Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王昱zh_TW
dc.contributor.advisorYu Wangen
dc.contributor.author李易諭zh_TW
dc.contributor.authorYi-Yu Lien
dc.date.accessioned2023-08-15T16:48:36Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-02-
dc.identifier.citation內政部國土測繪中心(2019)國土測繪圖資應用服務現況。投影片簡報,共43頁。
王乾盈(2018)從南北十條橫跨花東縱谷震測剖面看海岸山脈造山。中央大學演講投影片。
石再添、張瑞津、黃朝恩、石慶得、楊貴三、孫林耀明(1983)臺灣北部與東部活斷層的地形學研究。國立臺灣師範大學地理研究所地理研究報告,第9期,第20-72頁。
石再添、鄧國雄、許民陽、楊貴三(1988)臺灣花東海岸海階的地形學研究。師大地理研究報告,第14期,第1-47頁。
石瑞銓、陳平護、呂明達、陳文山(2004)地震地質調查及活動斷層資料庫建置計畫-淺層地球物理探勘(3/5)。經濟部中央地質調查所報告,第93-7號,共185頁。
李應頎(2022)由歷史航照重建探討花東縱谷北段活動構造與1972年瑞穗地震之關係。國立臺灣大學地質科學研究所碩士論文,共127頁。
李瓊武、余水倍(1987)台灣東部地殼水平變動之研究。第六屆測量學術及運用研討會論文集。第127-134頁。
沈于超(2005)台東長濱海階土壤之時間序列。國立屏東科技大學環境工程與科學系碩士論文,共76頁。
沈淑敏、張瑞津、楊貴三(2005)地震地質調查及活動斷層資料庫建置-活動構造地形及資料庫建置分析(1/2)。經濟部中央地質調查所研究報告94-6號,共80頁。
沈淑敏、張瑞津、楊貴三(2006)活動構造地形及資料庫建置分析總報告。經濟部中央地質調查所研究報告,共105頁。
林啟文、張徽正、盧詩丁、石同生、黃文正(2000)臺灣活動斷層概論第二版,五十萬分之一臺灣活動斷層分布圖說明書。經濟部中央地質調查所特刊,第13號,共122頁。
林啟文、陳文山、劉彥求、陳柏村(2009)臺灣東部與南部的活動斷層。經濟部中央地質調查所特刊,第23號,共179頁。
林啟文、劉彥求、周稟珊、林燕慧(2021)臺灣活動斷層調查的近期發展。經濟部中央地質調查所彙刊,第34號,第1-40頁。
林啟文、盧詩丁、陳文山(2012)臺灣活動斷層分布圖2012年版說明書。經濟部中央地質調查所特刊,第26 號,第1-30頁。
徐鐵良(1954)臺灣東部海岸山脈地形與近期上升運動。台灣省地質調查所彙刊,第8號,第9-58頁。
張午龍、李秋賢(2018)臺灣活斷層之塊體模型分析及其在地震災害之應用 (II)。科技部補助專題研究計畫,共23頁。
張國禎、徐澔德、陳柔妃、詹瑜璋、葉恩肇、賴光胤(2014)近斷層高精度地形資料之判釋與分析總報告。經濟部中央地質調查所研究報告,共329頁。
許晉瑋、顏一勤、劉彥求(2018)臺灣東部嶺頂斷層之斷層跡及地質調查研究。經濟部中央地質調查所特刊,第33號,第77-102頁。
陳文山、宋時驊、吳樂群、徐澔德、楊小青(2005)末次冰期以來台灣海岸平原區的海岸線變遷。國立台灣大學考古人類學刊,第26期,第40-55頁。
陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱(2018)臺灣東部碰撞帶孕震構造。經濟部中央地質調查所特刊,第233號,第123-155 頁。
陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、林偉雄、侯進雄、劉彥求、林燕慧、石同生、盧詩丁(2008)從古地震研究與GPS資料探討縱谷斷層的分段意義。經濟部中央地質調查所彙刊,第20號,第165-191頁。
陳文山、張瑞津、楊貴三、沈淑敏(2004)地震地質調查及活動斷層資料庫建置:槽溝開挖與古地震研究計畫(3/5)-五、台灣島河階地形資料庫的建置(3/3)東部地區。經濟部中央地質調查所研究報告93-6號,共85頁。
陳文山、陳志雄、王源、黃敦友(1990)臺灣海岸山脈之地層。經濟部中央地質調查所特刊,第4號,第239-260頁。
陳佳元(1974)由三角點檢測證實東臺灣海岸山脈向北北東移動。台灣省地質調查所彙刊,第24號,第119-123頁。
陳杰、陳宇坤、丁國瑜、王贊軍、田勤儉、尹功明、單新建、王志才(2004)2001年崑崙山口西Ms8.1地震地表同震位移分布特徵。地震地質,第26卷,第3期,第378-392頁。
陳建銘(2022)2018年花蓮地震中嶺頂斷層北段之淺部破裂。國立臺灣大學地質科學系暨研究所碩士論文,共131頁。
景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡(2020)斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估。經濟部中央地質調查所委辦計畫,共365頁。
曾義星、郭麟霂、王驥魁(2019)。光達測製與視覺化。地質,第38卷,第2期,第35-39頁。
游明聖(1997)台東縱谷活動斷層研究。國立臺灣大學地質科學研究所博士論文,共141頁。
楊詠然(2016)末次最大冰期以來台灣西部平原的環境變遷。國立臺灣大學地質科學研究所碩士論文,共159頁。
楊貴三(1986)臺灣活斷層的地形學研究- 特論活斷層與地形面關係。中國文化大學地學研究所博士論文, 共178頁。
經濟部中央地質調查所(2018)20180206花蓮地震地質調查報告,共115頁。
經濟部中央地質調查所(2019)活動斷層地質敏感區劃定計畫書-F0020嶺頂斷層,共24頁。
劉平妹、謝孟龍(2007)臺灣東部晚第四紀地質調查及地形演育研究(2/2)。經濟部中央地質調查所研究報告,共79頁。
劉彥求、許晉瑋、黃志遠、鄭智仁(2018)0206花蓮地震嶺頂斷層北段同震地表破裂調查。地質,第37卷,第1期,第30-33頁。
謝有忠、郭麟霂(2019)。臺灣光達數值地形資料測製成果及應用。地質,第38卷,第2期,第40-45頁。
謝孟龍、劉平妹(2010)花東海岸全新世地殼上升速率的再檢討。經濟部中央地質調查所彙刊,第23號,第165-199頁。
龔琪嵐、齊士崢(2012)縱谷南段的階地對比及新構造運動研究。環境與世界,第24-25期,第93-114頁。
Arrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology, 113(1-2), 70-81. https://doi.org/10.1016/j.geomorph.2009.01.002
Barnes, P. M., Sutherland, R., Davy, B., & Delteil, J. (2001). Rapid creation and destruction of sedimentary basins on mature strike-slip faults: and example from the offshore Alphine Fault, New Zealand. Journal of Structural Geology, 23, 1727-1739.
Barth, N. C., Toy, V. G., Langridge, R. M., & Norris, R. J. (2012). Scale dependence of oblique plate-boundary partitioning: New insights from LiDAR, central Alpine fault, New Zealand. Lithosphere, 4(5), 435-448. https://doi.org/10.1130/l201.1
Burbank, D. W., & Anderson, R. S. (2011). Tectonic Geomorphology (Second ed.). Wiley-Blackwell.
Chen, C.-Y., Lee, J.-C., Chen, Y.-G., & Chen, R.-F. (2014). Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 25(3), 337-357. https://doi.org/10.3319/tao.2013.12.25.01(tt)
Chen, W.-S., Yang, C.-Y., Chen, S.-T., & Huang, Y.-C. (2020). New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quaternary Science Reviews, 240, 106369. https://doi.org/10.1016/j.quascirev.2020.106369
Chung, L.-H., Chen, Y.-G., Wu, Y.-M., Shyu, J. B. H., Kuo, Y.-T., & Lin, Y.-N. N. (2008). Seismogenic faults along the major suture of the plate boundary deduced by dislocation modeling of coseismic displacements of the 1951 M7.3 Hualien–Taitung earthquake sequence in eastern Taiwan. Earth and Planetary Science Letters, 269(3-4), 416-426. https://doi.org/10.1016/j.epsl.2008.02.035
Dawers, N. H., & Anders, M. H. (1995). Displacement-length scaling and fault linkage. Journal of Structural Geology, 17(5), 607-614.
Dolan, J. F., & Haravitch, B. D. (2014). How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation. Earth and Planetary Science Letters, 388, 38-47. https://doi.org/10.1016/j.epsl.2013.11.043
Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. Journal of Geophysical Research, 77(23), 4432-4460. https://doi.org/10.1029/JB077i023p04432
Fossen, H. (2020). Fault classification, fault growth and displacement. In Regional Geology and Tectonics: Principles of Geologic Analysis (pp. 119-147). https://doi.org/10.1016/b978-0-444-64134-2.00007-9
Friedrich, A. M., Wernicke, B. P., Niemi, N. A., Bennett, R. A., & Davis, J. L. (2003). Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research: Solid Earth, 108(B4), 2199. https://doi.org/10.1029/2001jb000682
Gao, M., Xu, X., Klinger, Y., van der Woerd, J., & Tapponnier, P. (2017). High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China. Scientific Reports, 7(1), 8281. https://doi.org/10.1038/s41598-017-08119-2
Gold, R. D., Cowgill, E., Arrowsmith, J. R., Chen, X., Sharp, W. D., Cooper, K. M., & Wang, X.-F. (2011). Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. Geological Society of America Bullentin, 123(5-6), 958-978. https://doi.org/10.1130/b30207.1
Haddon, E. K., Amos, C. B., Zielke, O., Jayko, A. S., & Bürgmann, R. (2016). Surface slip during large Owens Valley earthquakes. Geochemistry, Geophysics, Geosystems, 17(6), 2239-2269. https://doi.org/10.1002/2015gc006033
Hsieh, M.-L., Liew, P.-M., & Hsu, M.-Y. (2004). Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan. Quaternary International, 115-116, 47-70. https://doi.org/10.1016/s1040-6182(03)00096-x
Hsu, T.-L. (1962). Recent Faulting in The Longitudinal Valley of Eastern Taiwan. Memoir of the geological society of China, 1, 95-102.
Huang, H.-H., & Wang, Y. (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model. Terrestrial, Atmospheric and Oceanic Sciences, 33, 17. https://doi.org/10.1007/s44195-022-00017-z
Huang, S.-Y., Yen, J.-Y., Wu, B.-L., Yen, I. C., & Chuang, R. Y. (2019). Investigating the Milun Fault: The coseismic surface rupture zone of the 2018/02/06 ML 6.2 Hualien earthquake, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 311-335. https://doi.org/10.3319/tao.2018.12.09.03
Huang, W.-J., Johnson, K. M., Fukuda, J. i., & Yu, S.-B. (2010). Insights into active tectonics of eastern Taiwan from analyses of geodetic and geologic data. Journal of Geophysical Research, 115, B03413. https://doi.org/10.1029/2008jb006208
Jackson, M. P. A., & Hudec, M. R. (2017). Strike-Slip Salt-Tectonic Systems. In Salt Tectonics Principles and Practice (pp. 336-362). https://doi.org/https://doi.org/10.1017/9781139003988.016
Kim, Y.-S., Peacock, D. C. P., & Sanderson, D. J. (2003). Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793-812. https://doi.org/10.1016/s0191-8141(02)00200-6
Kim, Y.-S., & Sanderson, D. J. (2005). The relationship between displacement and length of faults: a review. Earth-Science Reviews, 68(3-4), 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
Klinger, Y., Etchebes, M., Tapponnier, P., & Narteau, C. (2011). Characteristic slip for five great earthquakes along the Fuyun fault in China. Nature Geoscience, 4(6), 389-392. https://doi.org/10.1038/ngeo1158
Klinger, Y., Xu, X., Tapponnier, P., Woerd, J. V. d., Lasserre, C., & King, G. (2005). High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw 7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China. Bulletin of the Seismological Society of America, 95(5), 1970-1987. https://doi.org/10.1785/0120040233
Kuo‐Chen, H., Guan, Z. K., Sun, W. F., Jhong, P. Y., & Brown, D. (2018). Aftershock Sequence of the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan from a Dense Seismic Array Data Set. Seismological Research Letters, 90(1), 60-67. https://doi.org/10.1785/0220180233
Lambeck, K., & Chappell, J. (2001). Sea level change through the last glacial cycle. Science, 292(5517), 679-686.
Langridge, R. M., Ries, W. F., Farrier, T., Barth, N. C., Khajavi, N., & De Pascale, G. P. (2014). Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations. Journal of Structural Geology, 64, 53-66. https://doi.org/10.1016/j.jsg.2013.11.007
Le Guerroué, E., & Cobbold, P. R. (2006). Influence of erosion and sedimentation on strike-slip fault systems: Insights from analogue models. Journal of Structural Geology, 28(3), 421-430.
Lee, C.-P., Kim, K.-H., Huang, B.-S., & Huang, W.-G. (2011). Seismicity, active faults, stress patterns, and rupture processes in the Hualien region, Taiwan, investigated using the 1990 Hualien earthquake sequence. Tectonophysics, 511(1-2), 27-37. https://doi.org/10.1016/j.tecto.2011.08.014
Lee, S. J., Lin, T. C., Liu, T. Y., & Wong, T. P. (2018). Fault‐to‐Fault Jumping Rupture of the 2018 Mw 6.4 Hualien Earthquake in Eastern Taiwan. Seismological Research Letters, 90(1), 30-39. https://doi.org/10.1785/0220180182
Lee, S. J., Liu, T. Y., & Lin, T. C. (2023). The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence. Scientific Report, 13, 3552.
Lienkaemper, J. J. (2001). 1857 slip on the San Andreas fault southeast of Cholame, California. Bulletin of the Seismological Society of America, 91(6), 1659-1672.
Lisle, R. J. (2004). Geological Structures and Maps: a practical guide (Third ed.). Elsevier Butterworth-Heinemann.
Lo, Y.-C., Yue, H., Sun, J., Zhao, L., & Li, M. (2019). The 2018 Mw6.4 Hualien earthquake: Dynamic slip partitioning reveals the spatial transition from mountain building to subduction. Earth and Planetary Science Letters, 524, 115729. https://doi.org/10.1016/j.epsl.2019.115729
Mériaux, A. S., Tapponnier, P., Ryerson, F. J., Xiwei, X., King, G., Van der Woerd, J., Finkel, R. C., Haibing, L., Caffee, M. W., Zhiqin, X., & Wenbin, C. (2005). The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. Journal of Geophysical Research: Solid Earth, 110, B04404. https://doi.org/10.1029/2004jb003210
Norris, R. J., & Cooper, A. F. (2007). The Alpine Fault, New Zealand: Surface geology and field relationships. In A Continental Plate Boundary: Tectonics at South Island, New Zealand (pp. 157-175). https://doi.org/10.1029/175gm09
Peacock, D. C. P. (1991). Displacements and segment linkage in strike-slip fault zones. Journal of Structural Geology, 13(9), 1025-1035.
Ren, J., Zhang, Z., Gai, H., & Kang, W. (2021). Typical Riedel shear structures of the coseismic surface rupture zone produced by the 2021 Mw 7.3 Maduo earthquake, Qinghai, China, and the implications for seismic hazards in the block interior. Natural Hazards Research, 1(4), 145-152. https://doi.org/10.1016/j.nhres.2021.10.001
Rockwell, T. K., & Klinger, Y. (2013). Surface Rupture and Slip Distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: Implications for Rupture Segmentation and Dynamics. Bulletin of the Seismological Society of America, 103(2A), 629-640. https://doi.org/10.1785/0120120192
Schwartz, D. P., & Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research: Solid Earth, 89(B7), 5681-5698. https://doi.org/10.1029/JB089iB07p05681
Shyu, J. B., Sieh, K., Chen, Y.-G., & Chung, L.-H. (2006b). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118, 1447-1462. https://doi.org/10.1130/B25905
Shyu, J. B. H., Chen, C.-F., & Wu, Y.-M. (2016a). Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture. Tectonophysics, 692, 295-308. https://doi.org/10.1016/j.tecto.2015.12.026
Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., & Cheng, C.-T. (2016b). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 311-323. https://doi.org/10.3319/tao.2015.11.27.02(tem)
Shyu, J. B. H., Sieh, K., Avouac, J.-P., Chen, W.-S., & Chen, Y.-G. (2006a). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research, 111, B08403. https://doi.org/10.1029/2005jb003971
Shyu, J. B. H., Sieh, K., Chen, Y.-G., and Liu, C.-S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110, B08402. https://doi.org/doi:10.1029/2004JB003251
Shyu, J. B. H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R., & Liu, S.-C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 469-478. https://doi.org/10.3319/tao.2020.06.08.01
Sieh, K. (1978). Slip along the San Andreas Fault associated with the great 1857 earthquake. Bulletin of the Seismological Society of America, 68(5), 1421-1448.
Sieh, K., & Jahns, R. H. (1984). Holocene activity of the San Andreas fault at Wallace Creek, California. Geological Society of America Bullentin, 95(8), 883-896.
Sylvester, A. G. (1988). Strike-slip faults. Geological Society of America Bullentin, 100, 1666-1703.
Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C., & Kuo, L.-C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119(6), 5114-5139. https://doi.org/10.1002/2013jb010603
Toda, S., Kaneda, H., Okada, S., Ishimura, D., & Mildon, Z. K. (2016). Slip-partitioned surface ruptures for the Mw 7.0 16 April 2016 Kumamoto, Japan, earthquake. Earth, Planets and Space, 68, 188. https://doi.org/10.1186/s40623-016-0560-8
Tsai, M.-C., Yu, S.-B., Shin, T.-C., Kuo, K.-W., Leu, P.-L., Chang, C.-H., & Ho, M.-Y. (2015). Velocity Field Derived from Taiwan Continuous GPS Array (2007 - 2013). Terrestrial, Atmospheric and Oceanic Sciences, 26(5), 527-556. https://doi.org/10.3319/tao.2015.05.21.01(t)
Woodcock, N. H. (1986). strike slip duplex. Journal of Structural Geology, 8(7), 725-735.
Woodcock, N. H., & Rickards, B. (2003). Transpressive duplex and flower structure: Dent Fault System, NW England. Journal of Structural Geology, 25, 1981-1992.
Wu, B.-L., Yen, J.-Y., Huang, S.-Y., Kuo, Y.-T., & Chang, W.-Y. (2019). Surface deformation of 0206 Hualien earthquake revealed by the integrated network of RTK GPS. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 301-310. https://doi.org/10.3319/tao.2019.05.27.01
Yen, J. Y., Lu, C. H., Dorsey, R. J., Kuo‐Chen, H., Chang, C. P., Wang, C. C., Chuang, R. Y., Kuo, Y. T., Chiu, C. Y., Chang, Y. H., Bovenga, F., & Chang, W. Y. (2018). Insights into Seismogenic Deformation during the 2018 Hualien, Taiwan, Earthquake Sequence from InSAR, GPS, and Modeling. Seismological Research Letters, 90(1), 78-87. https://doi.org/10.1785/0220180228
York, J. E. (1976). Quaternary faulting in eastern Taiwan. Bulletin of the Geological Survey of Taiwan, 25, 63-72.
Yu, S.-B., & Kuo, L.-C. (1999). GPS observation of crustal deformation in the Taiwan-Luzon region. Geophysical Research Letters, 26(7), 923-926.
Yu, S. B., and Kuo L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199-217.
Yu, S. B., Jackson, D. D., Yu, G. K., & Liu, C. C. (1990). Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan. Tectonophysics, 183, 97-109.
Zielke, O., Klinger, Y., & Arrowsmith, J. R. (2015). Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data. Tectonophysics, 638, 43-62. https://doi.org/10.1016/j.tecto.2014.11.004
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88553-
dc.description.abstract在過往的同震變形紀錄中,花東縱谷北段的活動斷層具有顯著的左移特性,如1951縱谷地震序列中米崙斷層的地表破裂,以及2018花蓮地震中最北端的嶺頂斷層。若將2018年的嶺頂斷層破裂段沿著其走向直接向南延伸,會發現此破裂段可以對應至海岸山脈西側上的一系列左移錯斷河與閉塞丘等構造地形,且可以再往南接到其他線形構造(由北往南分別為:月眉、大坪、米棧,與山興線形)-即前人透過航照與40米數值地形(DEM)所判釋的一系列左移斷層跡,暗示了此系統應具有一定的活動性。然而,受限於地形資料的解析度不足及植被過於茂密的問題,近期的研究認為這些在海岸山脈西側出現的線形構造不夠連續,且未有全新世的活動證據,因此判定這些斷層僅是活動性存疑的次要斷層。
透過中央地調所的山崩雲平台所提供的高解析度光達數值地形影像,輔以20米DEM、航照立體對,及1:5000像片基本圖,本研究重新對嶺頂斷層上盤的海岸山脈西側進行構造地形的判釋;並利用GIS軟體與回復原始地形的方式,得到河道與其周圍地形所累積的最大水平錯移量;同時配合野外調查,檢視斷層與沖積扇扇階的判釋成果,及確認是否有近期的活動證據。斷層跡的分布顯示,前人所提出的四條線形可視為一條連續的左移斷層的不同分段;最大的累積水平錯移量有空間分布上的差異,在此左移斷層的北段約累積了330公尺的錯移量,往南則遞減至275公尺,整體的平均錯移量為300-310公尺。此結果可能反映GPS速度場方向在斷層南北段的差異,或代表此斷層往南逐漸接到另一個斷層系統。另外,本研究於野外調查時並未發現高位沖積扇扇階有紅土化育,故假設這些下切至都巒山層的錯斷河於末次冰盛期(LGM)的低海水面時期下蝕,並開始累積錯移量,推估其約從1.45至3萬年前開始累積,進而求得長期走滑速率為10.0–21.4 mm/yr(300 m / 30 ka–310 m / 14.5 ka)。考量到其高活動速率及切過全新世沖積層,本研究認為此左移斷層在縱谷北段為相當活躍的斷層系統。
zh_TW
dc.description.abstractThis study aims to investigate the tectonic activity of the plausible active fault system at the northern Longitudinal Valley (NLV) in eastern Taiwan. We utilize 6m LiDAR DEM image provided by the Central Geological Survey (CGS), with 20m DEM and 5m contour map as aids, to map active tectonic features along the western flank of the Coastal Range by observing their geomorphology. Also, we conduct field survey to examine our mapping results and to identify outcrops with recent faulting. To quantify the tectonic activity of this fault system, we use QGIS and slip restoration method to measure its cumulative left-lateral offset and further propose its slip rate.
Our mapping shows that the fault system comprises a series of right-stepping en-échelon fault traces, reflecting a newborn left-lateral strike-slip fault system. We also discover three streams in series with small left-lateral displacement and several offset alluvial fans, which are strong evidence of recent fault activities. These findings correspond with the geodetic data over the past century and surface rupture of the 2018 Hualien earthquake in the NLV, demonstrating significant left-lateral strike-slip component of the fault system in this region. For the maximum cumulative left-lateral displacement, we find this system has 300 to 310 meters offset on average.
Since we did not find any high alluvial fan terraces covered by lateritic soil in the field, we assume that the ~300m displacement is accumulated after the streams at the western flank of the Costal Range incised deeply into the bedrock. Considering the uplift motion is not dominant in the NLV, low sea level period during the Last Glacial Maximum (LGM, 14.5-30 ka ago) could provide the driving force of incision. We can thus derive the long-term strike-slip rate of this fault system from dividing the cumulative left-lateral offset by the elapsed time since LGM. The slip rate ranges from 10.0 to 21.4 mm/yr, which is comparable with the slip rate of the Longitudinal Valley fault (LVF), the principal active fault in eastern Taiwan, reported in previous studies. As a result, we suggest this strike-slip fault system is active, dominating the left-lateral movement in the NLV.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:48:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:48:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 x
第1章 、緒論 1
1.1 、研究動機與目的 1
第2章 、花東縱谷北段的前人研究 6
2.1 、花東縱谷北段的地質背景 6
2.2 、潛在的活動構造 13
2.2.1 、線形構造 13
2.2.2 、嶺頂斷層 18
2.2.3 、中央山脈斷層 21
第3章 、研究方法 23
3.1 、研究素材介紹 23
3.1.1 、數值地形模型(DEM: Digital Elevation Model) 23
3.1.2 、航照立體對 26
3.1.3 、像片基本圖 27
3.2 、判釋原則 28
3.2.1 、斷層跡判釋 28
3.2.2 、沖積扇扇階判釋與階序畫分 30
3.3 、水平錯移量量測方式 31
3.3.1 、河道錯移量 32
3.3.2 、原始地形回復(Slip Restoration) 34
第4章 、研究結果 37
4.1 、斷層跡分布與野外觀察 37
4.1.1 、月眉段:崩坎一帶 39
4.1.2 、月眉段:月眉一帶 46
4.1.3 、米棧山興段:米棧一帶 52
4.1.4 、米棧山興段:山興一帶 60
4.1.5 、東富段 60
4.2 、總累積水平錯移量沿斷層跡的分布 65
4.3 、研究與野外調查結果小結 70
第5章 、討論 73
5.1 、存疑性左移斷層的斷層活動特性 73
5.1.1 、斷層南北段的活動差異 73
5.1.2 、斷層的活動速率 80
5.2 、嶺頂斷層與左移斷層系統的空間關係 87
5.2.1 、2018花蓮地震與縱谷北段近地表斷層系統 87
5.2.2 、縱谷北段的淺部斷層幾何 93
5.3 、花東縱谷北段的斷層系統 95
第6章 、結論 103
參考文獻 104
附錄一、錯移量統計表 113
附錄二、Metashape建模結果(見圖4.1.22) 118
附錄三、投影至左移斷層的GPS速度(見圖5.1.3) 119
附錄圖集、錯斷河的現地照片 120
-
dc.language.isozh_TW-
dc.subject構造地形zh_TW
dc.subject月眉線形zh_TW
dc.subject左移斷層zh_TW
dc.subject花東縱谷北段zh_TW
dc.subject斷層活動性zh_TW
dc.subjecttectonic activityen
dc.subjectthe northern Longitudinal Valleyen
dc.subjectthe western flank of the Coastal Rangeen
dc.subjectleft-lateral strike-slip faulten
dc.title花東縱谷北段海岸山脈西側存疑性斷層的活動性探討zh_TW
dc.titleTectonic activity of the plausible fault system along the western flank of Coastal Range in northern Longitudinal Valley, Taiwanen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee沈淑敏;黃韶怡;鍾令和zh_TW
dc.contributor.oralexamcommitteeSu-Min Shen;Shao-Yi Huang;Li-Ho Chungen
dc.subject.keyword花東縱谷北段,構造地形,左移斷層,月眉線形,斷層活動性,zh_TW
dc.subject.keywordtectonic activity,the northern Longitudinal Valley,the western flank of the Coastal Range,left-lateral strike-slip fault,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202302694-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2024-12-31-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf28.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved