請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱雅萍 | zh_TW |
| dc.contributor.advisor | Ya-Ping Chiu | en |
| dc.contributor.author | 李湘 | zh_TW |
| dc.contributor.author | Hsiang Lee | en |
| dc.date.accessioned | 2023-08-15T16:52:56Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | [1] M Zahid Hasan and Charles L Kane. Colloquium: topological insulators. Reviews of modern physics, 82(4):3045, 2010.
[2] Joel E Moore. The birth of topological insulators. Nature, 464(7286):194–198, 2010. [3] M Zahid Hasan and Joel E Moore. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2(1):55–78, 2011. [4] Oliver Breunig and Yoichi Ando. Opportunities in topological insulator devices. Nature Reviews Physics, 4(3):184–193, 2022. [5] Mei-Xiao Wang, Canhua Liu, Jin-Peng Xu, Fang Yang, Lin Miao, Meng-Yu Yao, CL Gao, Chenyi Shen, Xucun Ma, X Chen, et al. The coexistence of superconductivity and topological order in the bi2se3 thin films. Science, 336(6077):52–55, 2012. [6] Marco Bianchi, Dandan Guan, Shining Bao, Jianli Mi, Bo Brummerstedt Iversen, Philip DC King, and Philip Hofmann. Coexistence of the topological state and a two-dimensional electron gas on the surface of bi2se3. Nature communications, 1(1):128, 2010. [7] Yi Zhang, Ke He, Cui-Zu Chang, Can-Li Song, Li-Li Wang, Xi Chen, Jin-FengJia, Zhong Fang, Xi Dai, Wen-Yu Shan, et al. Crossover of the three-dimensional topological insulator bi2se3 to the two-dimensional limit. Nature Physics, 6(8):584–588, 2010. [8] Avery J Green, Sonal Dey, Yong Q An, Brendan O’Brien, Samuel O’Mullane, Bradley Thiel, and Alain C Diebold. Surface oxidation of the topological insulator bi2se3. Journal of Vacuum Science & Technology A, 34(6), 2016. [9] Desheng Kong, Judy J Cha, Keji Lai, Hailin Peng, James G Analytis, Stefan Meister, Yulin Chen, Hai-Jun Zhang, Ian R Fisher, Zhi-Xun Shen, et al. Rapid surface oxidation as a source of surface degradation factor for bi2se3. ACS nano, 5(6):4698–4703, 2011. [10] Yuqi Xia, Dong Qian, David Hsieh, L Wray, Arijeet Pal, Hsin Lin, Arun Bansil, DHYS Grauer, Yew San Hor, Robert Joseph Cava, et al. Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nature physics, 5(6):398–402, 2009. [11] Lukas Müchler, Haijun Zhang, Stanislav Chadov, Binghai Yan, Frederick Casper, Jürgen Kübler, Shou-Cheng Zhang, and Claudia Felser. Topological insulators from a chemist's perspective. Angewandte Chemie International Edition, 51(29):7221–7225, 2012. [12] Jixia Dai, Damien West, Xueyun Wang, Yazhong Wang, Daniel Kwok, S-W Cheong, SB Zhang, and Weida Wu. Toward the intrinsic limit of the topological insulator bi 2 se 3. Physical review letters, 117(10):106401, 2016. [13] Shuangxi Wang and Ping Zhang. Native point defects in bi2se3: A first-principles study. Physics Letters A, 384(14):126281, 2020. [14] L Xue, P Zhou, CX Zhang, CY He, GL Hao, LZ Sun, and JX Zhong. First-principles study of native point defects in bi2se3. Aip Advances, 3(5), 2013. [15] Xiangang Wan and Sergey Y Savrasov. Turning a band insulator into an exotic superconductor. Nature communications, 5(1):4144, 2014. [16] Atsushi Togo and Isao Tanaka. First principles phonon calculations in materials science. Scripta Materialia, 108:1–5, 2015. [17] Feliciano Giustino. Electron-phonon interactions from first principles. Reviews of Modern Physics, 89(1):015003, 2017. [18] Jerry Tersoff and Donald R Hamann. Theory of the scanning tunneling microscope. Physical Review B, 31(2):805, 1985. [19] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge university press, 2018. [20] Mark A Reed. Inelastic electron tunneling spectroscopy. Materials today, 11(11):46– 50, 2008. [21] SK Khanna and John Lambe. Inelastic electron tunneling spectroscopy. Science, 220(4604):1345–1351, 1983. [22] Heiko Gawronski, M Mehlhorn, and K Morgenstern. Imaging phonon excitation with atomic resolution. Science, 319(5865):930–933, 2008. [23] Prosper Ngabonziza, Yi Wang, Peter A van Aken, Joachim Maier, and Jochen Mannhart. Inelastic electron tunneling spectroscopy at high-temperatures. Advanced Materials, 33(8):2007299, 2021. [24] Sunghun Kim, Mao Ye, Kenta Kuroda, Yohei Yamada, EE Krasovskii, EV Chulkov, Koji Miyamoto, Masashi Nakatake, Taichi Okuda, Yoshifumi Ueda, et al. Surface scattering via bulk continuum states in the 3d topological insulator bi 2 se 3. Physical Review Letters, 107(5):056803, 2011. [25] M Jurczyszyn, M Sikora, M Chrobak, and L Jurczyszyn. Studies of surface states in bi2se3 induced by the bise substitution in the crystal subsurface structure. Applied Surface Science, 528:146978, 2020. [26] Jun Zhang, Zeping Peng, Ajay Soni, Yanyuan Zhao, Yi Xiong, Bo Peng, Jianbo Wang, Mildred S Dresselhaus, and Qihua Xiong. Raman spectroscopy of fewquintuple layer topological insulator bi2se3 nanoplatelets. Nano letters, 11(6):2407– 2414, 2011. [27] Bao-Tian Wang and Ping Zhang. Phonon spectrum and bonding properties of bi2se3: Role of strong spin-orbit interaction. Applied Physics Letters, 100(8), 2012. [28] Guozhi Jia, Xionglong Wang, Qiang Li, and Jianghong Yao. Bi-rich grow topological insulator bi2se3 nanodomains structures. Superlattices and Microstructures, 66:33–38, 2014. [29] Ibrahim Boulares, Guangsha Shi, Emmanouil Kioupakis, Petr Lošt’ák, Ctirad Uher, and Roberto Merlin. Surface phonons in the topological insulators bi2se3 and bi2te3. Solid State Communications, 271:1–5, 2018. [30] Charles Kittel. Introduction to solid state physics. John Wiley & sons, inc, 2005. [31] Sébastien Giraud and Reinhold Egger. Electron-phonon scattering in topological insulators. Physical Review B, 83(24):245322, 2011. [32] Laurent Chaput, Atsushi Togo, Isao Tanaka, and Gilles Hug. Phonon-phonon interactions in transition metals. Physical Review B, 84(9):094302, 2011. [33] PingHeng Tan, ChengYong Hu, Jian Dong, WanCi Shen, and BaoFa Zhang. Polarization properties, high-order raman spectra, and frequency asymmetry between stokes and anti-stokes scattering of raman modes in a graphite whisker. Physical Review B, 64(21):214301, 2001. [34] Sifan You, Jing-Tao Lü, Jing Guo, and Ying Jiang. Recent advances in inelastic electron tunneling spectroscopy. Advances in Physics: X, 2(3):907–936, 2017. [35] Rong-ping Wang, Guang-wen Zhou, Yu-long Liu, Shao-hua Pan, Hong-zhou Zhang, Da-peng Yu, and Ze Zhang. Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Physical Review B, 61(24):16827, 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88570 | - |
| dc.description.abstract | 近年來,拓撲絕緣體(Topological insulators, TIs)因其獨特的拓撲性質而成為熱門研究課題。由於具有較大的能帶間隙和高穩定性,硒化鉍被視為應用潛力極大的拓樸材料之一。材料中的熱學及電學性質與聲子相關,材料中聲子的性質對材料的應用有很大的影響。儘管理論計算和實驗測量已經對理想結構中的振動模式和聲子進行了深入研究,但對於缺陷引起的性質的影響仍然缺乏研究。尤其在拓樸絕緣體中,因為 TIs 的能帶間隙較窄,缺陷可能會對材料性質產生顯著影響。拉曼光譜是一種可以檢測材料的振動模式和聲子相互作用的工具。然而,拉曼光譜只能在較大的區域內進行測量,無法在奈米尺度的視角內測量,包括缺陷附近的變化。我們使用掃描穿隧顯微鏡(scanning tunneling microscopy, STM)並應用非彈性電子隧道光譜學(inelastic electron tunneling spectroscopy, IETS)在硒化鉍上進行電學性質的檢測。藉由 STM 我們成功地識別了Bi2Se3 表面上不同類型的缺陷。在掃描穿隧光譜(scanning tunneling spectroscopy, STS)的 dI/dV 曲線中觀察到靠近費米能級的能隙,我們認為這是由於聲子振動能量的結果。我們應用了 IETS 來觀察 BiSe 缺陷區域中聲子能量的變化,並觀察到缺陷處的振動能量增加。這個變化可能來自於缺陷所造成的晶體結構變化以及粒子之間的交互作用。這一結果為拓樸絕緣體在費米能級附近的電學性質提供了新的變因,並為研究拓樸絕緣體缺陷上的奈米尺度聲子相互作用開啟了新的研究方向。 | zh_TW |
| dc.description.abstract | Topological insulators (TIs) have been a popular study topic in recent years for their unique nontrivial topology properties. Bismuth selenide is one of the most potential TIs in application due to its large band gap and high stability. Phonons can influence the material's heat and electronic transport properties. Although the vibration modes and the induced phonons are well studied in ideal TI structure through theoretical calculations and experimental measurements, the influence from defects is still lacking. Defects may significantly influence the properties of a material, especially for TIs, since TIs have narrow band gaps and can be affected more by defects. Raman spectroscopy is a powerful tool to detect the material's vibration modes and phonon interactions. However, Raman spectroscopy can only measure the vibrations in a large area but cannot measure in a nano-scale view, including the changes near a defect. Here, we use scanning tunneling microscopy (STM) and apply inelastic electron tunneling spectroscopy (IETS) on bismuth selenide to detect electrical changes at defect sites. We successfully identified different types of defects on the Bi2Se3 surface by STM/S. A gap near the Fermi level is observed in the scanning tunneling spectroscopy (STS) dI/dV curve, which we considered as a result of phonon vibration energy. We applied IETS to see the variation of the phonon energy through a BiSe defect and observed that the vibration energy increases on the defect. The IETS change may result from the atomic structural change of crystal and particle interactions near the defect. This result suggests a new variation to electronic properties near the Fermi level on TIs and also opens a new study to nano-scale phonon interactions at defects on TIs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:52:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:52:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures ix List of Abbreviations xi Chapter 1 Introduction 1 1.1 Topological Insulators (TIs) 1 1.2 Bismuth Selenide Bi2Se3 2 1.3 Point Defects in Bi2Se3 5 1.4 Phonons 6 Chapter 2 Experimental Instruments 7 2.1 Scanning System 7 2.2 Principles of Scanning Tunneling Microscopy (STM) 7 2.2.1 Quantum Tunneling Effect 8 2.2.2 Scanning Tunneling Microscopy (STM) 10 Chapter 3 Experimental and Analytical Method 12 3.1 Sample Preparation 12 3.2 Inelastic Electron Tunneling Spectroscopy (IETS) 12 3.3 Band Edge Determination 14 Chapter 4 Experimental Results 16 4.1 Defect Identification 16 4.2 Electronic Properties on the BiSe Defect 22 Chapter 5 Discussion 26 5.1 IETS Peak Resolution 26 5.2 Normal Mode Phonons 27 5.3 Interactions of Phonons 28 5.3.1 Phonon Scattering 28 5.3.2 High-Order Phonons 29 Chapter 6 Conclusion 31 References 32 | - |
| dc.language.iso | en | - |
| dc.subject | 聲子 | zh_TW |
| dc.subject | 掃描穿隧顯微鏡 | zh_TW |
| dc.subject | 非彈性電子穿隧光譜學 | zh_TW |
| dc.subject | 拓樸絕緣體 | zh_TW |
| dc.subject | 硒化鉍 | zh_TW |
| dc.subject | 點缺陷 | zh_TW |
| dc.subject | inelastic electron tunneling spectroscopy | en |
| dc.subject | scanning tunneling microscopy | en |
| dc.subject | phonon | en |
| dc.subject | point defect | en |
| dc.subject | bismuth selenide | en |
| dc.subject | topological insulator | en |
| dc.title | 拓樸絕緣體硒化鉍聲子能量在缺陷上之變化 | zh_TW |
| dc.title | Phonon Energy Changes of the Point Defect on Bi2Se3 Topological Insulator | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張嘉升;魏金明;陳宜君 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Seng Chang;Ching-Ming Wei;Yi-Chun Chen | en |
| dc.subject.keyword | 掃描穿隧顯微鏡,非彈性電子穿隧光譜學,拓樸絕緣體,硒化鉍,點缺陷,聲子, | zh_TW |
| dc.subject.keyword | scanning tunneling microscopy,inelastic electron tunneling spectroscopy,topological insulator,bismuth selenide,point defect,phonon, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202302300 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
