Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88573
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏呈zh_TW
dc.contributor.advisorBo-Cheng Kuoen
dc.contributor.author李俊輝zh_TW
dc.contributor.authorChun-Hui Lien
dc.date.accessioned2023-08-15T16:53:41Z-
dc.date.available2023-11-10-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citationAguirre, G. K., Singh, R., & D’Esposito, M. (1999). Stimulus inversion and the responses of face and object-sensitive cortical areas. NeuroReport, 10(1), 189–194. https://doi.org/10.1097/00001756-199901180-00036
Ambrus, G. G., Kaiser, D., Cichy, R. M., & Kovács, G. (2019). The neural dynamics of familiar face recognition. Cerebral Cortex, 29(11), 4775–4784.
Armstrong, K. M., Chang, M. H., & Moore, T. (2009). Selection and maintenance of spatial information by frontal eye field neurons. Journal of Neuroscience, 29(50), 15621–15629.
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851.
Atkinson, A. P., & Adolphs, R. (2011). The neuropsychology of face perception: beyond simple dissociations and functional selectivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1571), 1726–1738. https://doi.org/10.1098/rstb.2010.0349
Baker, C. I., Hutchison, T. L., & Kanwisher, N. (2007). Does the fusiform face area contain subregions highly selective for nonfaces? Nature Neuroscience, 10(1), 3–4.
Baker, C. I., Liu, J., Wald, L. L., Kwong, K. K., Benner, T., & Kanwisher, N. (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proceedings of the National Academy of Sciences, 104(21), 9087–9092. https://doi.org/10.1073/pnas.0703300104
Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention. Science, 344(6182), 424–427.
Barnett, L., & Seth, A. K. (2014). The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. Journal of Neuroscience Methods, 223, 50–68.
Bartolomeo, P., & Malkinson, T. S. (2019). Hemispheric lateralization of attention processes in the human brain. Current Opinion in Psychology, 29, 90–96.
Barton, J. J. S. (2011). Disorder of higher visual function. Current Opinion in Neurology, 24(1), 1–5. https://doi.org/10.1097/wco.0b013e328341a5c2
Behrmann, M., & Plaut, D. C. (2013). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17(5), 210–219. https://doi.org/10.1016/j.tics.2013.03.007
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551–565.
Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19(1), 150–157.
Bialek, W., Rieke, F., van Steveninck, R., & Warland, D. (1989). Reading a neural code. Advances in Neural Information Processing Systems, 2.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, Issue 4). Springer.
Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25(1), 92–104.
Brandman, T., & Peelen, M. V. (2017). Interaction between scene and object processing revealed by human fMRI and MEG decoding. Journal of Neuroscience, 37(32), 7700–7710.
Cabeza, R., & Kato, T. (2000). Features are also important: Contributions of featural and configural processing to face recognition. Psychological Science, 11(5), 429–433.
Carlos, B. J., Hirshorn, E. A., Durisko, C., Fiez, J. A., & Coutanche, M. N. (2019). Word inversion sensitivity as a marker of visual word form area lateralization: An application of a novel multivariate measure of laterality. NeuroImage, 191, 493–502. https://doi.org/10.1016/j.neuroimage.2019.02.044
Carlson, T. A., Schrater, P., & He, S. (2003). Patterns of activity in the categorical representations of objects. Journal of Cognitive Neuroscience, 15(5), 704–717.
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27.
Chen, Y., Namburi, P., Elliott, L. T., Heinzle, J., Soon, C. S., Chee, M. W. L., & Haynes, J.-D. (2011). Cortical surface-based searchlight decoding. Neuroimage, 56(2), 582–592.
Cichy, R., & Kaiser, D. (2019). Deep neural networks as scientific models. Trends in Cognitive Sciences, 23(4), 305–317.
Cichy, R., Khosla, A., Pantazis, D., & Oliva, A. (2017). Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage, 153, 346–358.
Cichy, R., & Oliva, A. (2020). A M/EEG-fmri fusion primer: Resolving human brain responses in space and time. Neuron.
Cichy, R., & Pantazis, D. (2017). Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space. NeuroImage, 158, 441–454.
Cichy, R., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space and time. Nature Neuroscience, 17(3), 455–462.
Cichy, R., Roig, G., & Oliva, A. (2019). The Algonauts Project. Nature Machine Intelligence, 1(12), 613.
Cohen. (2014). Analyzing neural time series data: theory and practice. MIT press.
Cohen, & Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. Neuroimage, 22(1), 466–476.
Cohen, E. H., & Tong, F. (2015). Neural Mechanisms of Object-Based Attention. Cerebral Cortex, 25(4), 1080–1092. https://doi.org/10.1093/cercor/bht303
Cohen, L., Lehéricy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain, 125(5), 1054–1069.
Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.
Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading” detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2), 261–270. https://doi.org/10.1016/s1053-8119(03)00049-1
Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The multivariate temporal response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to continuous stimuli. Frontiers in Human Neuroscience, 10, 604.
De Renzi, E. (1997). Prosopagnosia. Behavioral Neurology and Neuropsychology, 245–255.
Deffke, I., Sander, T., Heidenreich, J., Sommer, W., Curio, G., Trahms, L., & Lueschow, A. (2007). MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus. NeuroImage, 35(4), 1495–1501. https://doi.org/10.1016/j.neuroimage.2007.01.034
Dehaene, S., Charles, L., King, J.-R., & Marti, S. (2014). Toward a computational theory of conscious processing. Current Opinion in Neurobiology, 25, 76–84.
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254–262.
Desimone, R., Duncan, J., & others. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222.
Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107–117. https://doi.org/10.1037/0096-3445.115.2.107
Diedrichsen, J. (2020). Representational models and the feature fallacy. The Cognitive Neurosciences. The MIT Press,.
Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Computational Biology, 13(4), e1005508.
Dijkstra, N., Mostert, P., de Lange, F. P., Bosch, S., & van Gerven, M. A. J. (2018). Differential temporal dynamics during visual imagery and perception. Elife, 7, e33904.
Dima, D. C., Perry, G., & Singh, K. D. (2018). Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception. NeuroImage, 179, 102–116.
Dimsdale-Zucker, H. R., & Ranganath, C. (2018). Representational similarity analyses: A practical guide for functional MRI applications. In Handbook of behavioral neuroscience (Vol. 28, pp. 509–525). Elsevier.
Dobs, K., Isik, L., Pantazis, D., & Kanwisher, N. (2019). How face perception unfolds over time. Nature Communications, 10(1), 1–10.
Dobs, K., Schultz, J., Bülthoff, I., & Gardner, J. L. (2018). Task-dependent enhancement of facial expression and identity representations in human cortex. Neuroimage, 172, 689–702.
Dwivedi, K., Cichy, R. M., & Roig, G. (2021). Unraveling representations in scene-selective brain regions using scene-parsing deep neural networks. Journal of Cognitive Neuroscience, 33(10), 2032–2043.
Eimer, M. (2000). Effects of face inversion on the structural encoding and recognition of faces: Evidence from event-related brain potentials. Cognitive Brain Research, 10(1–2), 145–158.
Epstein, R. A., Higgins, J. S., Parker, W., Aguirre, G. K., & Cooperman, S. (2006). Cortical correlates of face and scene inversion: A comparison. Neuropsychologia, 44(7), 1145–1158. https://doi.org/10.1016/j.neuropsychologia.2005.10.009
Epstein, R., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: recognition, navigation, or encoding? Neuron, 23(1), 115–125.
Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598–601.
Fahrenfort, J. J., Van Driel, J., Van Gaal, S., & Olivers, C. N. L. (2018). From ERPs to MVPA using the Amsterdam decoding and modeling toolbox (ADAM). Frontiers in Neuroscience, 12, 368.
Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628–634. https://doi.org/10.1037/0096-1523.21.3.628
Farah, M. J., Wilson, K. D., Drain, H. M., & Tanaka, J. R. (1995). The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms. Vision Research, 35(14), 2089–2093. https://doi.org/10.1016/0042-6989(94)00273-o
Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is “special” about face perception? Psychological Review, 105(3), 482–498. https://doi.org/10.1037/0033-295x.105.3.482
Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2018). A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron, 99(4), 842–853.
Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception, 29(2), 159–170.
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and Modulatory Interactions in Neuroimaging. NeuroImage, 6(3), 218–229. https://doi.org/10.1006/nimg.1997.0291
Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-Related fMRI: Characterizing Differential Responses. NeuroImage, 7(1), 30–40. https://doi.org/10.1006/nimg.1997.0306
Fu, S., Feng, C., Guo, S., Luo, Y., & Parasuraman, R. (2012). Neural Adaptation Provides Evidence for Categorical Differences in Processing of Faces and Chinese Characters: An {ERP} Study of the N170. {PLoS} {ONE}, 7(7), e41103. https://doi.org/10.1371/journal.pone.0041103
Fujimichi, M., Yamamoto, H., & Saiki, J. (2021). The effect of visual distractors on visual working memory for surface roughness in the human brain. Neuroscience Letters, 750, 135805.
Furey, M. L., Tanskanen, T., Beauchamp, M. S., Avikainen, S., Uutela, K., Hari, R., & Haxby, J. V. (2006). Dissociation of face-selective cortical responses by attention. Proceedings of the National Academy of Sciences, 103(4), 1065–1070.
Gao, Z., Goldstein, A., Harpaz, Y., Hansel, M., Zion-Golumbic, E., & Bentin, S. (2013). A magnetoencephalographic study of face processing: M170, gamma-band oscillations and source localization. Human Brain Mapping, 34(8), 1783–1795. https://doi.org/10.1002/hbm.22028
Gauthier, I., Curran, T., Curby, K. M., & Collins, D. (2003). Perceptual interference supports a non-modular account of face processing. Nature Neuroscience, 6(4), 428–432. https://doi.org/10.1038/nn1029
Gauthier, I., & Tarr, M. J. (2016). Visual object recognition: Do we (finally) know more now than we did? Annual Review of Vision Science, 2, 377–396.
Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. NeuroImage, 19(1), 200–207. https://doi.org/10.1016/s1053-8119(03)00058-2
Gosling, A., & Eimer, M. (2011). An event-related brain potential study of explicit face recognition. Neuropsychologia, 49(9), 2736–2745.
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., & Hämäläinen, M. S. (2013). {MNE} software for processing {MEG} and {EEG} data. NeuroImage, 86, 446–460. https://doi.org/10.1016/j.neuroimage.2013.10.027
Gratton, C., Sreenivasan, K. K., Silver, M. A., & D’Esposito, M. (2013). Attention selectively modifies the representation of individual faces in the human brain. Journal of Neuroscience, 33(16), 6979–6989.
Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210.
Groen, I. I. A., Greene, M. R., Baldassano, C., Li, F.-F., Beck, D. M., & Baker, C. I. (2018). Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior. Elife, 7, e32962.
Grootswagers, T., Cichy, R. M., & Carlson, T. A. (2018). Finding decodable information that can be read out in behaviour. NeuroImage, 179, 252–262.
Grootswagers, T., Robinson, A. K., & Carlson, T. A. (2019). The representational dynamics of visual objects in rapid serial visual processing streams. NeuroImage, 188, 668–679.
Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29(4), 677–697.
Guggenmos, M., Sterzer, P., & Cichy, R. M. (2018). Multivariate pattern analysis for MEG: A comparison of dissimilarity measures. Neuroimage, 173, 434–447.
Halgren, E., Raij, T., Marinkovic, K., Jousmäki, V., & Hari, R. (2000). Cognitive response profile of the human fusiform face area as determined by MEG. Cerebral Cortex, 10(1), 69–81.
Hansen, Noesen, B. T., Nador, J. D., & Harel, A. (2018). The influence of behavioral relevance on the processing of global scene properties: an ERP study. Neuropsychologia, 114, 168–180.
Hansen, P., Kringelbach, M., & Salmelin, R. (2010). MEG: an introduction to methods. Oxford university press.
Harris, R. J., Rice, G. E., Young, A. W., & Andrews, T. J. (2016). Distinct but Overlapping Patterns of Response to Words and Faces in the Fusiform Gyrus. Cerebral Cortex, 26(7), 3161–3168. https://doi.org/10.1093/cercor/bhv147
Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632–635.
Hashemi, A., Pachai, M. V, Bennett, P. J., & Sekuler, A. B. (2019). The role of horizontal facial structure on the N170 and N250. Vision Research, 157, 12–23.
Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d′. Behavior Research Methods, Instruments, \& Computers, 27, 46–51.
Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: the early beginnings. Neuroimage, 62(2), 852–855.
Haxby, J. V, Connolly, A. C., & Guntupalli, J. S. (2014). Decoding Neural Representational Spaces Using Multivariate Pattern Analysis. Annual Review of Neuroscience, 37(1), 435–456. https://doi.org/10.1146/annurev-neuro-062012-170325
Haxby, J. V, Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430.
Haxby, J. V, Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233. https://doi.org/10.1016/s1364-6613(00)01482-0
Haxby, J. V, Ungerleider, L. G., Clark, V. P., Schouten, J. L., Hoffman, E. A., & Martin, A. (1999). The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Perception. Neuron, 22(1), 189–199. https://doi.org/10.1016/s0896-6273(00)80690-x
Haynes, J.-D. (2015). A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron, 87(2), 257–270.
Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8(5), 686–691.
Hebart, M. N., Bankson, B. B., Harel, A., Baker, C. I., & Cichy, R. M. (2018). The representational dynamics of task and object processing in humans. Elife, 7, e32816.
Hebart, M. N., Görgen, K., & Haynes, J.-D. (2015). The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data. Frontiers in Neuroinformatics, 8. https://doi.org/10.3389/fninf.2014.00088
Henriksson, L., Khaligh-Razavi, S.-M., Kay, K., & Kriegeskorte, N. (2015). Visual representations are dominated by intrinsic fluctuations correlated between areas. NeuroImage, 114, 275–286.
Henson, R. N., Abdulrahman, H., Flandin, G., & Litvak, V. (2019). Multimodal Integration of M/EEG and f/MRI Data in SPM12. Frontiers in Neuroscience, 13, 300.
Hervais-Adelman, A., Kumar, U., Mishra, R. K., Tripathi, V. N., Guleria, A., Singh, J. P., Eisner, F., & Huettig, F. (2019). Learning to read recycles visual cortical networks without destruction. Science Advances, 5(9). https://doi.org/10.1126/sciadv.aax0262
Hillger, L. A., & Koenig, O. (1991). Separable mechanisms in face processing: Evidence from hemispheric specialization. Journal of Cognitive Neuroscience, 3(1), 42–58.
Hopfinger, J. B., Büchel, C., Holmes, A. P., & Friston, K. J. (2000). A study of analysis parameters that influence the sensitivity of event-related fMRI analyses. Neuroimage, 11(4), 326–333.
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106.
Hubel, & Wiesel, T. (1977). Ferrier lecture-Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B. Biological Sciences, 198(1130), 1–59.
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 1). Sinauer Associates Sunderland, MA.
Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532(7600), 453–458. https://doi.org/10.1038/nature17637
Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain. Neuron, 76(6), 1210–1224. https://doi.org/10.1016/j.neuron.2012.10.014
Hwang, K., Shine, J. M., Cellier, D., & D’Esposito, M. (2019). The Human Intraparietal Sulcus Modulates Task-Evoked Functional Connectivity. Cerebral Cortex, 30(3), 875–887. https://doi.org/10.1093/cercor/bhz133
Itier, R. J., Herdman, A. T., George, N., Cheyne, D., & Taylor, M. J. (2006). Inversion and contrast-reversal effects on face processing assessed by MEG. Brain Research, 1115(1), 108–120.
Itier, R. J., & Taylor, M. J. (2002). Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: a repetition study using ERPs. Neuroimage, 15(2), 353–372.
Itier, R. J., & Taylor, M. J. (2004). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral Cortex, 14(2), 132–142.
Jacques, C., d’Arripe, O., & Rossion, B. (2007). The time course of the inversion effect during individual face discrimination. Journal of Vision, 7(8), 3.
Jehee, J. F. M., Brady, D. K., & Tong, F. (2011). Attention Improves Encoding of Task-Relevant Features in the Human Visual Cortex. Journal of Neuroscience, 31(22), 8210–8219. https://doi.org/10.1523/jneurosci.6153-09.2011
Kaiser, D., Azzalini, D. C., & Peelen, M. V. (2016). Shape-independent object category responses revealed by MEG and fMRI decoding. Journal of Neurophysiology, 115(4), 2246–2250.
Kaiser, D., Jacobs, A. M., & Cichy, R. M. (2022). Modelling brain representations of abstract concepts. PLoS Computational Biology, 18(2), e1009837.
Kaiser, D., Oosterhof, N. N., & Peelen, M. V. (2016). The neural dynamics of attentional selection in natural scenes. Journal of Neuroscience, 36(41), 10522–10528.
Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685.
Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163–11170. https://doi.org/10.1073/pnas.1005062107
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.
Kanwisher, N., Tong, F., & Nakayama, K. (1998). The effect of face inversion on the human fusiform face area. Cognition, 68(1), B1--B11.
Kao, C.-H., Chen, D.-Y., & Chen, C.-C. (2010). The inversion effect in visual word form processing. Cortex, 46(2), 217–230. https://doi.org/10.1016/j.cortex.2009.04.003
Kay, K. N. (2018). Principles for models of neural information processing. NeuroImage, 180, 101–109.
Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452(7185), 352–355.
Khaligh-Razavi, S.-M., Henriksson, L., Kay, K., & Kriegeskorte, N. (2017). Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models. Journal of Mathematical Psychology, 76, 184–197.
Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K. A., Cichy, R., Hauk, O., & Kriegeskorte, N. (2019). Recurrence is required to capture the representational dynamics of the human visual system. Proceedings of the National Academy of Sciences, 116(43), 21854–21863.
King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the temporal generalization method. Trends in Cognitive Sciences, 18(4), 203–210.
King, J.-R., Gramfort, A., Schurger, A., Naccache, L., & Dehaene, S. (2014). Two distinct dynamic modes subtend the detection of unexpected sounds. PloS One, 9(1), e85791.
King, J.-R., Gwilliams, L., Holdgraf, C., Sassenhagen, J., Barachant, A., Engemann, D., Larson, E., & Gramfort, A. (2020). Encoding and Decoding Framework to Uncover the Algorithms of Cognition. The Cognitive Neurosciences, 6, 691–702.
Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 1, 417–446.
Kriegeskorte, N., & Diedrichsen, J. (2019). Peeling the onion of brain representations. Annual Review of Neuroscience, 42, 407–432.
Kriegeskorte, N., & Douglas, P. K. (2019). Interpreting encoding and decoding models. Current Opinion in Neurobiology, 55, 167–179.
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of the National Academy of Sciences, 103(10), 3863–3868.
Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16(1), 37–68.
Kuo, B.-C., Li, C.-H., Lin, S.-H., Hu, S.-H., & Yeh, Y.-Y. (2017). Top-down modulation of alpha power and pattern similarity for threatening representations in visual short-term memory. Neuropsychologia, 106, 21–30.
Kuo, B.-C., Lin, S.-H., & Yeh, Y.-Y. (2018). Functional interplay of top-down attention with affective codes during visual short-term memory maintenance. Cortex, 103, 55–70. https://doi.org/10.1016/j.cortex.2018.02.003
Kuo, B.-C., Yeh, Y.-Y., Chen, A. J.-W., & D’Esposito, M. (2011). Functional connectivity during top-down modulation of visual short-term memory representations. Neuropsychologia, 49(6), 1589–1596.
Leder, H., & Bruce, V. (2000). When inverted faces are recognized: The role of configural information in face recognition. The Quarterly Journal of Experimental Psychology Section A, 53(2), 513–536.
Leder, H., & Carbon, C.-C. (2006). Face-specific configural processing of relational information. British Journal of Psychology, 97(1), 19–29.
Lee, D. (2021). Which deep learning model can best explain object representations of within-category exemplars? Journal of Vision, 21(10), 12.
Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441.
Lescroart, M. D., & Gallant, J. L. (2019). Human scene-selective areas represent 3D configurations of surfaces. Neuron, 101(1), 178–192.
Li, C.-H., Wang, M.-Y., & Kuo, B.-C. (2022). The effects of stimulus inversion on the neural representations of Chinese character and face recognition. Neuropsychologia, 164, 108090.
Li, C.-H., Wang, M.-Y., & Kuo, B.-C. (2023). Tracking the temporal dynamics of the face-like inversion effect as revealed by Chinese characters using magnetoencephalography. Cerebral Cortex, bhad135.
Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual system: Past, present, and future. Journal of Cognitive Neuroscience, 33(10), 2017–2031.
Liu, J., Harris, A., & Kanwisher, N. (2013). Stages of processing in face perception: an MEG study. In Social Neuroscience (pp. 75–85). Psychology Press.
Liu, Zhang, W.-T., Tang, Y.-Y., Mai, X.-Q., Chen, H.-C., Tardif, T., & Luo, Y.-J. (2008). The Visual Word Form Area: Evidence from an fMRI study of implicit processing of Chinese characters. NeuroImage, 40(3), 1350–1361. https://doi.org/10.1016/j.neuroimage.2007.10.014
Lorenz, S., Weiner, K. S., Caspers, J., Mohlberg, H., Schleicher, A., Bludau, S., Eickhoff, S. B., Grill-Spector, K., Zilles, K., & Amunts, K. (2017). Two New Cytoarchitectonic Areas on the Human Mid-Fusiform Gyrus. Cerebral Cortex, bhv225. https://doi.org/10.1093/cercor/bhv225
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.
Matsuo, T., Kawasaki, K., Kawai, K., Majima, K., Masuda, H., Murakami, H., Kunii, N., Kamitani, Y., Kameyama, S., Saito, N., & Hasegawa, I. (2015). Alternating Zones Selective to Faces and Written Words in the Human Ventral Occipitotemporal Cortex. Cerebral Cortex, 25(5), 1265–1277. https://doi.org/10.1093/cercor/bht319
Matsuyoshi, D., Morita, T., Kochiyama, T., Tanabe, H. C., Sadato, N., & Kakigi, R. (2015). Dissociable Cortical Pathways for Qualitative and Quantitative Mechanisms in the Face Inversion Effect. Journal of Neuroscience, 35(10), 4268–4279. https://doi.org/10.1523/jneurosci.3960-14.2015
Maurer, D., Grand, R. Le, & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255–260. https://doi.org/10.1016/s1364-6613(02)01903-4
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299. https://doi.org/10.1016/s1364-6613(03)00134-7
McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 9(5), 605–610.
Mehrpour, V., Martinez-Trujillo, J. C., & Treue, S. (2020). Attention amplifies neural representations of changes in sensory input at the expense of perceptual accuracy. Nature Communications, 11(1), 1–8.
Miller, B. T., Vytlacil, J., Fegen, D., Pradhan, S., & D’Esposito, M. (2011). The prefrontal cortex modulates category selectivity in human extrastriate cortex. Journal of Cognitive Neuroscience, 23(1), 1–10.
Miller, J. A., Tambini, A., Kiyonaga, A., & D’Esposito, M. (2022). Long-term learning transforms prefrontal cortex representations during working memory. Neuron, 110(22), 3805–3819.
Minini, L., Parker, A. J., & Bridge, H. (2010). Neural Modulation by Binocular Disparity Greatest in Human Dorsal Visual Stream. Journal of Neurophysiology, 104(1), 169–178. https://doi.org/10.1152/jn.00790.2009
Monti, M. M. (2011). Statistical analysis of fMRI time-series: a critical review of the GLM approach. Frontiers in Human Neuroscience, 5, 28.
Müller, M. M., Andersen, S., Trujillo, N. J., Valdes-Sosa, P., Malinowski, P., & Hillyard, S. (2006). Feature-selective attention enhances color signals in early visual areas of the human brain. Proceedings of the National Academy of Sciences, 103(38), 14250–14254.
Naselaris, T., Bassett, D. S., Fletcher, A. K., Kording, K., Kriegeskorte, N., Nienborg, H., Poldrack, R. A., Shohamy, D., & Kay, K. (2018). Cognitive computational neuroscience: a new conference for an emerging discipline. Trends in Cognitive Sciences, 22(5), 365–367.
Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. Neuroimage, 56(2), 400–410.
Nestor, A., Behrmann, M., & Plaut, D. C. (2012). The Neural Basis of Visual Word Form Processing: A Multivariate Investigation. Cerebral Cortex, 23(7), 1673–1684. https://doi.org/10.1093/cercor/bhs158
Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J.-B. (2005). Valid conjunction inference with the minimum statistic. NeuroImage, 25(3), 653–660. https://doi.org/10.1016/j.neuroimage.2004.12.005
Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., Gallant, J. L., Procedures, S. E., & References, S. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current, 21(19), 1641–1646. https://doi.org/10.1016/j.cub.2011.08.031
Nobre, A. C., Allison, T., & McCarthy, G. (1994). Word recognition in the human inferior temporal lobe. Nature, 372(6503), 260–263. https://doi.org/10.1038/372260a0
Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Physics in Medicine \& Biology, 48(22), 3637.
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.
Olmos-Solis, K., van Loon, A. M., & Olivers, C. N. L. (2021). Content or status: Frontal and posterior cortical representations of object category and upcoming task goals in working memory. Cortex, 135, 61–77.
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://doi.org/10.1002/hbm.20131
Paneri, S., & Gregoriou, G. G. (2017). Top-down control of visual attention by the prefrontal cortex. Functional specialization and long-range interactions. Frontiers in Neuroscience, 11, 545.
Panichello, M. F., & Buschman, T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601–605.
Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. Progress in Brain Research, 165, 493–507.
Peelen, M. V, & Kastner, S. (2014). Attention in the real world: toward understanding its neural basis. Trends in Cognitive Sciences, 18(5), 242–250.
Perry, G., & Singh, K. D. (2014). Localizing evoked and induced responses to faces using magnetoencephalography. European Journal of Neuroscience, 39(9), 1517–1527.
Pillow, J. W., Ahmadian, Y., & Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Computation, 23(1), 1–45.
Popal, H., Wang, Y., & Olson, I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social Cognitive and Affective Neuroscience, 14(11), 1243–1253.
Pourtois, G., & Vuilleumier, P. (2006). Dynamics of emotional effects on spatial attention in the human visual cortex. In Understanding Emotions (pp. 67–91). Elsevier. https://doi.org/10.1016/s0079-6123(06)56004-2
Quek, G., Nemrodov, D., Rossion, B., & Liu-Shuang, J. (2018). Selective attention to faces in a rapid visual stream: hemispheric differences in enhancement and suppression of category-selective neural activity. Journal of Cognitive Neuroscience, 30(3), 393–410.
Quentin, R., King, J.-R., Sallard, E., Fishman, N., Thompson, R., Buch, E. R., & Cohen, L. G. (2019). Differential brain mechanisms of selection and maintenance of information during working memory. Journal of Neuroscience, 39(19), 3728–3740.
Ramirez, F. M., Cichy, R. M., Allefeld, C., & Haynes, J.-D. (2014). The Neural Code for Face Orientation in the Human Fusiform Face Area. Journal of Neuroscience, 34(36), 12155–12167. https://doi.org/10.1523/jneurosci.3156-13.2014
Rhodes, G. (1988). Looking at faces: First-order and second-order features as determinants of facial appearance. Perception, 17(1), 43–63.
Rhodes, G. (1993). Configural coding, expertise, and the right hemisphere advantage for face recognition. Brain and Cognition, 22(1), 19–41.
Rhodes, G., Brake, S., & Atkinson, A. P. (1993). What’s lost in inverted faces? Cognition, 47(1), 25–57.
Richler, J. J., & Gauthier, I. (2014). A meta-analysis and review of holistic face processing. Psychological Bulletin, 140(5), 1281–1302. https://doi.org/10.1037/a0037004
Rieke, F., Warland, D., Van Steveninck, R. de R., & Bialek, W. (1999). Spikes: exploring the neural code. MIT press.
Robinson, A. K., Plaut, D. C., & Behrmann, M. (2017). Word and face processing engage overlapping distributed networks: Evidence from RSVP and EEG investigations. Journal of Experimental Psychology: General, 146(7), 943–961. https://doi.org/10.1037/xge0000302
Rosazza, C., Cai, Q., Minati, L., Paulignan, Y., & Nazir, T. A. (2009). Early involvement of dorsal and ventral pathways in visual word recognition: an ERP study. Brain Research, 1272, 32–44.
Rossion, B. (2014). Understanding face perception by means of human electrophysiology. Trends in Cognitive Sciences, 18(6), 310–318. https://doi.org/10.1016/j.tics.2014.02.013
Rossion, B., Delvenne, J.-F., Debatisse, D., Goffaux, V., Bruyer, R., Crommelinck, M., & Guérit, J.-M. (1999). Spatio-temporal localization of the face inversion effect: an event-related potentials study. Biological Psychology, 50(3), 173–189.
Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behavioral and Cognitive Neuroscience Reviews, 1(1), 63–75.
Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. NeuroImage, 20(3), 1609–1624. https://doi.org/10.1016/j.neuroimage.2003.07.010
Ruff, C. C. (2013). Sensory processing: who’s in (top-down) control? Annals of the New York Academy of Sciences, 1296(1), 88–107.
Rumelhart, D. E., McClelland, J. L., Group, P. D. P. R., & others. (1988). Parallel distributed processing (Vol. 1). IEEE New York.
Rutman, A. M., Clapp, W. C., Chadick, J. Z., & Gazzaley, A. (2010). Early top--down control of visual processing predicts working memory performance. Journal of Cognitive Neuroscience, 22(6), 1224–1234.
Sharma, S. (1996). Applied multivariate techniques.
Sharpee, T. O. (2013). Computational identification of receptive fields. Annual Review of Neuroscience, 36, 103–120.
Sprague, T. C., Ester, E. F., & Serences, J. T. (2016). Restoring latent visual working memory representations in human cortex. Neuron, 91(3), 694–707.
Sreenivasan, K. K., Goldstein, J. M., Lustig, A. G., Rivas, L. R., & Jha, A. P. (2009). Attention to faces modulates early face processing during low but not high face discriminability. Attention, Perception, \& Psychophysics, 71(4), 837–846.
Stanley, G. B. (2013). Reading and writing the neural code. Nature Neuroscience, 16(3), 259–263.
Sussman, B. L., Reddigari, S., & Newman, S. D. (2018). The impact of inverted text on visual word processing: An fMRI study. Brain and Cognition, 123, 1–9.
Swisher, J. D., Gatenby, J. C., Gore, J. C., Wolfe, B. A., Moon, C.-H., Kim, S.-G., & Tong, F. (2010). Multiscale pattern analysis of orientation-selective activity in the primary visual cortex. Journal of Neuroscience, 30(1), 325–330.
Szwed, M., Dehaene, S., Kleinschmidt, A., Eger, E., Valabrègue, R., Amadon, A., & Cohen, L. (2011). Specialization for written words over objects in the visual cortex. Neuroimage, 56(1), 330–344.
Talairach, J., Tournoux, P., & Rayport, M. (1988). Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging.
Taulu, S., Kajola, M., & Simola, J. (2004). Suppression of interference and artifacts by the signal space separation method. Brain Topography, 16(4), 269–275.
Theunissen, F. E., David, S. V, Singh, N. C., Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Computation in Neural Systems, 12(3), 289.
Tong, F., Nakayama, K., Moscovitch, M., Weinrib, O., & Kanwisher, N. (2000). Response properties of the human fusiform face area. Cognitive Neuropsychology, 17(1–3), 257–280.
Tong, F., & Pratte, M. S. (2012). Decoding patterns of human brain activity. Annual Review of Psychology, 63, 483–509.
Tremblay, S., Pieper, F., Sachs, A., & Martinez-Trujillo, J. (2015). Attentional filtering of visual information by neuronal ensembles in the primate lateral prefrontal cortex. Neuron, 85(1), 202–215.
Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H., & Livingstone, M. S. (2006). A Cortical Region Consisting Entirely of Face-Selective Cells. Science, 311(5761), 670–674. https://doi.org/10.1126/science.1119983
Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of Face Perception. Annual Review of Neuroscience, 31(1), 411–437. https://doi.org/10.1146/annurev.neuro.30.051606.094238
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978
Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recognition. British Journal of Psychology, 79(4), 471–491. https://doi.org/10.1111/j.2044-8295.1988.tb02747.x
Van Ede, F., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2018). Decoding the influence of anticipatory states on visual perception in the presence of temporal distractors. Nature Communications, 9(1), 1–12.
van Ede, F., & Nobre, A. C. (2022). Turning attention inside out: how working memory serves behavior. Annual Review of Psychology, Forthcoming.
Van Veen, B. D., Van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44(9), 867–880.
Vo, V. A., Sutterer, D. W., Foster, J. J., Sprague, T. C., Awh, E., & Serences, J. T. (2022). Shared Representational Formats for Information Maintained in Working Memory and Information Retrieved from Long-Term Memory. Cerebral Cortex, 32(5), 1077–1092.
Wang, A., Tarr, M., & Wehbe, L. (2019). Neural taskonomy: Inferring the similarity of task-derived representations from brain activity. Advances in Neural Information Processing Systems, 32.
Wang, Kuo, B.-C., & Cheng, S.-K. (2011). Chinese characters elicit face-like N170 inversion effects. Brain and Cognition, 77(3), 419–431. https://doi.org/10.1016/j.bandc.2011.08.016
Watanabe, S., Kakigi, R., & Puce, A. (2003). The spatiotemporal dynamics of the face inversion effect: a magneto-and electro-encephalographic study. Neuroscience, 116(3), 879–895.
Weichwald, S., Meyer, T., Özdenizci, O., Schölkopf, B., Ball, T., & Grosse-Wentrup, M. (2015). Causal interpretation rules for encoding and decoding models in neuroimaging. Neuroimage, 110, 48–59.
Weiner, K. S., Barnett, M. A., Lorenz, S., Caspers, J., Stigliani, A., Amunts, K., Zilles, K., Fischl, B., & Grill-Spector, K. (2016). The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex. Cerebral Cortex, 27(1), 146–161. https://doi.org/10.1093/cercor/bhw361
Willmore, B., & Smyth, D. (2003). Methods for first-order kernel estimation: simple-cell receptive fields from responses to natural scenes. Network: Computation in Neural Systems, 14(3), 553–577.
Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015). Revealing hidden states in visual working memory using electroencephalography. Frontiers in Systems Neuroscience, 9, 123.
Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20(6), 864–871.
Wong, A. C.-N., Wong, Y. K., Lui, K. F. H., Ng, T. Y. K., & Ngan, V. S. H. (2019). Sensitivity to configural information and expertise in visual word recognition. Journal of Experimental Psychology: Human Perception and Performance, 45(1), 82–99. https://doi.org/10.1037/xhp0000590
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73. https://doi.org/10.1002/(sici)1097-0193(1996)4:1<58::aid-hbm4>3.0.co;2-o
Wurm, M. F., & Lingnau, A. (2015). Decoding actions at different levels of abstraction. Journal of Neuroscience, 35(20), 7727–7735.
Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624.
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122.
Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145. https://doi.org/10.1037/h0027474
Yovel, G. (2016). Neural and cognitive face-selective markers: An integrative review. Neuropsychologia, 83, 5–13. https://doi.org/10.1016/j.neuropsychologia.2015.09.026
Yovel, G., & Kanwisher, N. (2005). The Neural Basis of the Behavioral Face-Inversion Effect. Current Biology, 15(24), 2256–2262. https://doi.org/10.1016/j.cub.2005.10.072
Yu, R., Chen, J., Peng, Y., & Gu, F. (2022). Visual event-related potentials reveal the early lexical processing of Chinese characters. Neuropsychologia, 165, 108132.
Zeman, A. A., Ritchie, J. B., Bracci, S., & de Beeck, H. (2020). Orthogonal representations of object shape and category in deep convolutional neural networks and human visual cortex. Scientific Reports, 10(1), 2453.
Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12(1), 24–25.
Zhang, Y., Meyers, E. M., Bichot, N. P., Serre, T., Poggio, T. A., & Desimone, R. (2011). Object decoding with attention in inferior temporal cortex. Proceedings of the National Academy of Sciences, 108(21), 8850–8855.
Zhao, J., Liu, J., Li, J., Liang, J., Feng, L., AI, L., & Tian, J. (2010). Inversion effect in the visual processing of Chinese character: An fMRI study. Neuroscience Letters, 478(2), 107–111. https://doi.org/10.1016/j.neulet.2010.04.075
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88573-
dc.description.abstract個體進行物體辨識與選擇高度仰賴大腦中對該物體神經表徵的活化,以利處理視覺資訊並與外在環境互動。過去研究已發展多種多變量型態分析方法探討物體辨識與選擇在人類視覺皮質裡的功能性機制與神經表徵資訊。然而,是否能夠以及如何整合類別特定腦區中物體神經型態的空間與時間特性仍不清楚。本論文藉由多變量神經型態分析方法測量物體辨識與選擇神經表徵的時空資訊與其動態性。在系列研究一裡,功能性磁振造影的多變量神經型態結果顯示類別選擇腦區與物體相關腦區分別展現人臉與中文文字倒立效應的獨特與共享神經表徵型態。在系列研究二中,我們使用腦磁圖儀進一步測量人臉與中文文字倒立效應的神經表徵在時間上的動態性。透過時間廣義化分析,我們可以區分神經表徵的正倒立資訊與類別資訊,並展現神經表徵的時間動態性。最後,在系列研究三,我們檢驗了上而下注意力調節對物體選擇的功能運作與其神經型態的時空動態。透過功能性磁振造影與腦磁圖儀的融合分析,我們展現了人臉選擇腦區與景物選擇腦區的神經空間與動態特性。值得注意的是,我們類別選擇腦區神經型態的表徵相似性調節效果的來源腦區為前額葉。綜合上述的發現與研究規劃,透過整合不同的多變量神經型態方法探究物體辨識與選擇的神經表徵,將可以增進瞭解個體物體知覺辨識與記憶再認歷程神經表徵在空間與時間上的動態性與互動性,並釐清物體知覺與短期記憶歷程的神經機制與心理歷程。zh_TW
dc.description.abstractObject recognition and selectivity rely heavily on the activation of neural representations for the objects in the human brain, enabling individuals to process and interact with external information within real-world environments. Previous studies have developed multivariate pattern analyses to investigate the functional mechanisms and neural representations underlying object recognition and selectivity in the human visual cortex. However, it remains unclear whether and how spatial and temporal information of object recognition and selectivity can be represented within the category-selective brain regions and integrated across different imaging modalities. In this work, we adopt the multivariate pattern analysis approach to investigate the spatiotemporal dynamics of neural representations for object recognition and selectivity. In Study I, our fMRI results using multivariate pattern analysis demonstrated the distinct and shared configural representations for the inversion effects for face and Chinese character recognition in category-selective and object-related brain areas. In Study II, we further tracked the temporal dynamics of the inversion-related neural responses for face and character recognition using MEG with the multivariate decoding approach. Through temporal generalization analysis, we decoded the neural information about stimulus orientation and category over and across time for faces and characters. In the final study, we examined the spatiotemporal profiles of the functional operations and the underlying mechanisms through the top-down modulation of attention on object selectivity in both face-selective and scene-selective brain regions using an fMRI-MEG fusion approach. The fusion results showed the attentional enhancement of representational similarity in category-selective brain areas. Importantly, we also observed that the goal-directed modulation of representational similarity in the category-selective brain areas was guided by the prefrontal cortex using the Granger causality analysis. Together, this work provides novel evidence improving our understanding of the spatiotemporal dynamics of neural representations for object recognition and selectivity in the human brain.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:53:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:53:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents1. General Introduction 1
2. Multivariate Approaches in Cognitive Neuroscience: the Computational Models of Encoding, Decoding and Fusion Approaches 11
2.1. Introduction 11
2.2. Encoding Analysis in Cognitive Neuroscience 12
2.3. Decoding Analysis in Cognitive Neuroscience 15
2.4. Fusion Modeling in Cognitive Neuroscience: Representational Similarity Analysis 19
2.5. Interim Conclusion 22
3. Study I 23
3.1. Introduction 23
3.2. Materials and Methods 30
3.3. Result 43
3.4. Discussion 54
3.5. Interim Conclusion 63
4. Study II 65
4.1. Introduction 65
4.2. Materials and Methods 69
4.3. Result 83
4.4. Discussion 95
4.5. Interim Conclusion 105
5. Study III 107
5.1. Introduction 107
5.2. Materials and Methods 113
5.3. Results 135
5.4. Discussion 146
5.5. Interim Conclusion 150
6. General Conclusion 151
7. References 162
Curriculum Vitae 203
-
dc.language.isoen-
dc.subject物體知覺zh_TW
dc.subject表徵相似度分析zh_TW
dc.subject多變量神經型態分析zh_TW
dc.subject融合方法zh_TW
dc.subject腦磁波zh_TW
dc.subject功能性磁振造影zh_TW
dc.subject上而下注意力調節zh_TW
dc.subjectfunctional Magnetic Resonance Imagingen
dc.subjectobject perceptionen
dc.subjectrepresentational similarity analysisen
dc.subjecttop-down attentionen
dc.subjectfusion methoden
dc.subjectmultivariate pattern analysisen
dc.subjectMagnetoencephalographyen
dc.title物體辨識與選擇於人類大腦神經表徵的空間與時間動態性研究zh_TW
dc.titleSpatiotemporal Dynamics of Neural Representations Underlying Object Recognition and Selectivity in Human Brainen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee汪曼穎;謝淑蘭;鄭仕坤;徐峻賢zh_TW
dc.contributor.oralexamcommitteeMan-Ying Wang;Shulan Hsieh;Shih-kuen Cheng;Chun-Hsien Hsuen
dc.subject.keyword物體知覺,上而下注意力調節,功能性磁振造影,腦磁波,融合方法,多變量神經型態分析,表徵相似度分析,zh_TW
dc.subject.keywordobject perception,top-down attention,functional Magnetic Resonance Imaging,Magnetoencephalography,fusion method,multivariate pattern analysis,representational similarity analysis,en
dc.relation.page207-
dc.identifier.doi10.6342/NTU202302509-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college理學院-
dc.contributor.author-dept心理學系-
dc.date.embargo-lift2026-07-31-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2026-07-31
6.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved