Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88558
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔣明晃zh_TW
dc.contributor.advisorMing-Huang Chiangen
dc.contributor.author樓允中zh_TW
dc.contributor.authorYun-Chung Louen
dc.date.accessioned2023-08-15T16:49:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-01-
dc.identifier.citation張維友,《需求分群與預測模式之研究-以汽車維修零組件為例》,中文部分:國立台灣大學商學研究所碩士學位論文,2017。
葉庭佑,《考量銷售量下之 ARIMAX 需求預測模型–以汽車維修零組件為例》,中文部分:國立台灣大學商學研究所碩士學位論文,2021。
張國方(2017),汽車營銷學,二版,人民交通出版社。
洪宗貝、張簡復中(2009),供應鏈管理(初版),新文京開發
張超群、趙孟誼(2006),台灣汽車電子產業發展機會與挑戰,初版,工業技術研究院產業經濟與趨勢研究中心。
楊森(2007),汽車產業大未來,初版,財訊發行 : 聯豐總經銷。
黃南斗(譯)(1989),存貨管理實務(原作者:水戶誠一),臺北市 : 臺華工商(原著出版年:1980)
Dickie, H. F. (1951). ABC inventory analysis shoots for dollars not pennies. Factory Management and Maintenance, 109(7), 92-94.
Brown, R. G. (1956). Exponential smoothing for predicting demand. Philip Morris Records; Master Settlement Agreement. https://www.industrydocuments.ucsf.edu/docs/jzlc0130
Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (ONR Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA, 10.
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342. https://doi.org/10.1287/mnsc.6.3.324
Birnbaum, Z. W. (1968). On the importance of different components in a multicomponent system (Technical Report AD0670563). Washington University Seattle Lab of Statistical Research.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
Tibshirani, R., Walther, G. and Hastie, T. (2001), Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63: 411-423. https://doi.org/10.1111/1467-9868.00293
Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data—An Introduction to Cluster Analysis. New York: John Wiley & Sons Inc.
Krajewski, L. J., & Ritzman, L. P. (2005). Operations management: processes and value chains. Pearson.
Williams, T. (1984). Stock Control with Sporadic and Slow-Moving Demand. J Oper Res Soc 35, 939–948 https://doi.org/10.1057/jors.1984.185
Kodinariya, T.M., & Makwana, P.R. (2013). Review on determining number of Cluster in K-Means Clustering.
Boylan, J., Syntetos, A. & Karakostas, G. (2008). Classification for forecasting and stock control: a case study. J Oper Res Soc 59, 473–481 https://doi.org/10.1057/palgrave.jors.2602312
Everette S. Gardner, Jr., Ed. Mckenzie, (1985) Forecasting Trends in Time Series. Management Science 31(10):1237-1246. https://doi.org/10.1287/mnsc.31.10.1237
Callegaro, A. (2010). Forecasting methods for spare parts demand. Undergraduate Thesis.
Ghobbar, A. A., & Friend, C. H. (2003). Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers & Operations Research, 30(14), 2097-2114. https://doi.org/10.1016/S0305-0548(02)00125-9
Callegaro, A. (2009). Forecasting methods for spare parts demand (Third quality theses). University of Padua, Department of Industrial Systems Engineering and Management.
Catelani, M., Ciani, L., & Venzi, M. (2016). Component reliability importance assessment on complex systems using credible improvement potential. Microelectronics Reliability, 64, 113-119. https://doi.org/10.1016/j.microrel.2016.07.055
Dui, H., Si, S., & Yam, R. C. M. (2018). Importance measures for optimal structure in linear consecutive-k-out-of-n systems. Reliability Engineering & System Safety, 169, 339-350. https://doi.org/10.1016/j.ress.2017.09.015
Duchessi, P., Tayi, G.K. and Levy, J.B. (1988), "A Conceptual Approach for Managing of Spare Parts", International Journal of Physical Distribution & Materials Management, Vol. 18 No. 5, pp. 8-15. https://doi.org/10.1108/eb014700
Syntetos, A. A., & Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21(2), 303-314.https://doi.org/10.1016/j.ijforecast.2004.10.001
Kalchschmidt, M., Zotteri, G., & Verganti, R. (2003). Inventory management in a multi-echelon spare parts supply chain. International Journal of Production Economics, 81-82, 397-413. https://doi.org/10.1016/S0925-5273(02)00284-0
Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. https://doi.org/10.1016/j.cor.2004.07.014
Kareem, B., & Lawal, A. S. (2015). Spare parts failure prediction of an automobile under criticality condition. Engineering Failure Analysis, 56, 69-79. https://doi.org/10.1016/j.engfailanal.2015.04.011
do Rego, J. R., & de Mesquita, M. A. (2015). Demand forecasting and inventory control: A simulation study on automotive spare parts. International Journal of Production Economics, 161, 1-16. https://doi.org/10.1016/j.ijpe.2014.11.009
Vargas, C., & Cortés, M. (2017). Automobile spare-parts forecasting: A comparative study of time series methods. International Journal of Automotive and Mechanical Engineering, 14(1), 3898-3912.: https://doi.org/10.15282/ijame.14.1.2017.7.0317
Omar Besbes, Adam N. Elmachtoub, Yunjie Sun (2020) Pricing Analytics for Rotable Spare Parts. INFORMS Journal on Applied Analytics 50(5):313-324. https://doi.org/10.1287/inte.2020.1033
MRPeasy(2023),ABC Analysis (80/20 Rule) in Inventory Management,取自: https://manufacturing-software-blog.mrpeasy.com/abc-analysis/
Scikit-learn(2023),Choosing the right estimator,取自:https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88558-
dc.description.abstract近年台灣汽車市場持續增長,在2022年上半年台灣車輛工業達到新台幣3,607億元,顯示其在台灣製造業中的重要性。由於汽車屬於耐久財,消費者並非會頻繁更換汽車,因此對於品牌車廠而言,妥善的售後服務也成為關鍵的競爭因素,然而一輛汽車常由超過一萬個零組件組成,售後服務市場也非僅提供一種零組件,進而形成了複雜的零組件供應網,對於車廠在存貨管理上也帶來了許多難度,因此汽車零部件需求的理解和預測,以及庫存管理的妥善規劃,是提高零組件供應鏈的成功關鍵。
本研究的目的希望能有效藉由零組件的需求指標進行分群,藉此得到更多不同代表零組件特性與最佳預測方式間的關聯性,本研究使用汽車零組件的價格、重要性、平均需求間隔與需求變異係數作為分群指標,將具相似特性的零組件歸納為同一群,再套用於現行個案公司的需求預測方式以及本研究提出各預測方式於不同集群,找出各集群最適預測模型和集群特性之關聯。
研究結果顯示,在高單價與高重要性的零組件集群較適用於趨勢性的預測模型,而低單價高重要性的零組件適用於平穩的預測模型,以及低重要性的零組件較不適合進行時間序列法的預測,藉由找出零組件特性與適用預測模型的關聯性,在企業提供顧客售後服務時,能幫助企業根據特定特性的零組件,作出對應適合的預測方式與存貨規劃。
zh_TW
dc.description.abstractThis study focus on effectively cluster the spare parts by the demand indicators of spare parts, thereby revealing more relationships between different representative spare parts characteristics and optimal forecasting methods. This study uses the price, criticality, and monthly demand volume of automotive spare parts as clustering indicators. Spare parts with similar characteristics are grouped together and applied to the current demand forecasting methods of the case company, as well as the various forecasting methods proposed in this study for different clusters. The goal is to find the most suitable prediction model for each cluster and its relationship with the characteristics of the cluster.
The results show that the cluster of spare parts with high unit price and high criticality is more suitable for trended time series models, while the cluster of low unit price and high criticality spare parts is suitable for stationary time series models. Spare parts with low criticality are less suitable for time series prediction methods. By finding the relationship between spare parts characteristics and suitable prediction models, it can assist companies in providing after-sales service to customers. This study help companies to make appropriate predictions and inventory planning based on the specific characteristics of the spare parts.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:49:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:49:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 2
1.4 論文架構 3
第二章 文獻探討 4
2.1 供應鏈管理 4
2.2 存貨管理 4
2.3 汽車零組件概述 7
2.4 分類與分群 8
2.5 需求預測方法 11
2.6 小結 13
第三章 研究方法 15
3.1 研究流程 15
3.2 汽車零組件管理 16
3.3 分群模型的建立 17
3.4 需求預測演算法之建立 21
3.5 小結 24
第四章 模型分析與結果衡量 25
4.1 指標建立 25
4.2 汽車零組件之分群 28
4.3 預測流程範例 35
4.4 分群之預測模型 42
4.5 分群與預測結果分析與探討 46
第五章 結論及未來研究方向 50
5.1 研究結論 50
5.2 研究貢獻 51
5.3 研究限制 51
5.4 未來研究方向 52
參考文獻 53
中文文獻 53
英文文獻 53
網路資料 56
附錄 57
-
dc.language.isozh_TW-
dc.subject分群zh_TW
dc.subject汽車零組件zh_TW
dc.subject存貨管理zh_TW
dc.subject需求預測zh_TW
dc.subjectInventory Managementen
dc.subjectAutomobileen
dc.subjectClusteringen
dc.subjectSpare partsen
dc.subjectDemand forecastingen
dc.title考量價格與重要性因素下,需求分群與預測模式之研究-以汽車維修零組件為例zh_TW
dc.titleDemand Clustering and Forecasting Models for Automobile Spare Parts by Considering of Price and Parts Criticalityen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王孔政;林我聰zh_TW
dc.contributor.oralexamcommitteeKung-Jeng Wang;Woo-Tsong Linen
dc.subject.keyword存貨管理,汽車零組件,分群,需求預測,zh_TW
dc.subject.keywordInventory Management,Spare parts,Automobile,Clustering,Demand forecasting,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202302272-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college管理學院-
dc.contributor.author-dept商學研究所-
dc.date.embargo-lift2028-07-27-
Appears in Collections:商學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
2.29 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved