Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88558Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔣明晃 | zh_TW |
| dc.contributor.advisor | Ming-Huang Chiang | en |
| dc.contributor.author | 樓允中 | zh_TW |
| dc.contributor.author | Yun-Chung Lou | en |
| dc.date.accessioned | 2023-08-15T16:49:52Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | 張維友,《需求分群與預測模式之研究-以汽車維修零組件為例》,中文部分:國立台灣大學商學研究所碩士學位論文,2017。
葉庭佑,《考量銷售量下之 ARIMAX 需求預測模型–以汽車維修零組件為例》,中文部分:國立台灣大學商學研究所碩士學位論文,2021。 張國方(2017),汽車營銷學,二版,人民交通出版社。 洪宗貝、張簡復中(2009),供應鏈管理(初版),新文京開發 張超群、趙孟誼(2006),台灣汽車電子產業發展機會與挑戰,初版,工業技術研究院產業經濟與趨勢研究中心。 楊森(2007),汽車產業大未來,初版,財訊發行 : 聯豐總經銷。 黃南斗(譯)(1989),存貨管理實務(原作者:水戶誠一),臺北市 : 臺華工商(原著出版年:1980) Dickie, H. F. (1951). ABC inventory analysis shoots for dollars not pennies. Factory Management and Maintenance, 109(7), 92-94. Brown, R. G. (1956). Exponential smoothing for predicting demand. Philip Morris Records; Master Settlement Agreement. https://www.industrydocuments.ucsf.edu/docs/jzlc0130 Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (ONR Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA, 10. Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342. https://doi.org/10.1287/mnsc.6.3.324 Birnbaum, Z. W. (1968). On the importance of different components in a multicomponent system (Technical Report AD0670563). Washington University Seattle Lab of Statistical Research. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7 Tibshirani, R., Walther, G. and Hastie, T. (2001), Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63: 411-423. https://doi.org/10.1111/1467-9868.00293 Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data—An Introduction to Cluster Analysis. New York: John Wiley & Sons Inc. Krajewski, L. J., & Ritzman, L. P. (2005). Operations management: processes and value chains. Pearson. Williams, T. (1984). Stock Control with Sporadic and Slow-Moving Demand. J Oper Res Soc 35, 939–948 https://doi.org/10.1057/jors.1984.185 Kodinariya, T.M., & Makwana, P.R. (2013). Review on determining number of Cluster in K-Means Clustering. Boylan, J., Syntetos, A. & Karakostas, G. (2008). Classification for forecasting and stock control: a case study. J Oper Res Soc 59, 473–481 https://doi.org/10.1057/palgrave.jors.2602312 Everette S. Gardner, Jr., Ed. Mckenzie, (1985) Forecasting Trends in Time Series. Management Science 31(10):1237-1246. https://doi.org/10.1287/mnsc.31.10.1237 Callegaro, A. (2010). Forecasting methods for spare parts demand. Undergraduate Thesis. Ghobbar, A. A., & Friend, C. H. (2003). Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers & Operations Research, 30(14), 2097-2114. https://doi.org/10.1016/S0305-0548(02)00125-9 Callegaro, A. (2009). Forecasting methods for spare parts demand (Third quality theses). University of Padua, Department of Industrial Systems Engineering and Management. Catelani, M., Ciani, L., & Venzi, M. (2016). Component reliability importance assessment on complex systems using credible improvement potential. Microelectronics Reliability, 64, 113-119. https://doi.org/10.1016/j.microrel.2016.07.055 Dui, H., Si, S., & Yam, R. C. M. (2018). Importance measures for optimal structure in linear consecutive-k-out-of-n systems. Reliability Engineering & System Safety, 169, 339-350. https://doi.org/10.1016/j.ress.2017.09.015 Duchessi, P., Tayi, G.K. and Levy, J.B. (1988), "A Conceptual Approach for Managing of Spare Parts", International Journal of Physical Distribution & Materials Management, Vol. 18 No. 5, pp. 8-15. https://doi.org/10.1108/eb014700 Syntetos, A. A., & Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21(2), 303-314.https://doi.org/10.1016/j.ijforecast.2004.10.001 Kalchschmidt, M., Zotteri, G., & Verganti, R. (2003). Inventory management in a multi-echelon spare parts supply chain. International Journal of Production Economics, 81-82, 397-413. https://doi.org/10.1016/S0925-5273(02)00284-0 Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimization. Computers & Operations Research, 33(3), 695-700. https://doi.org/10.1016/j.cor.2004.07.014 Kareem, B., & Lawal, A. S. (2015). Spare parts failure prediction of an automobile under criticality condition. Engineering Failure Analysis, 56, 69-79. https://doi.org/10.1016/j.engfailanal.2015.04.011 do Rego, J. R., & de Mesquita, M. A. (2015). Demand forecasting and inventory control: A simulation study on automotive spare parts. International Journal of Production Economics, 161, 1-16. https://doi.org/10.1016/j.ijpe.2014.11.009 Vargas, C., & Cortés, M. (2017). Automobile spare-parts forecasting: A comparative study of time series methods. International Journal of Automotive and Mechanical Engineering, 14(1), 3898-3912.: https://doi.org/10.15282/ijame.14.1.2017.7.0317 Omar Besbes, Adam N. Elmachtoub, Yunjie Sun (2020) Pricing Analytics for Rotable Spare Parts. INFORMS Journal on Applied Analytics 50(5):313-324. https://doi.org/10.1287/inte.2020.1033 MRPeasy(2023),ABC Analysis (80/20 Rule) in Inventory Management,取自: https://manufacturing-software-blog.mrpeasy.com/abc-analysis/ Scikit-learn(2023),Choosing the right estimator,取自:https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88558 | - |
| dc.description.abstract | 近年台灣汽車市場持續增長,在2022年上半年台灣車輛工業達到新台幣3,607億元,顯示其在台灣製造業中的重要性。由於汽車屬於耐久財,消費者並非會頻繁更換汽車,因此對於品牌車廠而言,妥善的售後服務也成為關鍵的競爭因素,然而一輛汽車常由超過一萬個零組件組成,售後服務市場也非僅提供一種零組件,進而形成了複雜的零組件供應網,對於車廠在存貨管理上也帶來了許多難度,因此汽車零部件需求的理解和預測,以及庫存管理的妥善規劃,是提高零組件供應鏈的成功關鍵。
本研究的目的希望能有效藉由零組件的需求指標進行分群,藉此得到更多不同代表零組件特性與最佳預測方式間的關聯性,本研究使用汽車零組件的價格、重要性、平均需求間隔與需求變異係數作為分群指標,將具相似特性的零組件歸納為同一群,再套用於現行個案公司的需求預測方式以及本研究提出各預測方式於不同集群,找出各集群最適預測模型和集群特性之關聯。 研究結果顯示,在高單價與高重要性的零組件集群較適用於趨勢性的預測模型,而低單價高重要性的零組件適用於平穩的預測模型,以及低重要性的零組件較不適合進行時間序列法的預測,藉由找出零組件特性與適用預測模型的關聯性,在企業提供顧客售後服務時,能幫助企業根據特定特性的零組件,作出對應適合的預測方式與存貨規劃。 | zh_TW |
| dc.description.abstract | This study focus on effectively cluster the spare parts by the demand indicators of spare parts, thereby revealing more relationships between different representative spare parts characteristics and optimal forecasting methods. This study uses the price, criticality, and monthly demand volume of automotive spare parts as clustering indicators. Spare parts with similar characteristics are grouped together and applied to the current demand forecasting methods of the case company, as well as the various forecasting methods proposed in this study for different clusters. The goal is to find the most suitable prediction model for each cluster and its relationship with the characteristics of the cluster.
The results show that the cluster of spare parts with high unit price and high criticality is more suitable for trended time series models, while the cluster of low unit price and high criticality spare parts is suitable for stationary time series models. Spare parts with low criticality are less suitable for time series prediction methods. By finding the relationship between spare parts characteristics and suitable prediction models, it can assist companies in providing after-sales service to customers. This study help companies to make appropriate predictions and inventory planning based on the specific characteristics of the spare parts. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:49:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:49:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究架構 2 1.4 論文架構 3 第二章 文獻探討 4 2.1 供應鏈管理 4 2.2 存貨管理 4 2.3 汽車零組件概述 7 2.4 分類與分群 8 2.5 需求預測方法 11 2.6 小結 13 第三章 研究方法 15 3.1 研究流程 15 3.2 汽車零組件管理 16 3.3 分群模型的建立 17 3.4 需求預測演算法之建立 21 3.5 小結 24 第四章 模型分析與結果衡量 25 4.1 指標建立 25 4.2 汽車零組件之分群 28 4.3 預測流程範例 35 4.4 分群之預測模型 42 4.5 分群與預測結果分析與探討 46 第五章 結論及未來研究方向 50 5.1 研究結論 50 5.2 研究貢獻 51 5.3 研究限制 51 5.4 未來研究方向 52 參考文獻 53 中文文獻 53 英文文獻 53 網路資料 56 附錄 57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 分群 | zh_TW |
| dc.subject | 汽車零組件 | zh_TW |
| dc.subject | 存貨管理 | zh_TW |
| dc.subject | 需求預測 | zh_TW |
| dc.subject | Inventory Management | en |
| dc.subject | Automobile | en |
| dc.subject | Clustering | en |
| dc.subject | Spare parts | en |
| dc.subject | Demand forecasting | en |
| dc.title | 考量價格與重要性因素下,需求分群與預測模式之研究-以汽車維修零組件為例 | zh_TW |
| dc.title | Demand Clustering and Forecasting Models for Automobile Spare Parts by Considering of Price and Parts Criticality | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王孔政;林我聰 | zh_TW |
| dc.contributor.oralexamcommittee | Kung-Jeng Wang;Woo-Tsong Lin | en |
| dc.subject.keyword | 存貨管理,汽車零組件,分群,需求預測, | zh_TW |
| dc.subject.keyword | Inventory Management,Spare parts,Automobile,Clustering,Demand forecasting, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202302272 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 商學研究所 | - |
| dc.date.embargo-lift | 2028-07-27 | - |
| Appears in Collections: | 商學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 2.29 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
