute to fungal genes and impact fungal lifestyle. Sci Rep 9: 4307
Nakamura Y, Teo NZ, Shui G, Chua CH, Cheong WF, Parameswaran S, Koizumi R, Ohta H, Wenk MR, Ito T (2014) Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development. New Phytol 203: 310-322
Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, Patra SK (2014) Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 62: 11-33
Park SY, Kim JS (2020) A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med 52: 204-212
Parry G (2018) Low Phosphate Puts Auxin in the Root Hairs. Trends Plant Sci 23: 845-847
Pedro DLF, Amorim TS, Varani A, Guyot R, Domingues DS, Paschoal AR (2021) An Atlas of Plant Transposable Elements. F1000Res 10: 1194
Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci U S A 104: 6752-6757
Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16: 442-450
Pokhrel S, Huang K, Belanger S, Zhan J, Caplan JL, Kramer EM, Meyers BC (2021) Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Nat Commun 12: 4941
Pontvianne F, Abou-Ellail M, Douet J, Comella P, Matia I, Chandrasekhara C, Debures A, Blevins T, Cooke R, Medina FJ, Tourmente S, Pikaard CS, Saez-Vasquez J (2010) Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genet 6: e1001225
Qian W, Miki D, Zhang H, Liu Y, Zhang X, Tang K, Kan Y, La H, Li X, Li S, Zhu X, Shi X, Zhang K, Pontes O, Chen X, Liu R, Gong Z, Zhu JK (2012) A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336: 1445-1448
Radjacommare R, Lin SY, Usharani R, Lin WD, Jauh GY, Schmidt W, Fu H (2023) The Arabidopsis Deubiquitylase OTU5 Suppresses Flowering by Histone Modification-Mediated Activation of the Major Flowering Repressors FLC, MAF4, and MAF5. Int J Mol Sci 24
Rai V, Sanagala R, Sinilal B, Yadav S, Sarkar AK, Dantu PK, Jain A (2015) Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidence of Cross-Talk with Auxin and Zinc in Arabidopsis. Plant Cell Physiol 56: 1107-1123
Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6: 1720-1731
Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M (2022) Correction: Ramakrishnan et al. The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int. J. Mol. Sci. 2021, 22, 11387. Int J Mol Sci 23
Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42: W187-191
Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44: W160-165
Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140: 909-921
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140
Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3: 288-299
Sahoo RK, Tuteja N (2012) Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops Food 3: 123-128
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290: 998-1009
Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, Zhou YH, Laine JE, Rager JE, Swamy GK, Ashley-Koch A, Lynn Miranda M, Fry RC (2014) Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 9: 212-221
Schmid MW, Heichinger C, Coman Schmid D, Guthorl D, Gagliardini V, Bruggmann R, Aluri S, Aquino C, Schmid B, Turnbull LA, Grossniklaus U (2018) Contribution of epigenetic variation to adaptation in Arabidopsis. Nat Commun 9: 4446
Schubeler D (2015) Function and information content of DNA methylation. Nature 517: 321-326
Schumann U, Lee J, Kazan K, Ayliffe M, Wang MB (2017) DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns. Front Plant Sci 8: 1449
Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46: 1350-1357
Son O, Cho HY, Kim MR, Lee H, Lee MS, Song E, Park JH, Nam KH, Chun JY, Kim HJ, Hong SK, Chung YY, Hur CG, Cho HT, Cheon CI (2005) Induction of a homeodomain-leucine zipper gene by auxin is inhibited by cytokinin in Arabidopsis roots. Biochem Biophys Res Commun 326: 203-209
Song L, Liu D (2015) Ethylene and plant responses to phosphate deficiency. Front Plant Sci 6: 796
Stelpflug SC, Eichten SR, Hermanson PJ, Springer NM, Kaeppler SM (2014) Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198: 209-218
Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, Wang GL, Meyers BC, Jacobsen SE (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. Elife 2: e00354
Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21: 64-72
Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152: 352-364
Suen DF, Tsai YH, Cheng YT, Radjacommare R, Ahirwar RN, Fu H, Schmidt W (2018) The Deubiquitinase OTU5 Regulates Root Responses to Phosphate Starvation. Plant Physiol 176: 2441-2455
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47: D607-D613
Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286: 355-365
Tan F, Zhou C, Zhou Q, Zhou S, Yang W, Zhao Y, Li G, Zhou DX (2016) Analysis of Chromatin Regulators Reveals Specific Features of Rice DNA Methylation Pathways. Plant Physiol 171: 2041-2054
Teng CS, Wu BH, Yen MR, Chen PY (2020) MethGET: web-based bioinformatics software for correlating genome-wide DNA methylation and gene expression. BMC Genomics 21: 375
Thalheim T, Hopp L, Binder H, Aust G (2018) On the Cooperation between Epigenetics and Transcription Factor Networks in the Specification of Tissue Stem Cells. Epigenomes 2: 20
Thibodeau A, Uyar A, Khetan S, Stitzel ML, Ucar D (2018) A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci Rep 8: 16048
Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47: 969-976
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578
Van Hengel AJ, Roberts K (2003) AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J 36: 256-270
Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylides C, Shulaev V, Van Montagu MC, Van Breusegem F, Mittler R (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci U S A 108: 1711-1716
Voss TC, Hager GL (2014) Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 15: 69-81
Wang G, Li X, Shen W, Li MW, Huang M, Zhang J, Li H (2022) The chromatin accessibility landscape of pistils and anthers in rice. Plant Physiol 190: 2797-2811
Wang H, Beyene G, Zhai J, Feng S, Fahlgren N, Taylor NJ, Bart R, Carrington JC, Jacobsen SE, Ausin I (2015) CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proc Natl Acad Sci U S A 112: 13729-13734
Wang J, Zibetti C, Shang P, Sripathi SR, Zhang P, Cano M, Hoang T, Xia S, Ji H, Merbs SL, Zack DJ, Handa JT, Sinha D, Blackshaw S, Qian J (2018) ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat Commun 9: 1364
Wang Y, Wang X, Lee TH, Mansoor S, Paterson AH (2013) Gene body methylation shows distinct patterns associated with different gene origins and duplication modes and has a heterogeneous relationship with gene expression in Oryza sativa (rice). New Phytol 198: 274-283
Wei FJ, Kuang LY, Oung HM, Cheng SY, Wu HP, Huang LT, Tseng YT, Chiou WY, Hsieh-Feng V, Chung CH, Yu SM, Lee LY, Gelvin SB, Hsing YI (2016) Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant J 85: 648-659
Wilkins O, Hafemeister C, Plessis A, Holloway-Phillips MM, Pham GM, Nicotra AB, Gregorio GB, Jagadish SV, Septiningsih EM, Bonneau R, Purugganan M (2016) EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water Deficit, High Temperature, and Agricultural Environments. Plant Cell 28: 2365-2384
Williams BP, Pignatta D, Henikoff S, Gehring M (2015) Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 11: e1005142
Willig CJ, Duan K, Zhang ZJ (2018) Transcriptome Profiling of Plant Genes in Response to Agrobacterium tumefaciens-Mediated Transformation. Curr Top Microbiol Immunol 418: 319-348
Willing EM, Rawat V, Mandakova T, Maumus F, James GV, Nordstrom KJ, Becker C, Warthmann N, Chica C, Szarzynska B, Zytnicki M, Albani MC, Kiefer C, Bergonzi S, Castaings L, Mateos JL, Berns MC, Bujdoso N, Piofczyk T, de Lorenzo L, Barrero-Sicilia C, Mateos I, Piednoel M, Hagmann J, Chen-Min-Tao R, Iglesias-Fernandez R, Schuster SC, Alonso-Blanco C, Roudier F, Carbonero P, Paz-Ares J, Davis SJ, Pecinka A, Quesneville H, Colot V, Lysak MA, Weigel D, Coupland G, Schneeberger K (2015) Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat Plants 1: 14023
Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, Zhang B, Liu B, Wang Q, Xia W, Li W, Li Y, Ma J, Peng X, Zheng H, Ming J, Zhang W, Zhang J, Tian G, Xu F, Chang Z, Na J, Yang X, Xie W (2016) The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534: 652-657
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66: 2839-2856
Xu L, Yuan K, Yuan M, Meng X, Chen M, Wu J, Li J, Qi Y (2020) Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat Transposable Elements. Mol Plant 13: 851-863
Xu N, Barlow GM, Cui J, Wang ET, Lee B, Akhlaghpour M, Kroener L, Williams J, 3rd, Rotter JI, Chen YI, Goodarzi MO, Pisarska MD (2017) Comparison of Genome-Wide and Gene-Specific DNA Methylation Profiling in First-Trimester Chorionic Villi From Pregnancies Conceived With Infertility Treatments. Reprod Sci 24: 996-1004
Yamamuro C, Miki D, Zheng Z, Ma J, Wang J, Yang Z, Dong J, Zhu JK (2014) Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nat Commun 5: 4062
Yang J, Yuan L, Yen MR, Zheng F, Ji R, Peng T, Gu D, Yang S, Cui Y, Chen PY, Wu K, Liu X (2020) SWI3B and HDA6 interact and are required for transposon silencing in Arabidopsis. Plant J 102: 809-822
Yang P, Smalle J, Lee S, Yan N, Emborg TJ, Vierstra RD (2007) Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis. Plant J 51: 441-457
Yasuda K, Ito M, Sugita T, Tsukiyama T, Saito H, Naito K, Teraishi M, Tanisaka T, Okumoto Y (2013) Utilization of transposable element mPing as a novel genetic tool for modification of the stress response in rice. Mol Breed 32: 505-516
Yen MR, Suen DF, Hsu FM, Tsai YH, Fu H, Schmidt W, Chen PY (2017) Deubiquitinating Enzyme OTU5 Contributes to DNA Methylation Patterns and Is Critical for Phosphate Nutrition Signals. Plant Physiol 175: 1826-1838
Yong WS, Hsu FM, Chen PY (2016) Profiling genome-wide DNA methylation. Epigenetics Chromatin 9: 26
Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156: 173-184
Yu CW, Tai R, Wang SC, Yang P, Luo M, Yang S, Cheng K, Wang WC, Cheng YS, Wu K (2017) HISTONE DEACETYLASE6 Acts in Concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to Regulate Transposon Silencing. Plant Cell 29: 1970-1983
Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 103: 17331-17336
Zamudio N, Bourc'his D (2010) Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity (Edinb) 105: 92-104
Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153: 193-205
Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328: 916-919
Zhang T, Li R, Xing J, Yan L, Wang R, Zhao Y (2018) The YUCCA-Auxin-WOX11 Module Controls Crown Root Development in Rice. Front Plant Sci 9: 523
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189-1201
Zhao H, Zhang W, Chen L, Wang L, Marand AP, Wu Y, Jiang J (2018) Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome. Plant Physiol 176: 2789-2803
Zhao L, Liu F, Crawford NM, Wang Y (2018) Molecular Regulation of Nitrate Responses in Plants. Int J Mol Sci 19
Zhou S, Liu X, Zhou C, Zhou Q, Zhao Y, Li G, Zhou D-X (2016) Cooperation between the H3K27me3 Chromatin Mark and Non-CG Methylation in Epigenetic Regulation. Plant Physiol 172: 1131-1141
Zhou X, Zhang ZL, Park J, Tyler L, Yusuke J, Qiu K, Nam EA, Lumba S, Desveaux D, McCourt P, Kamiya Y, Sun TP (2016) The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling. Plant Physiol 171: 2760-2770
Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK (2007) The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol 17: 54-59
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39: 61-69
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88591-
dc.description.abstract植物的表觀基因體在發育的不同階段或面對逆境時發生變化,這些改變已知受到 特定遺傳因子調控,透過生物資訊以多體學的角度來描述遺傳因子和表觀基因體 間動態交互作用,能夠鉅細靡遺的看到過去單一基因座分析所不易彙整到的表觀 基因體變化。我的論文涵蓋了植物表觀基因體的四項主要領域:一、在逆境下的 反應與在水稻作物改良的應用,二、對發育的影響,三、在協同與拮抗調控中的 作用,以及四、對脂質生成和對其他物種的影響。在水稻轉殖過程中,複雜的組 織培養添加物對植物是逆境,轉殖過程改變了表觀基因體及外表性狀,使作物改 良實驗難以控制。我的研究目的在釐清整個複雜轉殖過程中會帶來的表觀基因體 變異。結果顯示轉殖過程中的數個重要轉殖因子對水稻造成全基因組 DNA 甲基 化與轉錄體的變化,其影響遠超過目前認為的組織培養。再者,我發現去泛素酶 的突變導致 H3K4me3 和 DNA 甲基化呈相反變化,從而影響與根發育和磷酸鹽 平衡相關的基因表達,作為植物面對低磷環境的適應反應。最後,我的研究進一 步延伸到探討一種組蛋白去乙醯化酶和另一種組蛋白去甲基化酶如何透過改變表 觀基因體以協同或拮抗方式調控跳耀子表達,而這兩種調控之間的轉換是由 H3Ac、H3K4me2 和 DNA 甲基化所操縱。在博士班期間,我也同時接觸了多個 物種的表觀遺傳研究,學習許多次世代實驗技術、設計與流程的建立。透過揭示 表觀基因體的動態與遺傳因子的相互作用,以及其在逆境下的反應與其對發育和 基因組穩定性的影響,我相信我的研究專注於植物表觀基因體調控,並貢獻於植 物生物學基礎研究和作物改良的潛在應用。zh_TW
dc.description.abstractPlant epigenomes are shaped by specific genetic factors during development or in stress responses. Devising bioinformatic strategies to delineate dynamic interactions with a multi-omics perspective has great potential for new discoveries. My thesis emphasizes the major areas of plan epigenomics: 1. Epigenomic regulation under stress responses and its application in crop improvement, 2. Epigenomic regulation in development, 3. Epigenomic regulation in synergistic and antagonistic effects, and 4. Epigenomes in lipid production and in other species. In rice transformation, tissue culture is known to trigger epigenomic variations, resulting in phenotypic variations. I identified specific transformation treatments that impacted genome-wide DNA methylation associating with gene expression, beyond the effect from tissue culture. Stress conditions also trigger changes in histone modifications. I found that lacking a deubiquitinating enzyme led to anticorrelation in H3K4me3 and DNA methylation, influencing the expression of genes in root development and phosphate homeostasis, as responses to low phosphate. I further extended to uncover the synergistic regulation of transposable elements by a histone deacetylase and two demethylases. I found that the transition between synergistic and antagonistic regulations was jointly determined by H3Ac, H3K4me2 and DNA methylation types. I also joined several collaborative projects to explore epigenomes in other species and learned experimental skills. Overall, my PhD research of epigenomic regulation in plants uncovered the dynamic and interesting nature of epigenomes, their interplay with genetic factors, and their impacts on stress responses, development, and genome stability. I hope my thesis has contributed to both basic research in plant biology and potential applications in crop improvement.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:58:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:58:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
List of Tables vii
List of Figures viii
List of Appendices x
Abbreviations xiv
Chapter 1. Introduction 1
Chapter 2. Epigenomic regulation under stress responses and its application in crop improvement 5
Summary 5
Introduction 7
Materials and Methods 11
Results 18
Discussion 37
Conclusions 42
Chapter 3. Epigenomic regulation in development 43
Summary 43
Introduction 45
Materials and Methods 49
Results 51
Discussion 64
Conclusions 69
Chapter 4. Epigenomic regulation in synergistic and antagonistic effects 70
Summary 70
Introduction 72
Materials and Methods 77
Results 82
Discussion 100
Conclusions 108
Chapter 5. Conclusions and Future Perspectives 109
References 113
Appendices 125
Appendix A - Chapter 2 125
Appendix B - Chapter 3 146
Appendix C - Chapter 4 158
Appendix D - Fungal DNA methylation on TE 170
Appendix E - Maize ATAC-seq 177
Appendix F - Arabidopsis DNA methylation and its interplay with lipid production 181
-
dc.language.isoen-
dc.subject生物資訊zh_TW
dc.subject遺傳和表觀基因體間交互作用zh_TW
dc.subject動態表觀基因體zh_TW
dc.subject協同與拮抗調控zh_TW
dc.subject作物改良zh_TW
dc.subjectDynamic epigenomesen
dc.subjectBioinformaticsen
dc.subjectCrop improvementen
dc.subjectInteractions of genetics and epigenomesen
dc.subjectSynergistic and antagonistic regulationen
dc.title探討植物表觀基因體與轉錄體的動態調控zh_TW
dc.titleDynamic Regulation of Epigenomes and Transcriptomes in Plantsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee吳素幸;吳克強;蔡育彰;董致韡;吳亭穎zh_TW
dc.contributor.oralexamcommitteeShu-Hsing Wu;Keqiang Wu;Yu-Chang Tsai;Chih-Wei Tung;Ting-Ying Wuen
dc.subject.keyword動態表觀基因體,遺傳和表觀基因體間交互作用,生物資訊,作物改良,協同與拮抗調控,zh_TW
dc.subject.keywordBioinformatics,Dynamic epigenomes,Interactions of genetics and epigenomes,Crop improvement,Synergistic and antagonistic regulation,en
dc.relation.page187-
dc.identifier.doi10.6342/NTU202302372-
dc.rights.note未授權-
dc.date.accepted2023-08-04-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
24.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved