請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88565
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉仲基 | zh_TW |
dc.contributor.advisor | Chung-Kee Yeh | en |
dc.contributor.author | 陳玠宏 | zh_TW |
dc.contributor.author | Jie-Hong Chen | en |
dc.date.accessioned | 2023-08-15T16:51:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-17 | - |
dc.identifier.citation | 蔡易霖。2021。[Day 12] 決策樹 (Decision tree)。網址:https://ithelp.ithome.com.tw/articles/10271143?sc=hot。上網日期:2023-03-02。
中華民國體育運動總會。2021。國際羽球規則。網址 : https://www.rocsf.org.tw/wp-content/uploads/%E7%BE%BD%E7%90%83%E8%A6%8F%E5%89%87%E6%8C%87%E5%BC%95%E9%99%84%E9%8C%84-20220316.pdf。上網日期:2023-03-27。 涂國誠。2022。上肢擊球動作基本結構 The basic structure of upper extremity swing。網址:https://sportspedia.perdc.ntnu.edu.tw/content.php?wid=2435。上網日期:2022-10-03。 張博、邵年。1999。羽毛球。初版。50-52。台北:國家出版社。 教育部體育署。2018。中華民國107年運動現況調查結案報告書。網址:https:// isports.sa.gov.tw/apps/Download.aspxSYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2。上網日期:2023-05-01。 教育部體育署。2019。中華民國108年運動現況調查結案報告書。網址:https:// isports.sa.gov.tw/apps/Download.aspx?SYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2。上網日期:2023-05-01。 教育部體育署。2020。中華民國109年運動現況調查結案報告書。網址:https:// isports.sa.gov.tw/apps/Download.aspx?SYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2。上網日期:2023-05-01。 教育部體育署。2021。中華民國110年運動現況調查結案報告書。網址:https:// isports.sa.gov.tw/apps/Download.aspx?SYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2。上網日期:2023-05-01。 教育部體育署。2022。中華民國111年運動現況調查結案報告書。網址:https:// isports.sa.gov.tw/apps/Download.aspx?SYS=TIS&MENU_CD=M07&ITEM_CD=T01&MENU_PRG_CD=4&ITEM_PRG_CD=2。上網日期:2023-05-01。 陳運家、洪友廉、陳廣熙、陳彩霞。2000。羽毛球教學手冊。初版。6:14-17。香港中文大學香港優質教育基金。 彭美麗。2006。羽毛球技巧圖解。初版。30-37。中國:北京體育大學出版社。 黃尹政。2018。評估穿戴式科技羽球教學輔助系統對羽球技能學習之成效-以正拍殺球為例。碩士論文。高雄:中山大學資訊管理研究所。 黃志勝。2018。機器/統計學習:羅吉斯回歸(Logistic regression)。網址:https:// chih-sheng huang821.medium.com/%E6%A9%9F%E5%99%A8-%E7%B5%B1%E8%A8%88%E5%AD%B8%E7%BF%92-%E7%BE%85%E5%90%89%E6%96%AF%E5%9B%9E%E6%AD%B8-logistic-regression-aff7a830fb5d。上網日期:2023-03-01。 楊孟軒。2021。全台瘋小戴、麟洋 羽球為什麼能成為台灣「新國球」?。 天下雜誌 729:96-98。 維基百科。2022。Atan2。網址:https://zh.wikipedia.org/zh-tw/Atan2。上網日期:2023-01-25。 蔡虔祿、黃長福、紀世清。1995。世界級羽球選手正手拍高手擊球動作的生物力學分析。師大體育研究。復刊號:201-227。 謝嘉彬。2004。羽球高手正拍長球擊球動作之定性分析。碩士論文。桃園:國立體育學院運動科學研究所。 Baturay, M. H., and M. Birtane. 2013. Responsive web design: a new type of design for web-based instructional content. Procedia-Social and Behavioral Sciences 106: 2275-2279. Bazarevsky, V., I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang., and M. Grundmann. 2020. Blazepose: On-device real-time body pose tracking. arXiv preprint arXiv:2006.10204. Bazarevsky, V., Y. Kartynnik, A. Vakunov, K. Raveendran., and M. Grundmann. 2019. Blazeface: Sub-millisecond neural face detection on mobile gpus. arXiv preprint arXiv:1907.05047. Dai, T. T., and Y. S. Dong. 2020. Introduction of SVM related theory and its application research. In 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). 230-233. IEEE. DataReportal. 2022. “Digital 2022 TAIWAN”. Available at:https://datareportal.com/reports/digital-2022-taiwan. Accessed 2022-09-25. Li, R. T., S. R. Kling, M. J. Salata, S. A. Cupp, J. Sheehan, and J. E. Voos. 2016. Wearable performance devices in sports medicine. Sports Health 8(1): 74–78. Linnamo, V. 2023. Sensor Technology for Sports Monitoring. Sensors 23(2): 572. Liu, X., J. Sacks, M. Zhang, A. G. Richardson, T. H. Lucas, and J. Van der Spiegel. 2017. The virtual trackpad: An electromyography-based, wireless, real-time, low-power, embedded hand-gesture-recognition system using an event-driven artificial neural network. IEEE Transactions on Circuits and Systems II: Express Briefs 64(11): 1257-1261. Lizzio, V. A., A. G. Cross, E. W. Guo, and E. C. Makhni. 2020. Using wearable technology to evaluate the kinetics and kinematics of the overhead throwing motion in baseball players. Arthroscopy Techniques 9(9): e1429-e1431. Marcotte, E. 2010. Responsive web design. A List Apart. Available at: https://alistapart.com/article/responsive-web-design/. Accessed 2022-02-17. Myles, A. J., R. N. Feudale, Y. Liu, N. Woody, and S. Brown. 2004. An introduction to decision tree modeling. Journal of Chemometrics 18: 275-285. Newell, A., K. Yang, and J. Deng. 2016. Stacked hourglass networks for human pose estimation. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14: 483-499. Springer International Publishing. Park, H. A. 2013. An introduction to logistic regression: from basic concepts to interpretation with particular attention to nursing domain. Journal of Korean Academy of Nursing 43(2): 154-164. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss., and V. Dubourg. 2011. Scikit-learn: Machine learning in Python. The Journal of machine Learning research 12: 2825-2830. Phomsoupha, M., and G. Laffaye. 2020. Injuries in badminton: A review. Science & Sports. 35(4): 189-199. Raileanu, L. E., and K. Stoffel. 2004. Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence 41: 77-93. Toshev, A., and C. Szegedy. 2014. Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1653-1660. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88565 | - |
dc.description.abstract | 隨著科技日新月異,視覺辨識技術已被廣泛應用於運動產業中,若是想學羽球的初學者可能會需求專業教練的指導,依目前市場上羽球學費的行情,以台北為例,一對一教學的學費每小時400至上千元不等,場地費另計並且由學生負擔,對於初學者是很大的負擔及阻力,此外羽球揮拍的教學方式通常是教練一邊示範一邊口述講解,學生再模仿教練的動作來揮拍,教練在場邊適時指導及糾正動作,學生才能精準地完成揮拍動作,但僅僅透過課堂的訓練並不充足,課後也必須不斷的自主練習,因此,此研究研發一套羽球姿勢輔助教學系統給初學者使用,並給予羽球初學者以下的揮拍動作建議:1.持拍手手腕、手肘、肩膀之適當夾角。2.預備擊球時引拍手與持拍手之角度保持平衡之角度。3.揮拍時持拍手同側膝蓋需適當的彎曲之角度。4.揮拍次數計數功能。1至3項透過角度計算判斷預備擊球時引拍動作是否正確,以助於學習並且降低錯誤姿勢造成的運動傷害;第4項則是提供揮拍次數的資訊,資料部分收集共625張影像並進行Mediapipe座標軸分析,分析後的資料透過Logistic Regression、Random Forest Classifier、Support Vector Machine機器學習模型訓練並評比Accuracy、Recall rate,發現Random Forest Classifier 的Accuracy為97.0%,Recall rate則為97.3%表現最好,因此作為此系統計數模型。角度指標部分則是在欲計算夾角的揮拍前影像座標軸資料與相鄰兩點進行Atan2函式取得弧度,將弧度相減後取絕對值並轉換角度單位以計算手肘、肩膀、持拍手膝蓋彎曲夾角,再來透過紅綠燈角度指標系統整合各教練影像之揮拍角度資訊。最後透過Flask以及Bootstrap撰寫響應式全端網頁,並將模型以及紅綠燈角度系統整合,在台大體育館進行實測。實測人數5位並且皆無參加羽球社團或學球等經驗,結果部分顯示5位受試者平均擊長遠球之長度增加9.6%,擊球穩定度增加26.3%。總結以上,初學者在練習揮拍時將可以透過各尺寸聯網裝置使用此套系統,並有即時且正確的指引,不僅降低學球成本,對於提升球質亦十分有幫助,並同時降低受傷風險。 | zh_TW |
dc.description.abstract | With the rapid advancement of technology, visual recognition techniques have been widely applied in the sports industry. However, for beginners who want to learn badminton, they may require the guidance of a professional coach. Considering the current market rates for badminton coaching fees, taking Taipei as an example, the tuition for one-on-one coaching can range from NT$400 to over a thousand per hour, excluding venue fees, which are paid by the students. This is a significant burden and obstacle for beginners. In addition, the teaching method for badminton swing typically involves the coach demonstrating and verbally explaining while the student imitates the coach's movements. The coach provides timely guidance and corrects the student's actions from the sidelines so that the student can accurately complete the swing. However, classroom training alone is not sufficient, and continuous self-practice is necessary after class. Therefore, this study developed a badminton posture-assisted teaching system for beginners. The system provides the following recommendations for beginners' swing movements: 1. Proper preparatory posture of the grip hand's wrist, elbow, and shoulder angle. 2. Balanced angle between the racket-hand and non-racket hand during the preparatory phase. 3. Appropriate angle of knee bending on the same side as the racket hand during the swing. 4. Swing count function. Item 1 to 3 aim to help in learning and also decrease the possibility of injuries by calculating the angles of the ready phase to determine whether the position is correct or not. A dataset of 625 images is collected and analyzed using the Mediapipe coordinate system. The analyzed data is then used to train and evaluate machine learning models, including Logistic Regression, Random Forest Classifier, and Support Vector Machine. Among these models, the Random Forest Classifier performed the best with an accuracy of 97% and a recall rate of 97.3%. Therefore, it is selected as the counting model for this system. Regarding the angle indicators, the Atan2 function is used to calculate the angle in radians from the image coordinate data of the previous frame and the two adjacent points before the swing. The absolute difference between the angles is then converted to degree units to calculate the angles of the elbow, shoulder, and knee bending. The red-green traffic light angle indicator system is integrated to combine the swing angle information from various coaching videos. Finally, a full-stack Responsive web page is developed by Flask and Bootstrap. The model and the red-green traffic light angle system are integrated into the webpage. The system is tested at the National Taiwan University Sports Center with a sample size of five participants, all of whom had no prior experience in joining badminton clubs or receiving formal badminton training. The result shows that the average length of hitting long shots increased by 9.6%, and the stability of hitting shots is improved by 26.3% among the five participants. In conclusion, beginners practicing their badminton swing can benefit from this system, which provides real-time and accurate guidance, not only reducing the cost of learning badminton but also significantly improving the quality of their shots and reducing the risk of injuries. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:51:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T16:51:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目錄 vii 圖目錄 x 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 3 第二章 文獻探討 5 2.1 羽球預備揮拍姿勢探討 5 2.1.1 羽球擊球分類 5 2.1.2 羽球正拍高手擊長遠球姿勢 7 2.2 人體姿勢動作辨識之技術探討 8 2.2.1 感測器技術應用於人體姿勢識別 8 2.2.2 影像辨識技術應用於人體姿勢識別 10 2.2.3 人體姿勢辨識模組 - Mediapipe 11 2.2.3.1 人體檢測器(Person Detector with Pose Alignment) 11 2.2.3.2 推論流程(Inference Pipeline) 12 2.3 響應式網頁(Responsive Web Design) 14 第三章 材料與方法 16 3.1 系統內容規劃 16 3.2 系統架構設計 17 3.3 開發材料 18 3.3.1 開發硬體 18 3.3.2 開發軟體 20 3.4 開發方法 21 3.4.1 計數機器學習模型開發 21 3.4.1.1 資料收集 21 3.4.1.2 資料前處理 22 3.4.1.3 機器學習模型 24 3.4.1.3.1 Logistic Regression 25 3.4.1.3.2 Random Forest 25 3.4.1.3.3 Support Vector Machine 28 3.4.2 角度指標計算 30 3.4.2.1 角度指標計算函式理論 30 3.4.2.2 角度計算公式 32 3.4.2.3 角度資料討論 33 3.4.3 場地實測 37 3.4.3.1 實測流程 38 第四章 結果與討論 39 4.1 計算揮拍次數模型表現 39 4.2 角度指標計算結果 39 4.3 角度指標整合討論 42 4.4 響應式網頁結果呈現 45 4.5 場地實測結果與討論 47 4.5.1 使用系統前、後之打長遠球的落點距離與底線的遠近比較 47 4.5.2 系統揮拍計數模型之準確度結果 50 4.5.3 受試者心得討論 51 第五章 結論與建議 54 5.1 結論 54 5.2 建議 55 參考文獻 56 | - |
dc.language.iso | zh_TW | - |
dc.title | 羽球姿勢專家輔助系統之開發 | zh_TW |
dc.title | Development of an Expert Assistance System for Badminton Posture | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 黃振康 | zh_TW |
dc.contributor.coadvisor | Chen-Kang Huang | en |
dc.contributor.oralexamcommittee | 吳剛智;丁健芳 | zh_TW |
dc.contributor.oralexamcommittee | Gang-Jhy Wu;Chien-Fang Ding | en |
dc.subject.keyword | Mediapipe,角度指標,Flask,Bootstrap,羽球教學系統, | zh_TW |
dc.subject.keyword | Mediapipe,Angle Indicators,Flask,Bootstrap,Badminton Tutorial system, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU202301651 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-07-18 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物機電工程學系 | - |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。