Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88554
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐治平zh_TW
dc.contributor.advisorJyh-Ping Hsuen
dc.contributor.author許銘烜zh_TW
dc.contributor.authorMing-Hsuan Hsuen
dc.date.accessioned2023-08-15T16:48:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-28-
dc.identifier.citationChapter 1
[1] S. Marbach, D.S. Dean, L. Bocquet, Transport and dispersion across wiggling nanopores, Nat. Phys. 14 (11) (2018) 1108-1113.
[2] P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Molecular separation with organic solvent nanofiltration: a critical review, Chem. Rev. 114 (21) (2014) 10735-10806.
[3] H. Wang, H. Tang, C. Yang, Y. Li, Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core–shell Fe3O4–Au nanoparticles, Anal. Chem. 91 (12) (2019) 7965-7970.
[4] L. Liu, H.C. Wu, DNA‐based nanopore sensing, Angew. Chem. Int. Ed. 55 (49) (2016) 15216-15222.
[5] D.J. Niedzwiecki, B. DiPaolo, C.-Y. Lin, A. Castan, R. Keneipp, M. Drndic, Devices for nanoscale guiding of DNA through a 2D nanopore, ACS sensors 6 (7) (2021) 2534-2545.
[6] W.-C. Huang, J.-P. Hsu, Ultrashort nanopores of large radius can generate anomalously high salinity gradient power, Electrochim. Acta 353 (2020) 136613.
[7] J.-P. Hsu, T.-C. Su, C.-Y. Lin, S. Tseng, Power generation from a pH-regulated nanochannel through reverse electrodialysis: effects of nanochannel shape and non-uniform H+ distribution, Electrochim. Acta 294 (2019) 84-92.
[8] T.-J. Liu, T. Ma, C.-Y. Lin, S. Balme, J.-P. Hsu, Origin of ultrahigh rectification in polyelectrolyte bilayers modified conical nanopores, J. Phys. Chem. Lett. 12 (49) (2021) 11858-11864.
[9] M. Trivedi, R. Gupta, N. Nirmalkar, Electroosmotic transport and current rectification of viscoelastic electrolyte in a conical pore nanomembrane, J. Membr. Sci. 659 (2022) 120755.
[10] M. Trivedi, N. Nirmalkar, Ion transport and current rectification in a charged conical nanopore filled with viscoelastic fluids, Sci. Rep. 12(1) (2022) 2547.
[11] C.-Y. Chung, J.-P. Hsu, Nanopore-based desalination subject to simultaneously applied pressure gradient and gating potential, J. Colloid Int. Sci. 594 (2021) 737-744.
[12] T. Becker, R. Wagner, Mitochondrial outer membrane channels: emerging diversity in transport processes, Bioessays 40 (7) (2018) 1800013.
[13] D. Fertig, M. Valiskó, D. Boda, Rectification of bipolar nanopores in multivalent electrolytes: Effect of charge inversion and strong ionic correlations, Phys. Chem. Chem. Phys. 22 (34) (2020) 19033-19045.
[14] M.A. Blommaert, D. Aili, R.A. Tufa, Q. Li, W.A. Smith, D.A. Vermaas, Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems, ACS Energy Lett. 6 (7) (2021) 2539-2548.
[15] J. Kamp, S. Emonds, M. Seidenfaden, P. Papenheim, M. Kryschewski, J. Rubner, M. Wessling, Tuning the excess charge and inverting the salt rejection hierarchy of polyelectrolyte multilayer membranes, J. Membr. Sci. 639 (2021) 119636.
[16] A. Szymczyk, H. Zhu, B. Balannec, Ion rejection properties of nanopores with bipolar fixed charge distributions, J. Phys. Chem. B 114 (31) (2010) 10143-10150.
[17] T. Xu, Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review, Resour. Conserv. Recycl. 37 (1) (2002) 1-22.
[18] B. Balannec, A. Ghoufi, A. Szymczyk, Nanofiltration performance of conical and hourglass nanopores, J. Membr. Sci. 552 (2018) 336-340.
[19] C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti, Analysis of the salt retention of a titania membrane using the “DSPM” model: effect of pH, salt concentration and nature, J. Membr. Sci. 208 (1-2) (2002) 315-329.
[20] R.M. Wyss, T. Tian, K. Yazda, H.G. Park, C.-J. Shih, Macroscopic salt rejection through electrostatically gated nanoporous graphene, Nano Lett. 19 (9) (2019) 6400-6409.
[21] E. Evdochenko, J. Kamp, R. Dunkel, V. Nikonenko, M. Wessling, Charge distribution in polyelectrolyte multilayer nanofiltration membranes affects ion separation and scaling propensity, J. Membr. Sci. 636 (2021) 119533.
[22] P. Ma, J. Zheng, D. Zhao, W. Zhang, G. Lu, L. Lin, Z. Zhao, Z. Huang, L. Cao, The selective transport of ions in charged nanopore with combined multi-physics fields, Materials 14 (22) (2021) 7012.
[23] M. Trivedi, S. Maurya, N. Nirmalkar, Numerical simulations for electro-osmotic flow of PTT fluids in diverging microchannel, Mater. Tod. Proc. 57 (2022) 1765-1769.
[24] Y. Lanteri, P. Fievet, A. Szymczyk, Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements, J. Colloid Interface Sci. 331(1) (2009) 148-155.
[25] J.-P. Hsu, H.-H. Wu, C.-Y. Lin, S. Tseng, Ion current rectification behavior of bioinspired nanopores having a pH-tunable zwitterionic surface, Anal. Chem. 89 (7) (2017) 3952-3958.
[26] T.-Y. Tsou, J.-P. Hsu, Nanofiltration through pH-regulated bipolar cylindrical nanopores for solution containing symmetric, asymmetric, and mixed salts, J. Membr. Sci. 641 (2022) 119869.
[27] H. Strathmann, J.J. Krol, H.J. Rapp, G. Eigenberger, Limiting current density and water dissociation in bipolar membranes, J. Membr. Sci. 125(1) (1997) 123-142.
[28] S. Szoke, G. Patzay, L. Weiser, Characteristics of thin-film nanofiltration membranes at various pH-values, Desalination 151 (2) (2003) 123-129.
[29] J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical review, J. Membr. Sci. 438 (2013) 18-28.
[30] D.W. Solutions, Filmtec™ reverse osmosis membranes, Technical Manual, Form 399 (609-00071) (2010) 1-180.
[31] Y. Roy, M.H. Sharqawy, J.H. Lienhard, Modeling of flat-sheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration, J. Membr. Sci. 493 (2015) 360-372.
[32] J.-P. Hsu, A.M. Spasic, Interfacial electroviscoelasticity and electrophoresis, CRC Press 2010.
[33] P. Vanysek, Ionic conductivity and diffusion at infinite dilution, CRC hand book of chemistry and physics (1993) 5-92.
Chapter 2
[1] D. Seo, D. Kim, S. Seo, J. Park, T. Kim, Analyses of pore-size-dependent ionic transport in nanopores in the presence of concentration and temperature gradients, ACS Appl. Mater. Interfaces (2022).
[2] M. Trivedi, R. Gupta, N. Nirmalkar, Electroosmotic transport and current rectification of viscoelastic electrolyte in a conical pore nanomembrane, J. Membr. Sci. 659 (2022) 120755.
[3] J. Jung, J. Kim, H.S. Lee, I.-S. Kang, K. Choi, Multi-asymmetric ion-diode membranes with superior selectivity and zero concentration polarization effect, ACS Nano 13(9) (2019) 10761-10767.
[4] H. Wang, H. Tang, C. Yang, Y. Li, Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core–shell Fe3O4–Au nanoparticles, Anal. Chem. 91(12) (2019) 7965-7970.
[5] H. Zhang, Q. Zhao, Z. Tang, S. Liu, Q. Li, Z. Fan, F. Yang, L. You, X. Li, J. Zhang, Slowing down DNA translocation through solid-state nanopores by pressure, Small 9(24) (2013) 4112-4117.
[6] S.W. Kowalczyk, D.B. Wells, A. Aksimentiev, C. Dekker, Slowing down DNA translocation through a nanopore in lithium chloride, Nano Lett. 12(2) (2012) 1038-1044.
[7] W.-C. Huang, J.-P. Hsu, Regulating the ionic current rectification behavior of branched nanochannels by filling polyelectrolytes, J. Colloid Interface Sci. 557 (2019) 683-690.
[8] P.-Y. Chuang, J.-P. Hsu, Influence of shape and charged conditions of nanopores on their ionic current rectification, electroosmotic flow, and selectivity, Colloids Surf. Physicochem. Eng. Aspects 658 (2023) 130696.
[9] Y.C. Kim, M. Elimelech, Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: Analysis and experiments, J. Membr. Sci. 429 (2013) 330-337.
[10] H.-Y. Lo, T.-Y. Tsou, J.-P. Hsu, Ion transport in a non-isothermal electrokinetic energy conversion system, Electrochim. Acta 427 (2022) 140887.
[11] Y.-T. Chen, T.-Y. Tsou, J.-P. Hsu, Improving the performance of salinity gradient power generation by a negative pressure difference, J. Taiwan Inst. Chem. E. 134 (2022) 104351.
[12] A.W. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination 356 (2015) 226-254.
[13] B. Van der Bruggen, C. Vandecasteele, Modelling of the retention of uncharged molecules with nanofiltration, Water Res. 36(5) (2002) 1360-1368.
[14] M.-H. Hsu, T.-Y. Tsou, J.-P. Hsu, Ion rejection of pH-regulated bipolar nanopore of various shapes, Sep. Purif. Technol. (2023) 123138.
[15] T.-Y. Tsou, J.-P. Hsu, Nanofiltration through pH-regulated bipolar cylindrical nanopores for solution containing symmetric, asymmetric, and mixed salts, J. Membr. Sci. 641 (2022) 119869.
[16] A. Szymczyk, H. Zhu, B. Balannec, Ion rejection properties of nanopores with bipolar fixed charge distributions, J. Phys. Chem. B 114(31) (2010) 10143-10150.
[17] T. Tsuru, S.-i. Nakao, S. Kimura, Calculation of ion rejection by extended Nernst–Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions, J. Chem. Eng. Jpn. 24(4) (1991) 511-517.
[18] W.R. Bowen, H. Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes, J. Membr. Sci. 112(2) (1996) 263-274.
[19] A.L. Zydney, P. Aimar, M. Meireles, J.M. Pimbley, G. Belfort, Use of the log-normal probability density function to analyze membrane pore size distributions: functional forms and discrepancies, J. Membr. Sci. 91(3) (1994) 293-298.
[20] C. Combe, C. Guizard, P. Aimar, V. Sanchez, Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane, J. Membr. Sci. 129(2) (1997) 147-160.
[21] W.R. Bowen, T.A. Doneva, Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion, Desalination 129(2) (2000) 163-172.
[22] W.R. Bowen, J.S. Welfoot, Modelling of membrane nanofiltration—pore size distribution effects, Chem. Eng. Sci. 57(8) (2002) 1393-1407.
[23] G. Shen, Y. Sun, X. Zhang, X. Gao, Y. Qian, X. Lu, X. Ji, Partition and selectivity of electrolytes in cylindrical nanopores with heterogeneous surface charge, J. Mol. Liq. 340 (2021) 116839.
[24] M. Cheng, X. Xie, P. Schmitz, L. Fillaudeau, Extensive review about industrial and laboratory dynamic filtration modules: Scientific production, configurations and performances, Sep. Purif. Technol. 265 (2021) 118293.
[25] A. Imbrogno, A.I. Schäfer, Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end), J. Membr. Sci. 585 (2019) 67-80.
[26] K. Ohanessian, M. Monnot, P. Moulin, J.-H. Ferrasse, C. Barca, A. Soric, O. Boutin, Dead-end and crossflow ultrafiltration process modelling: Application on chemical mechanical polishing wastewaters, Chem. Eng. Res. Des. 158 (2020) 164-176.
[27] Q. Wang, X. Tang, H. Liang, W. Cheng, G. Li, Q. Zhang, J. Chen, K. Chen, J. Wang, Effects of filtration mode on the performance of gravity-driven membrane (GDM) filtration: cross-flow filtration and dead-end filtration, Water 14(2) (2022) 190.
[28] Y.-L. Ji, Q.-F. An, Y.-S. Guo, W.-S. Hung, K.-R. Lee, C.-J. Gao, Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles, J. Mater. Chem. A 4(11) (2016) 4224-4231.
[29] F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang, W. Guo, A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems, Mater. Chem. Front. 2(5) (2018) 935-941.
[30] E. Shaulsky, V. Karanikola, A.P. Straub, A. Deshmukh, I. Zucker, M. Elimelech, Asymmetric membranes for membrane distillation and thermo-osmotic energy conversion, Desalination 452 (2019) 141-148.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88554-
dc.description.abstract考慮到使用奈米多孔薄膜對水資源在各種用途中重複利用有迫切的需求,我們基於偶合的Navier-Stokes和Poisson-Nernst-Planck(PNP)方程式,研究了在不同條件下奈米多孔薄膜的離子阻擋能力。以下研究將探索薄膜對離子回收和水純化的潛力。
在第一章中,我們考慮了四種奈米孔道形狀:子彈形、圓柱形、沙漏形和喇叭形,每種孔道都可以是單極性或雙極性帶電,從而使設計更加多樣化。此外,奈米孔道的表面帶電會受到pH值影響,因此模擬的結果會更加真實。這邊單種鹽類(包括MgCl2、K2SO4和KCl)和混合鹽類(K2SO4+MgCl2)兩種情況均有進行模擬。奈米孔道中的電動力學行為我們進行了全面的研究,並對其中的潛在機制進行了詳細的討論。上述結果已發表在國際期刊Separation and Purification Technology上。
在第二章中,為了理解離子在薄膜過濾過程中的行為,我們建構了具有不同孔徑大小的多孔薄膜,並以具有對數常態孔徑分佈的膜為主要探討目標。孔道的排列旨在實現最佳的離子阻擋效果和最佳的離子選擇性。為了緩解濃度極化效應,在進料側使用了側流。液相中存在單種鹽類(NaCl)以及存在混合鹽類(NaCl+MgCl2)的情況均有考慮及模擬。我們的結果為設計膜上孔道的排列提供了些必要的資訊。
zh_TW
dc.description.abstractConsidering the urgent needs in recycling water for various usage through a nanoporous membrane, we investigated its ion-rejection performance under various conditions based on coupled Navier-Stokes and Poisson-Nernst-Planck (PNP) equations. The following studies will explore the potential of membranes for ion recovery and purification.
In chapter 1, we considered four kinds of nanopore, bullet-shaped, cylindrical, hourglass-shaped, and trumpet-shaped, each can be unipolarly or bipolarly charged, thereby making the design more versatile. In addition, the charged conditions on the surface of a nanopore are pH-regulated so that the results gathered are more realistic. Both the case of single salt (MgCl2, K2SO4, and KCl) and mixed salt (K2SO4+MgCl2) were simulated. The electrokinetic behavior of a nanopore was examined comprehensively, along with a detailed discussed on the underlying mechanism. The above results were published in Separation and Purification Technology.
In chapter 2, in order to understand the behavior of the separation of ions though membrane filtration, a membrane of multiple pores having different pore sizes is modeled theoretically, focusing on a membrane having log-normal distributed pore size. The arrangement of pores is aimed to arrive at best rejection and best ion selectivity. To alleviate the effect of concentration polarization, a crossflow is applied on the feed side. Both the case where only single salt (NaCl) is present in the liquid phase and that where mixed salts (NaCl+MgCl2) are present are considered. Our results provide necessary information for designing the arrangement of the pores on a membrane.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:48:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:48:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要………III
Abstract………IV
Contents………VI
List of Tables………VII
List of Figures………VIII
Chapter 1 Ion rejection of pH-regulated bipolar nanopore of various shapes………1
References of Chapter 1………16
Chapter 2 Influence of Pore Size Distribution and Applied Cross Flow on Ion Rejection and Separation………41
References of Chapter 2………54
Conclusions………76
-
dc.language.isoen-
dc.subject對數常態之孔徑分佈zh_TW
dc.subject離子選擇性zh_TW
dc.subject離子阻擋能力zh_TW
dc.subject奈米流體裝置zh_TW
dc.subject除鹽zh_TW
dc.subject側流zh_TW
dc.subjectdesalinationen
dc.subjectcrossflowen
dc.subjection selectivityen
dc.subjection rejectionen
dc.subjectnanofluidic deviceen
dc.subjectlog-normal distributed pore sizeen
dc.title基於奈米孔道之除鹽:孔道形狀與孔道大小分佈的影響zh_TW
dc.titleNanopore Based Ion Rejection: Effect of Pore Shapes and Pore Size Distributionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾琇瑱;劉宣良;郭勇志zh_TW
dc.contributor.oralexamcommitteeShio-jenn Tseng;HSUAN-LIANG LIU;YUNG-CHIH KUOen
dc.subject.keyword奈米流體裝置,除鹽,離子阻擋能力,側流,離子選擇性,對數常態之孔徑分佈,zh_TW
dc.subject.keywordnanofluidic device,desalination,ion rejection,crossflow,ion selectivity,log-normal distributed pore size,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202302063-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved