Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88583
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周逸儒zh_TW
dc.contributor.advisorYi-Ju Chouen
dc.contributor.author邱德耀zh_TW
dc.contributor.authorTe-Yao Chiuen
dc.date.accessioned2023-08-15T16:56:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citationAbreu, Leandra I, André V Cavalieri, and William Wolf. 2017. “Coherent Hydrodynamic Waves and Trailing-Edge Noise.” In 23rd AIAA/CEAS Aeroacoustics Conference, 3173.
Abreu, Leandra I, Alvaro Tanarro, André VG Cavalieri, Philipp Schlatter, Ricardo Vinuesa, Ardeshir Hanifi, and Dan S Henningson. 2021.“Spanwise-Coherent Hydrodynamic Waves Around Flat Plates and Airfoils.” Journal of Fluid Mechanics 927: A1.
Agarwal, Ramesh. 1999. “Computational Fluid Dynamics of Whole-Body Aircraft.” Annual Review of Fluid Mechanics 31 (1): 125–69.
Alonso, D, JM Vega, and A Velazquez. 2010. “Reduced-Order Model for Viscous Aerodynamic Flow Past an Airfoil.” AIAA Journal 48 (9): 1946–58.
Anyoji, Masayuki, Taku Nonomura, Hikaru Aono, Akira Oyama, Kozo Fujii, Hiroki Nagai, and Keisuke Asai. 2014. “Computational and Experimental Analysis of a High-Performance Airfoil Under Low-Reynolds-Number Flow Condition.” Journal of Aircraft 51 (6): 1864–72.
Argyropoulos, Christos D, and NC Markatos. 2015. “Recent Advances on the Numerical Modelling of Turbulent Flows.” Applied Mathematical Modelling 39 (2): 693–732.
Aubry, Nadine. 1991. “On the Hidden Beauty of the Proper Orthogonal Decomposition.” Theoretical and Computational Fluid Dynamics 2 (5-6): 339–52.
Aubry, Nadine, Philip Holmes, John L Lumley, and Emily Stone. 1988.“The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer.” Journal of Fluid Mechanics 192: 115–73.
Baldwin, Barrett, and Timothy Barth. 1991. “A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows.” In 29th Aerospace Sciences Meeting, 610.
Baldwin, Barrett, and Harvard Lomax. 1978. “Thin-Layer Approximation and Algebraic Model for Separated Turbulentflows.” In 16th Aerospace Sciences Meeting, 257.
Bardina, Jorge, J Ferziger, and WC Reynolds. 1980. “Improved Subgrid-Scale Models for Large-Eddy Simulation.” In 13th Fluid and Plasmadynamics Conference, 1357.
Behrens, Richard T, and Louis L Scharf. 1994. “Signal Processing Applications of Oblique Projection Operators.” IEEE Transactions on Signal Processing 42 (6): 1413–24.
Carmichael, B. H. 1981. “Low Reynolds Number Airfoil Survey.”
Cebeci, Tuncer. 2012. Analysis of Turbulent Boundary Layers. Elsevier.
Chang, C. C. 1992. “Potential Flow and Forces for Incompressible Viscous Flow.” Proc. R. Soc. Lond. Ser. A 437: 517–25.
Chang, Chien-Cheng, and Sheng-Yuan Lei. 1996. “An Analysis of Aerodynamic Forces on a Delta Wing.” Journal of Fluid Mechanics 316: 173–96.
Chang, Chien-C, Shih-Hao Yang, and Chin-Chou Chu. 2008. “A Many-Body Force Decomposition with Applications to Flow about Bluff Bodies.” Journal of Fluid Mechanics 600: 95–104.
Chang, Hung-Yi. 2021. “Force Element Analysis on the NACA 0012 Airfoil in Turbulence Flow at Low Reynolds Number.” Master’s thesis, National Taiwan University.
Chen, Tai-Yuan. 2013. “The Applications of Force Element on Turbulence Model.” Master’s thesis, National Taiwan University.
Chinta, Vamsi Krishna, Chan-Ye Ohh, Geoffrey Spedding, and Mitul Luhar. 2022. “Regime Identification for Stratified Wakes from Limited Measurements: A Library-Based Sparse Regression Formulation.” Physical Review Fluids 7 (3): 033803.
Chorin, Alexandre Joel. 1967. “The Numerical Solution of the Navier-Stokes Equations for an Incompressible Fluid.” Bulletin of the American Mathematical Society 73 (6): 928–31.
Chu, Boa-Teh. 1965. “On the Energy Transfer to Small Disturbances in Fluid Flow (Part i).” Acta Mechanica 1 (3): 215–34.
Deardorff, James W. 1970. “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers.” Journal of Fluid Mechanics 41 (2): 453–80.
Dowell, Earl H, Kenneth C Hall, and Michael C Romanowski. 1997.“Eigenmode Analysis in Unsteady Aerodynamics: Reduced Order Models.” Applied Mechanics Reviews 50 (6): 371.
Eljack, Eltayeb, Julio Soria, Yasir Elawad, and Tomohisa Ohtake. 2021.“Simulation and Characterization of the Laminar Separation Bubble over a NACA-0012 Airfoil as a Function of Angle of Attack.” Physical Review Fluids 6 (3): 034701.
Eymard, Robert, Thierry Gallouët, and Raphaèle Herbin. 2000. “Finite Volume Methods.” Handbook of Numerical Analysis 7: 713–1018.
Fares, Ehab, and Wolfgang Schröder. 2005. “A General One-Equation Turbulence Model for Free Shear and Wall-Bounded Flows.” Flow, Turbulence and Combustion 73: 187–215.
Ferziger, Joel H, Milovan Perić, and Robert L Street. 2002. Computational Methods for Fluid Dynamics. Vol. 3. Springer.
Fluent, ANSYS. 2013. “ANSYS Fluent Theory Guide 15.0.” ANSYS, Canonsburg, PA 33.
Freund, JB, and T Colonius. 2009. “Turbulence and Sound-Field POD Analysis of a Turbulent Jet.” International Journal of Aeroacoustics 8 (4): 337–54.
Gatski, Thomas B, and Jean-Paul Bonnet. 2013. Compressibility, Turbulence and High Speed Flow. Academic Press.
George, William K. 1988. “Insight into the Dynamics of Coherent Structures from a Proper Orthogonal Decomposition Dy.” In International Seminar on Wall Turbulence.
Germano, M. 1990. “Averaging Invariance of the Turbulent Equations and Similar Subgrid Scale Modeling.” CTR Manuscript 116.
Germano, Massimo, Ugo Piomelli, Parviz Moin, and William H Cabot. 1991.“A Dynamic Subgrid-Scale Eddy Viscosity Model.” Physics of Fluids A: Fluid Dynamics 3 (7): 1760–65.
Grilli, Muzio, Peter J Schmid, Stefan Hickel, and Nikolaus A Adams. 2012. “Analysis of Unsteady Behaviour in Shockwave Turbulent Boundary Layer Interaction.” Journal of Fluid Mechanics 700: 16–28.
Gursul, Ismet. 2004. “Recent Developments in Delta Wing Aerodynamics.” The Aeronautical Journal 108 (1087): 437–52.
Hamid, Faheem, Chandi Sasmal, and RP Chhabra. 2022. “Dynamic Mode Decomposition Analysis and Fluid-Mechanical Aspects of Viscoelastic Fluid Flows Past a Cylinder in Laminar Vortex Shedding Regime.” Physics of Fluids 34 (10): 103114.
Harlow, Francis H, and J Eddie Welch. 1965. “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface.” The Physics of Fluids 8 (12): 2182–89.
Hinze, JO. 1975. “Turbulence. McGraw-Hill Publishing Co.” New York.
Hirsch, Charles. 2007. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Elsevier.
Holmes, D, and S Connell. 1989. “Solution of the 2D Navier-Stokes Equations on Unstructured Adaptive Grids.” In 9th Computational Fluid Dynamics Conference, 1932.
Horton, Harry Philip. 1968. “Laminar Separation Bubbles in Two and Three Dimensional Incompressible Flow.” PhD thesis, Queen Mary University of London.
Howarth, Leslie. 1935. “The Theoretical Determination of the Lift Coefficient for a Thin Elliptic Cylinder.” Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 149 (868): 558–86.
Howe, MS. 1995. “On the Force and Moment on a Body in an Incompressible Fluid, with Application to Rigid Bodies and Bubbles at High and Low Reynolds Numbers.” The Quarterly Journal of Mechanics and Applied Mathematics 48 (3): 401–26.
Howe, MS, GC Lauchle, and J Wang. 2001. “Aerodynamic Lift and Drag Fluctuations of a Sphere.” Journal of Fluid Mechanics 436: 41–57.
Hsieh, Cheng-Ta, Chien C Chang, and Chin-Chou Chu. 2009. “Revisiting the Aerodynamics of Hovering Flight Using Simple Models.” Journal of Fluid Mechanics 623: 121–48.
Hsieh, Cheng-Ta, Chun-Fei Kung, Chien C Chang, and Chin-Chou Chu. 2010. “Unsteady Aerodynamics of Dragonfly Using a Simple Wing–Wing Model from the Perspective of a Force Decomposition.” Journal of Fluid Mechanics 663: 233–52.
Huang, Rong F, and Chih L Lin. 1995. “Vortex Shedding and Shear-Layer Instability of Wing at Low-Reynolds Numbers.” AIAA Journal 33 (8): 1398–1403.
Hunt, Julian CR, Alan A Wray, and Parviz Moin. 1988. “Eddies, Streams, and Convergence Zones in Turbulent Flows.” Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program.
Issa, Raad I. 1986. “Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting.” Journal of Computational Physics 62 (1): 40–65.
Jardin, Thierry, and Yannick Bury. 2012. “Lagrangian and Spectral Analysis of the Forced Flow Past a Circular Cylinder Using Pulsed Tangential Jets.” Journal of Fluid Mechanics 696: 285–300.
Jasak, Hrvoje. 1996. “Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows.” PhD thesis, Imperial College, University of London.
Jones, LE, RD Sandberg, and ND Sandham. 2008. “Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence.” Journal of Fluid Mechanics 602: 175–207.
Kambe, Tsutomu. 1986. “Acoustic Emissions by Vortex Motions.” Journal of Fluid Mechanics 173: 643–66.
Kojima, Ryoji, Taku Nonomura, Akira Oyama, and Kozo Fujii. 2013. “Large-Eddy Simulation of Low-Reynolds-Number Flow over Thick and Thin NACA Airfoils.” Journal of Aircraft 50 (1): 187–96.
Kojima, Yoimi, Calum S Skene, Chi-An Yeh, Kunihiko Taira, and Masaharu Kameda. 2023. “On the Origin of Quadrupole Sound from a Two-Dimensional Aerofoil Trailing Edge.” Journal of Fluid Mechanics 958: A3.
Kojima, Yoimi, Chi-An Yeh, Kunihiko Taira, and Masaharu Kameda. 2020. “Resolvent Analysis on the Origin of Two-Dimensional Transonic Buffet.” Journal of Fluid Mechanics 885: R1.
Kolmogorov, Andrej Nikolaevich. 1941. “Equations of Turbulent Motion in an Incompressible Fluid.” In Dokl. Akad. Nauk SSSR, 30:299–303.
Küchemann, Dietrich. 2012. The Aerodynamic Design of Aircraft. American Institute of Aeronautics; Astronautics, Inc.
Kundu, Pijush K, Ira M Cohen, and David R Dowling. 2015. Fluid Mechanics. Academic press.
Landau, Lev Davidovich, and EM Lifshitz. 1959. “Fluid Mechanics.” Course of Theoretical Physics.
Launder, Brian Edward, and Bahrat I Sharma. 1974. “Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc.” Letters in Heat and Mass Transfer 1 (2): 131–37.
Lee, Jian-Jhih, Cheng-Ta Hsieh, Chien C Chang, and Chin-Chou Chu. 2012. “Vorticity Forces on an Impulsively Started Finite Plate.” Journal of Fluid Mechanics 694: 464–92.
Lehmkuhl, O, I Rodrı́guez, A Baez, A Oliva, and CD Pérez-Segarra. 2013. “On the Large-Eddy Simulations for the Flow Around Aerodynamic Profiles Using Unstructured Grids.” Computers & Fluids 84: 176–89.
Leonard, Athony. 1975. “Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows.” In Advances in Geophysics, 18:237–48. Elsevier.
Leonard, Brian P. 1979. “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation.” Computer Methods in Applied Mechanics and Engineering 19 (1): 59–98.
Lesieur, Marcel. 1987. Turbulence in Fluids: Stochastic and Numerical Modelling. Vol. 488. Nijhoff Boston, MA.
Lesshafft, Lutz, Onofrio Semeraro, Vincent Jaunet, André VG Cavalieri, and Peter Jordan. 2019. “Resolvent-Based Modeling of Coherent Wave Packets in a Turbulent Jet.” Physical Review Fluids 4 (6): 063901.
Lighthill, James. 1986. “Fundamentals Concerning Wave Loading on Offshore Structures.” Journal of Fluid Mechanics 173: 667–81.
Lilly, Douglas K. 1992. “A Proposed Modification of the Germano Subgrid-Scale Closure Method.” Physics of Fluids A: Fluid Dynamics 4 (3): 633–35.
Lin, JC Muti, and Laura L Pauley. 1996. “Low-Reynolds-Number Separation on an Airfoil.” AIAA Journal 34 (8): 1570–77.
Lissaman, PBS. 1983. “Low-Reynolds-Number Airfoils.” Annual Review of Fluid Mechanics 15 (1): 223–39.
Liu, Jian, and Zhixiang Xiao. 2020. “Low-Frequency Oscillation over NACA0015 Airfoil Near Stall at High Reynolds Number.” AIAA Journal 58 (1): 53–60.
Liu, Kung-Wei. 2013. “On the Theory of Force Elements with Turbulence Effects:large-Eddy Simulation.” Master’s thesis, National Taiwan University.
Liu, Yunqing, Qin Wu, Biao Huang, Hanzhe Zhang, Wendong Liang, and Guoyu Wang. 2021. “Decomposition of Unsteady Sheet/Cloud Cavitation Dynamics in Fluid-Structure Interaction via POD and DMD Methods.” International Journal of Multiphase Flow 142: 103690.
Lumley, J. L. 1967. “The Structure of Inhomogeneous Turbulent Flow.”
Lumley, John L. 1970. Stochastic Tools in Turbulence. Academic Press.
Magionesi, Francesca, Giulio Dubbioso, Roberto Muscari, and Andrea Di Mascio. 2018. “Modal Analysis of the Wake Past a Marine Propeller.” Journal of Fluid Mechanics 855: 469–502.
Martı́n-Alcántara, A, R Fernandez-Feria, and E Sanmiguel-Rojas. 2015. “Vortex Flow Structures and Interactions for the Optimum Thrust Efficiency of a Heaving Airfoil at Different Mean Angles of Attack.” Physics of Fluids 27 (7): 073602.
Mathieu, Jean, and Julian Scott. 2000. An Introduction to Turbulent Flow. Cambridge University Press.
McKeon, Beverley J, and Ati S Sharma. 2010. “A Critical-Layer Framework for Turbulent Pipe Flow.” Journal of Fluid Mechanics 658: 336–82.
McMasters, John H, and Michael L Henderson. 1979. “Low-Speed Single-Element Airfoil Synthesis.” NASA. Langley Res. Center The Sci. And Technol. Of Low Speed and Motorless Flight, Pt. 1.
Miley, Stan J. 1982. “Catalog of Low-Reynolds-Number Airfoil Data for Wind-Turbine Applications.” Rockwell International Corp., Golden, CO (USA). Rocky Flats Plant; Texas A ….
Moarref, Rashad, Ati S Sharma, Joel A Tropp, and Beverley J McKeon. 2013. “Model-Based Scaling of the Streamwise Energy Density in High-Reynolds-Number Turbulent Channels.” Journal of Fluid Mechanics 734: 275–316.
Moarref, R, MR Jovanović, JA Tropp, AS Sharma, and BJ McKeon. 2014. “A Low-Order Decomposition of Turbulent Channel Flow via Resolvent Analysis and Convex Optimization.” Physics of Fluids 26 (5): 051701.
Mohan, Arvind T, Datta V Gaitonde, and Miguel R Visbal. 2016. “Model Reduction and Analysis of Deep Dynamic Stall on a Plunging Airfoil.” Computers & Fluids 129: 1–19.
Moin, Parviz. 2010. Fundamentals of Engineering Numerical Analysis. Cambridge University Press.
Moin, Parviz, and Robert D Moser. 1989. “Characteristic-Eddy Decomposition of Turbulence in a Channel.” Journal of Fluid Mechanics 200: 471–509.
Moriche, Manuel, Oscar Flores, and Manuel Garcı́a-Villalba. 2017. “On the Aerodynamic Forces on Heaving and Pitching Airfoils at Low Reynolds Number.” Journal of Fluid Mechanics 828: 395–423.
Morra, Pierluigi, Petrônio AS Nogueira, André VG Cavalieri, and Dan S Henningson. 2021. “The Colour of Forcing Statistics in Resolvent Analyses of Turbulent Channel Flows.” Journal of Fluid Mechanics 907: A24.
Mueller, Thomas J. 2000. “Aerodynamic Measurements at Low Raynolds Numbers for Fixed Wing Micro-Air Vehicles.” Notre dame univ in dept of aerospace; mechanical engineering.
Mueller, Thomas J, and James D DeLaurier. 2003. “Aerodynamics of Small Vehicles.” Annual Review of Fluid Mechanics 35 (1): 89–111.
Musial, WD, and DE Cromack. 1988. “Influence of Reynolds Number on Performance Modeling of Horizontal Axis Wind Rotors.” Journal of Solar Energy Engineering 110 (2): 139–44.
Nekkanti, Akhil, and Oliver T Schmidt. 2021. “Frequency–Time Analysis, Low-Rank Reconstruction and Denoising of Turbulent Flows Using SPOD.” Journal of Fluid Mechanics 926.
Nicoud, Franck, and Frédéric Ducros. 1999. “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor.” Flow, Turbulence and Combustion 62 (3): 183–200.
O’meara, MM, and Thomas J Mueller. 1987. “Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers.” AIAA Journal 25 (8): 1033–41.
Oran, Elaine S, Jay P Boris, and Jay P Boris. 2001. Numerical Simulation of Reactive Flow. Vol. 2. Citeseer.
Padovan, Alberto, Samuel E Otto, and Clarence W Rowley. 2020. “Analysis of Amplification Mechanisms and Cross-Frequency Interactions in
Nonlinear Flows via the Harmonic Resolvent.” Journal of Fluid Mechanics 900: A14.
Patankar, S. V, and D. B Spalding. 1972. “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows.” International Journal of Heat and Mass Transfer 15 (10): 1787–1806.
Patankar, Suhas. 1980. Numerical Heat Transfer and Fluid Flow. CRC Press.
Pickering, Ethan, Georgios Rigas, Oliver T Schmidt, Denis Sipp, and Tim Colonius. 2021. “Optimal Eddy Viscosity for Resolvent-Based Models of Coherent Structures in Turbulent Jets.” Journal of Fluid Mechanics 917: A29.
Pitsch, Heinz, and Helfried Steiner. 2000. “Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame d).” Physics of Fluids 12 (10): 2541–54.
Pope, Stephen B. 1975. “A More General Effective-Viscosity Hypothesis.” Journal of Fluid Mechanics 72 (2): 331–40.
Pope, Stephen B. 2000. Turbulent Flows. Cambridge university press.
Prandtl, Ludwig. 1949. “Report on Investigation of Developed Turbulence.” Zeitschrift Fuer Angewandte Matematik Und Mechanik 5 (NACA-TM-1231).
Ramos, Brener LO, William R Wolf, Chi-An Yeh, and Kunihiko Taira. 2019. “Active Flow Control for Drag Reduction of a Plunging Airfoil Under Deep Dynamic Stall.” Physical Review Fluids 4 (7): 074603.
Rausch, Russ, Henry Yang, and John Batina. 1991. “Spatial Adaption Procedures on Unstructured Meshes for Accurate Unsteady Aerodynamic Flow Computation.” In 32nd Structures, Structural Dynamics, and Materials Conference, 1106.
Reynolds, Osborne. 1895. “IV. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion.” Philosophical Transactions of the Royal Society of London.(a.) 186: 123–64.
Ribeiro, Jean Hélder Marques, and William Roberto Wolf. 2017. “Identification of Coherent Structures in the Flow Past a NACA0012 Airfoil via Proper Orthogonal Decomposition.” Physics of Fluids 29 (8): 085104.
Riley, AJ, and MV Lowson. 1998. “Development of a Three-Dimensional Free Shear Layer.” Journal of Fluid Mechanics 369: 49–89.
Rodi, Wolfgang. 2017. Turbulence Models and Their Application in Hydraulics: A State-of-the-Art Review. Routledge.
Rodrı́guez, Ivette, Oriol Lehmkuhl, R Borrell, and A Oliva. 2013. “Direct Numerical Simulation of a NACA0012 in Full Stall.” International Journal of Heat and Fluid Flow 43: 194–203.
Roshko, Anatol. 1961. “Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number.” Journal of Fluid Mechanics 10 (3): 345–56.
Rowley, Clarence W, and Scott TM Dawson. 2017. “Model Reduction for Flow Analysis and Control.” Annual Review of Fluid Mechanics 49: 387–417.
Rowley, Clarence W, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. 2009. “Spectral Analysis of Nonlinear Flows.” Journal of Fluid Mechanics 641: 115–27.
Salami, Erfan, Thomas A Ward, Elham Montazer, and Nik Nazri Nik Ghazali. 2019. “A Review of Aerodynamic Studies on Dragonfly Flight.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (18): 6519–37.
Sano, Alex, Leandra I Abreu, André VG Cavalieri, and William R Wolf. 2019. “Trailing-Edge Noise from the Scattering of Spanwise-Coherent Structures.” Physical Review Fluids 4 (9): 094602.
Sayadi, Taraneh, Peter J Schmid, Joseph W Nichols, and Parviz Moin. 2014. “Reduced-Order Representation of Near-Wall Structures in the Late Transitional Boundary Layer.” Journal of Fluid Mechanics 748: 278–301.
Schmid, Peter J. 2010. “Dynamic Mode Decomposition of Numerical and Experimental Data.” Journal of Fluid Mechanics 656: 5–28.
Schmidt, Oliver T, and Tim Colonius. 2020. “Guide to Spectral Proper Orthogonal Decomposition.” Aiaa Journal 58 (3): 1023–33.
Schmidt, Oliver T, and Aaron Towne. 2019. “An Efficient Streaming Algorithm for Spectral Proper Orthogonal Decomposition.” Computer Physics Communications 237: 98–109.
Schmidt, Oliver T, Aaron Towne, Georgios Rigas, Tim Colonius, and Guillaume A Brès. 2018. “Spectral Analysis of Jet Turbulence.” Journal of Fluid Mechanics 855: 953–82.
Sears, WR. 1956. “Some Recent Developments in Airfoil Theory.” Journal of the Aeronautical Sciences 23 (5): 490–99.
Sears, WR. 1976. “Unsteady Motion of Airfoils with Boundary-Layer Separation.” AIAA Journal 14 (2): 216–20.
Shan, Hua, Li Jiang, and Chaoqun Liu. 2005. “Direct Numerical Simulation of Flow Separation Around a NACA 0012 Airfoil.” Computers & Fluids 34 (9): 1096–1114.
Sheldahl, Robert E, and Paul C Klimas. 1981. “Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines.” Sandia National Labs., Albuquerque, NM (USA).
Shen, Tangjun, Xiaojun Li, Linmin Li, Zhengdong Wang, and Yaoyao Liu. 2021. “Evaluation of Vorticity Forces in Thermo-Sensitive Cavitating Flow Considering the Local Compressibility.” International Communications in Heat and Mass Transfer 120: 105008.
Shewchuk, Jonathan Richard et al. 1994. “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.” Carnegie-Mellon University. Department of Computer Science Pittsburgh.
Sirovich, Lawrence. 1987a. “Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures.” Quarterly of Applied Mathematics 45 (3): 561–71.
Smagorinsky, Joseph. 1963. “General Circulation Experiments with the Primitive Equations: I. The Basic Experiment.” Monthly Weather Review 91 (3): 99–164.
Spalart, Philippe, and Steven Allmaras. 1992. “A One-Equation Turbulence Model for Aerodynamic Flows.” In 30th Aerospace Sciences Meeting and Exhibit, 439.
Strang, Gilbert et al. 2019. Linear Algebra and Learning from Data. Vol. 4. Wellesley-Cambridge Press Cambridge.
Sullivan, Peter P, James C McWilliams, and Chin-Hoh Moeng. 1994. “A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows.” Boundary-Layer Meteorology 71: 247–76.\
Taira, Kunihiko, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim Colonius, Beverley J McKeon, Oliver T Schmidt, Stanislav Gordeyev, Vassilios Theofilis, and Lawrence S Ukeiley. 2017. “Modal Analysis of Fluid Flows: An Overview.” Aiaa Journal 55 (12): 4013–41.
Taira, Kunihiko, Maziar S Hemati, Steven L Brunton, Yiyang Sun, Karthik Duraisamy, Shervin Bagheri, Scott TM Dawson, and Chi-An Yeh. 2020. “Modal Analysis of Fluid Flows: Applications and Outlook.” AIAA Journal 58 (3): 998–1022.
Tamaki, Yoshiharu, Yuma Fukushima, Yuichi Kuya, and Soshi Kawai. 2020. “Physics and Modeling of Trailing-Edge Stall Phenomena for Wall-Modeled Large-Eddy Simulation.” Physical Review Fluids 5 (7): 074602.
Tangler, James L, and Dan M Somers. 1995. “NREL Airfoil Families for HAWTs.” National Renewable Energy Lab., Golden, CO (United States).
Tennekes, Hendrik, John Leask Lumley, Jonh L Lumley, et al. 1972. A First Course in Turbulence. MIT press.
Thekkethil, Namshad, Atul Sharma, and Amit Agrawal. 2018. “Unified Hydrodynamics Study for Various Types of Fishes-Like Undulating Rigid Hydrofoil in a Free Stream Flow.” Physics of Fluids 30 (7): 077107.
Thomareis, Nikitas, and George Papadakis. 2017. “Effect of Trailing Edge Shape on the Separated Flow Characteristics Around an Airfoil at Low Reynolds Number: A Numerical Study.” Physics of Fluids 29 (1): 014101.
Tissot, Gilles, André VG Cavalieri, and Etienne Mémin. 2021. “Stochastic Linear Modes in a Turbulent Channel Flow.” Journal of Fluid Mechanics 912: A51.
Towne, Aaron, Oliver T Schmidt, and Tim Colonius. 2018. “Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis.” Journal of Fluid Mechanics 847: 821–67.
Trottenberg, Ulrich, Cornelius W Oosterlee, and Anton Schuller. 2000. Multigrid. Elsevier.
Tsuchiya, Takaaki, Daiju Numata, Tetsuya Suwa, and Keisuke Asai. 2013. “Influence of Turbulence Intensity on Aerodynamic Characteristics of an NACA 0012 at Low Reynolds Numbers.” In 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 65.
Wang, Yinan, Xiaowei Zhao, Michael Graham, and Juan Li. 2022. “Vortex Force Map for Incompressible Multi-Body Flows with Application to Wing–Flap Configurations.” Journal of Fluid Mechanics 953: A37.
Welch, Peter. 1967. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms.” IEEE Transactions on Audio and Electroacoustics 15 (2): 70–73.
Wells, John C. 1996. “A Geometrical Interpretation of Force on a Translating Body in Rotational Flow.” Physics of Fluids 8 (2): 442–50.
Wikipedia contributors. 2023. “Potential Flow Around a Circular Cylinder— Wikipedia, the Free Encyclopedia.”
Wilcox, David C et al. 1998. Turbulence Modeling for CFD. Vol. 2. DCW industries La Canada, CA.
Winslow, Justin, Hikaru Otsuka, Bharath Govindarajan, and Inderjit Chopra. 2018. “Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (10 4–10 5).” Journal of Aircraft 55 (3): 1050–61.
Xiao, Heng, and Paola Cinnella. 2019. “Quantification of Model Uncertainty in RANS Simulations: A Review.” Progress in Aerospace Sciences 108: 1–31.
Yakhot, VSASTBCG, SA Orszag, Siva Thangam, TB Gatski, and CG1167781 Speziale. 1992. “Development of Turbulence Models for Shear Flows by a Double Expansion Technique.” Physics of Fluids A: Fluid Dynamics 4 (7): 1510–20.
Yeh, Chi-An, and Kunihiko Taira. 2019. “Resolvent-Analysis-Based Design of Airfoil Separation Control.” Journal of Fluid Mechanics 867: 572–610.
Zang, Yan, Robert L Street, and Jeffrey R Koseff. 1993. “A Dynamic Mixed Subgrid-Scale Model and Its Application to Turbulent Recirculating Flows.” Physics of Fluids A: Fluid Dynamics 5 (12): 3186–96.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88583-
dc.description.abstract本研究探討了在攻角為7.5度和10度、雷諾數為50,000的條件下,擬序結構在NACA0012上氣動力之影響。使用譜本徵正交分解(SPOD)演算法識別擬序結構,並利用力元理論量化其對阻力和升力的影響。在7.5度攻角下,第一個SPOD模態的第零個頻率對應的流場為一遵循再附著流(reattachment flow)軌跡之近牆流動(near-wall stream),而第一個頻率則對應於在流場重新附著的位置處所形成的逆時針渦旋對。第一個SPOD模態的第二頻率對應於在源於重新附著點(reattachment point)附近的剪切層中較小的逆時針渦旋對。在攻角為10度時,第一個SPOD模態的第零個頻率具有一個大型漩渦結構,它在翼型的上半部產生強烈的流動,對阻力和升力會產生重要影響。第一個SPOD模態的第一個頻率代表一個非對稱的渦旋對,而第二個頻率則由一系列控制前緣分離的渦旋對所組成。最後,在第二個SPOD模態的第零個頻率,翼型尾緣附近的順時針前緣分離渦旋對對阻力產生正貢獻,而逆時針前緣分離渦旋對對阻力產生負貢獻。本研究結果表明,擬序結構對於NACA0012翼型產生的氣動力力有顯著影響並且可使用SPOD演算法和力元理論有效地進行識別和量化。zh_TW
dc.description.abstractThe present study investigated the aerodynamic forces exerted by coherent structures on the NACA0012 airfoil at two different angles of attack (AoA=7.5 and AoA=10) and a chord-based Reynolds number of 50,000. The spectral proper orthogonal decomposition (SPOD) algorithm was employed to identify the coherent structures, and the force representation theory was used to quantify their impact on drag and lift forces. At an angle of attack of 7.5 degrees, the zeroth frequency of the first mode corresponded to an oscillating near-wall stream that follows the reattachment flow pattern, while the first frequency corresponded to a counter-rotating vortex pair originating where the flow reattaches. The second frequency of the first mode corresponded to smaller counter-rotating vortex pairs at the shear layer originated near the reattachment point. At an angle of attack of 10 degrees, the zeroth frequency of the first SPOD mode was found to have a large vortex structure that causes a strong flow along the suction side of the airfoil and results in a significant impact on drag and lift forces. The first frequency of the first SPOD mode represented an asymmetric vortex pair, while the second frequency of the first SPOD mode consisted of a series of vortex pairs that determine the leading-edge separation. Finally, for the zeroth frequency of the second SPOD mode, a clockwise primary LEV near the trailing edge of the airfoil provided a positive contribution to drag, while a counterclockwise LEV provided a negative contribution. The findings suggest that coherent structures have a significant impact on the aerodynamic forces exerted on airfoils and can be effectively identified and quantified using the SPOD algorithm and force element theory.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:56:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:56:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xv
List of Tables xxvii
Nomenclature xxix
Chapter 1 Introduction 1
1.1 Low-Reynolds number flows pass an airfoil 1
1.2 Advancements in force representation theory 5
1.3 Techniques for extractions of coherent structures in turbulent flows 7
1.4 Dissertation overview 10
Chapter 2 Mathematical formulations 15
2.1 Governing equations of fluid motion 15
2.2 Turbulence modeling 18
2.2.1 Direct numerical simulation (DNS) 19
2.2.2 Reynolds-averaged Navier-Stokes equations (RANS) 21
2.2.3 Large-eddy simulation (LES) 25
2.3 Force representation theory 30
2.3.1 Introduction to force representation theory 30
2.3.2 Derivation of force representation theory 33
Chapter 3 Proper orthogonal decomposition (POD) 41
3.1 Overview 41
3.2 Space-only proper orthogonal decomposition 42
3.3 Spectral proper orthogonal decomposition 45
3.4 Comparison between space-only and spectral POD 48
3.5 Computing POD and SPOD from flow data 51
3.6 Data reconstruction using SPOD basis 58
3.6.1 Reconstruction in the frequency domain 59
3.6.2 Reconstruction in the time domain 61
3.7 Vorticity force decomposition using SPOD basis 63
Chapter 4 Numerical methods 69
4.1 Finite volume method (FVM) 69
4.2 Discretization of advection-diffusion equation 71
4.3 Discretization of spatial terms 73
4.3.1 Advection term 73
4.3.1.1 First-order upwind scheme 73
4.3.1.2 Second-order upwind scheme 74
4.3.1.3 Central-differencing scheme 75
4.3.1.4 QUICK scheme 75
4.3.2 Diffusion term 77
4.3.3 Source term 77
4.4 Temporal discretization 78
4.4.1 Explicit time integration 80
4.4.2 Implicit time integration 81
4.4.3 Crank-Nicholson time integration 82
4.5 Pressure-velocity coupling scheme 83
4.5.1 SIMPLE algorithm 86
4.5.2 PISO algorithm 94
4.6 Sub-grid scale (SGS) model 99
4.6.1 Smagorinsky-Lilly model 99
4.6.2 Dynamic Smagorinsky-Lilly model 100
4.6.3 WALE model 102
4.7 Boundary conditions 103
4.8 Simulation setup and validation 107
Chapter 5 Results and discussions 117
5.1 Flow fields and total vorticity forces 118
5.2 Effect of SPOD modes on aerodynamic forces 127
5.3 Vorticity forces of coherent structures in dominate modes and frequencies 134
5.3.1 AoA=7.5 134
5.3.1.1 Zeroth frequency of the first mode 134
5.3.1.2 First frequency of the first mode 137
5.3.1.3 Second frequency of the first mode 140
5.3.2 AoA=10 141
5.3.2.1 Zeroth frequency of the first mode 144
5.3.2.2 First frequency of the first mode 148
5.3.2.3 Second frequency of the first mode 150
5.3.2.4 Zeroth frequency of the second mode 153
5.3.2.5 First frequency of the second mode 153
5.3.2.6 Second frequency of the second mode 156
5.4 Quantitative comparison of SPOD modes and force contribution 158
Chapter 6 Conclusions 163
Chapter 7 Future works 167
References 169
Appendix A-MATLAB codes 187
A.1 Space-only POD 187
A.2 Spectral POD 188
A.3 Data reconstruction from SPOD modes 194
A.4 Other functions used in SPOD 196
Appendix B-Evaluation of gradients and derivatives 199
B.1 Green-Gauss cell-based scheme 199
B.2 Green-Gauss node-based scheme 200
B.3 Least square cell-based scheme 201
Appendix C-Convergence of SPOD modes 203
Appendix D-Analyzing vorticity forces of coherent structures on airfoil using space-only POD 205
D.1 Flow fields and total vorticity forces 207
D.2 Proper orthogonal decomposition 209
D.3 Turbulence and vorticity force contribution 212
D.3.1 AoA=5 212
D.3.1.1 Contribution of POD modes to aerodynamic forces 212
D.3.1.2 Coherent structures 212
D.3.1.3 Vorticity forces 214
D.3.2 AoA=10 219
D.3.2.1 Contribution of POD modes to aerodynamic forces 219
D.3.2.2 Coherent structures 220
D.3.2.3 Vorticity forces 220
D.3.3 AoA=15 224
D.3.3.1 Contribution of POD modes to aerodynamic forces 224
D.3.3.2 Coherent structures 225
D.3.3.3 Vorticity forces 226
D.3.4 Differences in drag and lift contribution 231
-
dc.language.isoen-
dc.subject譜本徵正交分解zh_TW
dc.subjectNACA0012 翼型zh_TW
dc.subject大渦流模擬zh_TW
dc.subject力元理論zh_TW
dc.subjectSPODen
dc.subjectNACA0012 airfoilen
dc.subjectForce element theoryen
dc.subjectLESen
dc.title運用譜本徵正交分解分析擬序結構之渦度力對於NACA0012翼型的影響zh_TW
dc.titleAnalyzing vorticity forces of coherent structures on NACA0012 airfoil using spectral proper orthogonal decompositionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee牛仰堯;曾建洲;張敬;蔡協澄zh_TW
dc.contributor.oralexamcommitteeYang-Yao Niu ;Chien-Chou Tseng ;Ching Chang ;Hsieh-Chen Tsaien
dc.subject.keywordNACA0012 翼型,大渦流模擬,力元理論,譜本徵正交分解,zh_TW
dc.subject.keywordNACA0012 airfoil,LES,Force element theory,SPOD,en
dc.relation.page231-
dc.identifier.doi10.6342/NTU202302005-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2028-07-31-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
62.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved