Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周中哲zh_TW
dc.contributor.advisorChung-Che Chouen
dc.contributor.author黃于慈zh_TW
dc.contributor.authorYu-Tzu Huangen
dc.date.accessioned2023-08-15T16:49:08Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citation[1] FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings (ATC-33d), Published 2000
[2] Noh, H. Y., K. K., Nair, D. G., Lignos, and A. S., Kiremidjian (2011) “Use of Wavelet-Based Damage-Sensitive Features for Structural Damage Diagnosis Using Strong Motion Data,” Journal of Structural Engineering, Vol.137, No.10, pp.1215-1228.
[3] Todorovska, M. I. (2001) “Estimation of Instantaneous Frequency of Signals Using the Continuous Wavelet Transform,” University of Southern California, report CE pp.01-07.
[4] Brincker, R., L.M. Zhang, and P. Andersen (2001) “Modal identification from output-only system using frequency domain decomposition,” Smart Materials and Structures, Vol.10, No.3, pp. 441-445.
[5] Pioldi, F., R. Ferrari, and E. Rizzi (2016) “Output-only modal dynamic identification of frames by a refined FDD algorithm at seismic input and high damping,” Mechanical Systems and Signal Processing Vol.68-69, pp.265-291.
[6] Overschee, P. Van, and B. De Moor (1996) “Implementation and Applications,” Subspace Identification for Linear Systems, pp.161-196.
[7] Mrabet, E., M. Abdelghani, and N.B. Kahla (2014) “A New Criterion for the Stabilization Diagram Used with Stochastic Subspace Identification Methods: An Application to an Aircraft Skeleton,” Shock and Vibration, vol.2014, pp.1-8.
[8] Safak E., “Adaptive modeling, identification, and control of dynamic structural system, I: theory”, J. Eng. Mech. ASCE 115, 2386-2405 (1989a).
[9] Safak E., “Adaptive modeling, identification, and control of dynamic system, II: application”, J. Eng. Mech. ASCE 115, 2406-2426 (1989b).
[10] Andersson, P., “Adaptive forgetting in recursive identification through multiple models”, Int. J. Control, Vol.42, No.5, 1175-1193 (1985)
[11] Xia, Q., Rao, M, Ying, Y. and Shen, X., “Adaptive Fading Kalman filter with an application” Automatica, Vol.30, No.8, 1333-1338. (1994)
[12] Oku, H., Kimura, H. “Recursive 4SID algorithms using gradient type subspace tracking” Automatica, 38:1035–1043 (2002).
[13] Kameyama, K., Ohsumi, A., Matsuura, Y. and Sawada, K., “Recursive 4SID-based identification algorithm with fixed input-output data size”, Int. J. of Innovative Computing, Information and Control, Vol.1, No 1, March, 17-33, (2005).
[14] Merc`ere. G., Lecoeuche, S. and Lovera, M., “Recursive subspace identification based on instrumental variable unconstrained quadratic optimization”, Int. J. of Adaptive Control and Signal Processing, Vol. 18, 771–797. (2004).
[15] Weng, J.H. and Loh, C.H., “Recursive Subspace Identification for Online Tracking of Structural Modal Parameter”, Mechanical System & Signal Processing, 25, 2923-2937 (2011).
[16] Chen, J. D. & Loh, C. H., “Tracking Modal Parameters of Building Structures from Experimental Studies and Earthquake Response Measurements,” Int. J. of Structural Health Monitoring, Vol. 16(5) 551–567 (2017)
[17] Loh, C. H. & Chen, J. D., “Tracking Modal Parameters from Building Seismic Response Data Using Recursive Subspace Identification Algorithm,” Published in Int. J. Earthquake Engineering & Structural Dynamics, DOI: 10.1002/eqe.2900, 46:2163–2183 (2017)
[18] Iwan, W.D., Moser, M.A., Peng, C.Y. “Some observations on strong-motion earthquake measurement using a digital accelerograph.” Bull. Seism. Soc. Am. 1985;75(5):1225-1246
[19] Trifunac, M. D. “Zero baseline correction of strong-motion accelerograms,” Bull. Seism. Soc. Am. 1971; 61, 1201–1211
[20] Loh. C.H., Wu, T.C. Huang, N.E. “Application of the Empirical Mode Decomposition–Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses,” Bull. Seism. Soc. Am., 2001; 91(5), pp. 1339–1357
[21] Baker, Jack W. “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.”, Bull. Seism. Soc. Am. 2007; 97(5), pp. 1486–1501, doi: 10.1785/0120060255
[22] Chen, S. M. and Loh, C. H., “Estimation of permanent ground deformation from Near Fault ground motion accelerogram,” Bulletin Seismology Society of America, Vol. 97, No. 1B, Jan-Feb., 63-75 (2007)
[23] Huang, S.K., Chao, S.H., Huang, J.Y., Chang, Y.W., Loh, C.H.; “Estimation of Story Drift Directly from Acceleration Records for Post-Earthquake Safety Evaluations of Buildings,” Earthquake Engineering & Structural Dynamics, Vol-50, Issue-11, 2021, pp: 3064-3082.
[24] Elsner, J.B. and Tsonis, A.A. (1996): Singular Spectrum Analysis. A New Tool in Time Series Analysis, Plenum Press.
[25] Suzukia, Y., Mita, A., “Output only estimation of inter-story drift angle for buildings using small number of accelerometers,” 6th APWSHM, Procedia Engineering 188 ( 2017 ) 263 – 270
[26] Christidis, A. A., Dimitroudi, E.G., Hatzigeorgiou, G.D., Beskos, D.E., “Maximum seismic displacements evaluation of steel frames from their post-earthquake residual deformation,” Bull Earthquake Eng (2013) 11:2233–2248. DOI 10.1007/s10518-013-9490-z
[27] Chou, C. C., Córdova, A., Lin, H. Z., Chen, J.M., Chou, Y.H., Chao, S. H., Chao, S.H., Tsampras G., Uang, C.M., Chung, H.Y., Hu H.T., Loh, C.H. (2022). “Analysis and test plan for a three-story steel BRBF with a sliding slab to reduce seismic lateral force in shake table tests, 8th Asia Conference on Earthquake Engineering, Taipei, Taiwan.
[28] Todorovska, M.I. (2001), “Estimation of instantaneous frequency of signals using the continuous wavelet transform”, Report CE 01-07, Dept. of Civil Eng., Univ. of Southern California, CA, USA.
[29] Chen, W.H., Hseuh, W. Loh, K., Loh, C.H. (2022) “Damage evaluation of seismic response of structure through time-frequency analysis technique,” Structural Monitoring and Maintenance, 9(2) 107-127.
[30] Michel, C., Gueguen, P., “Time–frequency analysis of small frequency variations in civil engineering structures under weak and strong motions using a reassignment method,” Structural Health Monitoring, 9(2), 159–171 (2010).
[31] Hartono, D., Halim, D. and Gethin Wyn Roberts, “Gear fault diagnosis using an improved reassigned smoothed pseudo Wigner-Ville Distribution,” Cogent Engineering, 5:1, 1436928, (2018)
[32] 陳雯惠、林沛暘、余以諾、羅俊雄 (2021) 。應用量測訊號之時頻分析技術於結構健康診斷。三聯技術雜誌,121期,頁6-19。
[33] Chang, C. C. and Z. Sun, 2004, “Structure damage location using spatial wavelet packet signature”, Smart Structures and Systems, 1(1), p29-46
[34] Van Overschee, P. & De Moor, B., “N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems,” Automatica, 30(1), 75-93 (1994).
[35] 陳俊達。「應用線上子空間系統識別法於結構勁度之即時量化評估」。碩士論文,國立臺灣大學土木工程學研究所,2017。https://hdl.handle.net/11296/swz7fq。
[36] Caicedo, J.M., Dyke, S.J. and Johnson, E. A., “Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data”, Journal of Engineering Mechanics, Vol.130, No.1, pp49- 60, (2004).
[37] Gustafsson, T., “Instrumental variable subspace tracking using projection approximation”, IEEE transactions on signal processing, Vol. 46, No. 3, March, (1998).
[38] Ljung, L., System Identification-Theory for the User”, Prentice- Hall, Englewood Cliffs, N.J, 1987.
[39] George A. Papagiannopoulos, George D. Hatzigeorgiou, “On the use of the half-power bandwidth method to estimate damping in building structures”, Soil Dynamics and Earthquake Engineering 2011;31 (7):1075–9.
[40] Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Phys D. 1986;20(2-3):217-236.
[41] Golyandina N, Nekrutkin V, Zhigljavsky AA. Analysis of time series structure: SSA and related techniques. Boca Raton, FL: CRC Press; 2001.
[42] Huang, Y.T., Loh, C.H., Chou, C.C. (Jul. 2023) Estimation of the Seismically Induced Residual Drift of Structures from Measured Acceleration, Journal of Earthquake Engineering (Accepted for publication)
[43] Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.-C. Tung, and H. H. Liu. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London 454, 1998; 903–909
[44] Loh, C.H., et.al., “Benchmark model of Reinforced Concrete Structures for Structural Health Monitoring and Damage Detection,” NCREE-2009-031, Dec. 2009
[45] Lin, C. C., Wei, J.Y., Chang, C.C., “Damage investigation of high-rise buildings due to the 921 Chi-Chi earthquake,” NCREE report, NCREE-02-057, December 2002.
[46] Chen, J.D., Loh, C.H., “Two-stage damage detection algorithms of structure using modal parameters identified from recursive subspace identification.” Earthquake Eng Struct Dyn. 2018;47(3):573-5
[47] Lee, W. H. K., T. C. Shin, K. C. Chen, and C. F. Wu (1999). CWB free-field strong-motion data from the 921 Chi-Chi earthquake: processed acceleration files on CD-ROM, CWB Strong-Motion Data Series CD-001, Seismological Observation Center, Central Weather Bureau, Taipei, Taiwan.
[48] 林皇佐(2023)「實尺寸三層樓鋼構架二元系統於2022池上地震下之振動台試驗:中等韌性箱型鋼柱、全鋼型夾型挫屈束制支撐及滑動樓版之耐震性能」,碩士論文,國立臺灣大學土木工程學系
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88555-
dc.description.abstract結構健康監測(SHM)是為了確保建築物在地震前後的安全性及可靠性所進行。本研究採用兩個案例的地震反應(國家地震工程研究中心大樓、三層樓鋼構架振動台實驗),以其監測資料進行系統性的分析,欲了解結構的變化及損傷評估。首先,根據監測資料,採用時頻分析方法了解結構物在微振及地震下的動態反應之時變性特性,並計算樓層間的相關性。通過環境振動的量測資料,採用協方差型隨機子空間識別法(SSI-COV)提取結構物在微振之下的模態頻率、模態形狀。從結構物地震反應資料,採用子空間識別法(SI)提取結構物在地震之下的動態特性,並計算其層間勁度。此外,以遞迴式子空間識別法(RSI)識別其動態特性之時變性,了解地震下結構動態特性的變化。以主成分分析(PCA)提取特徵,比較不同地震下,結構反應的差異,並識別阻尼比。除此之外,還開發一種以加速度資料估計位移的技術,應用於三層樓鋼構架振動台實驗之監測資料,以估計樓層反應的永久變位。提出一個以經驗模態分解(EMD)為理論基礎的含永久變位之位移估計方法,並以振動台實驗數據、實際結構的地震監測資料及近斷層地震動監測資料驗證此方法之可行性。zh_TW
dc.description.abstractStructural Health Monitoring (SHM) is conducted to ensure the structural integrity of a building during earthquakes. In this study, two cases, namely the earthquake response of National Center for Earthquake Engineering Research (NCREE) building and the shaking table test of a 3-story steel frame, were analyzed to develop a systematic method of SHM to the changes of structural dynamic behavior and assess the structural damages using their monitoring data. First, based on the measurement, time-frequency analysis was employed to investigate the time-varying characteristics of the structural response, and the inter-story correlation was calculated. From the ambient vibration measurement, the Covariance-driven Stochastic Subspace Identification (SSI-COV) method was used to extract the modal frequencies and mode shapes of the structures. From the building earthquake response data, the Subspace Identification (SI) method was employed to extract the dynamic characteristics of the structures and calculate the inter-story stiffness. Besides, the Recursive Subspace Identification (RSI) method was used to identify the time-varying dynamic characteristics and understand the changes in the structural dynamic properties under earthquakes. Principal Component Analysis (PCA) was utilized to extract features and compare the differences in structural response under different earthquakes, as well as identify damping ratios. A technique on the estimation of displacement using acceleration measurement is developed and applied to the 3-story steel frame to estimate the permanent deformation of floor response. Empirical Mode Decomposition (EMD) was proposed to account for the estimation of permanent displacement. The feasibility of this method was verified using shaking table test data, earthquake response data of actual structures, and near-fault ground motion data.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:49:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:49:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.3 研究架構與內容 3
第二章 案例介紹 6
2.1 國家地震工程研究中心大樓 6
2.2三層樓鋼構架振動台實驗 7
第三章 時頻分析 9
3.1 改良式連續小波轉換改變小波中心頻率(MCMW-VCF) 9
3.1.1 國震中心—以MCMW-VCF分析微振之下的層間相關性 10
3.1.2 三層樓鋼構架實驗—以MCMW-VCF分析之時頻圖 11
3.2 平滑重排偽維格納分布(RSPWVD) 12
3.2.1 國震中心—以RSPWVD分析地震之下的層間相關性 12
3.3 小波包轉換(WPT) 14
3.3.1 國震中心—空間小波包特徵曲率(Spatial WPS curvature) 15
3.4 概述及討論 16
第四章 唯輸出系統識別 18
4.1 協方差型隨機子空間識別法 (SSI-COV) 18
4.1.1 國震中心之系統識別 20
4.1.1.1 參數設定 20
4.1.1.2 系統識別結果 21
4.1.1.3 損傷評估 21
4.1.1.3.1 模態保證準則(MAC) 22
4.1.1.3.2 模態曲率 (mode shape curvature) 22
4.1.2 三層樓鋼構架實驗之系統識別 23
4.1.2.1 參數設定 23
4.1.2.2 系統識別結果 23
4.2 概述與討論 24
第五章 輸入輸出系統識別 25
5.1 子空間識別法 (SI) 25
5.1.1 國震中心之系統識別 26
5.1.1.1 參數設定 26
5.1.1.2 系統識別結果 26
5.1.1.3 損傷評估 26
5.1.1.3.1 模態曲率 (mode shape curvature) 27
5.1.1.3.2 結構勁度 27
5.1.2 三層樓鋼構架實驗之系統識別 29
5.1.2.1 參數設定 29
5.2 遞迴式子空間識別法 (RSI) 29
5.2.1 國震中心之系統識別 30
5.2.1.1 參數設定 31
5.2.1.2 系統識別結果 31
5.2.2 三層樓鋼構架實驗之系統識別 33
5.2.2.1 參數設定 33
5.2.2.2 系統識別結果 33
5.3 單一輸入/輸出自迴歸模型 (SISO-ARX model) 35
5.3.1 頻率響應函數 (FRF) 36
5.3.1.1 國震中心之頻率響應函數 36
5.3.1.2 三層樓實驗之頻率響應函數 36
5.3.2 主成分分析(PCA) 37
5.3.3 阻尼比識別 38
5.3.3.1 國震中心之阻尼比識別 38
5.3.3.2 三層樓實驗之阻尼比識別 39
5.4 概述與討論 39
第六章 結構層間位移估計 41
6.1無永久變位之位移估計 41
6.1.1 三層樓鋼構架實驗 42
6.2含永久變位之位移估計 43
6.2.1 三層樓鋼構架實驗 46
6.2.2 一層樓RC構架實驗 48
6.2.3 實際結構—中興大學土木環工大樓 49
6.2.4 近斷層地震動—集集地震車籠埔斷層 50
6.3 概述與討論 50
第七章 結論及未來展望 52
參考文獻 56
附表 62
附圖 67
-
dc.language.isozh_TW-
dc.subject遞迴式子空間識別法zh_TW
dc.subject經驗模態分解zh_TW
dc.subject主成分分析zh_TW
dc.subject子空間識別法zh_TW
dc.subject隨機子空間識別法zh_TW
dc.subject時頻分析zh_TW
dc.subject結構健康監測zh_TW
dc.subjecttime–frequency analysis of signalen
dc.subjectempirical mode decompositionen
dc.subjectsubspace identificationen
dc.subjectstructural health monitoringen
dc.subjectrecursive subspace identificationen
dc.subjectprincipal component analysisen
dc.subjectstochastic subspace identificationen
dc.title以訊號分析方法進行長期結構健康監測zh_TW
dc.titleUsing Signal Analysis Methods for Long-Term Structural Health Monitoringen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor羅俊雄zh_TW
dc.contributor.coadvisorChin-Hsiung Lohen
dc.contributor.oralexamcommittee趙書賢zh_TW
dc.contributor.oralexamcommitteeShu-Hsien Chaoen
dc.subject.keyword結構健康監測,時頻分析,隨機子空間識別法,子空間識別法,遞迴式子空間識別法,主成分分析,經驗模態分解,zh_TW
dc.subject.keywordstructural health monitoring,time–frequency analysis of signal,stochastic subspace identification,subspace identification,recursive subspace identification,principal component analysis,empirical mode decomposition,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202302277-
dc.rights.note未授權-
dc.date.accepted2023-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
17.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved