Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88547
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲zh_TW
dc.contributor.advisorCheng-Che Hsuen
dc.contributor.author陳冠廷zh_TW
dc.contributor.authorKuan-Ting Chenen
dc.date.accessioned2023-08-15T16:47:05Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citationCouncil, N.R., Plasma Science: Advancing Knowledge in the National Interest 2007, Washington, DC: The National Academies Press.
I.H.Hutchinson, Introduction to Plasma Physics. 2001.
Leal-Quirós, E., "Plasma processing of municipal solid waste." Brazilian Journal of Physics, 2004. 34(4b): p. 1587-1593.
Akhavan, B., S.G. Wise and M.M.M. Bilek, "Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals." Langmuir, 2016. 32(42): p. 10835-10843.
Tsai, C.C., J.C. Knights, G. Chang and B. Wacker, "Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon." Journal of Applied Physics, 1986. 59(8): p. 2998-3001.
Kanarik, K.J., T. Lill, E.A. Hudson, S. Sriraman, et al., "Overview of atomic layer etching in the semiconductor industry." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015. 33(2).
E. E. Kunhardt, M., IEEE, "Generation of Large-Volume, Atmospheric-Pressure, Nonequilibrium Plasmas." IEEE Transactions on Plasma Science, 2000. 28: p. 189-200.
Duan, Y., C. Huang and Q.S. Yu, "Cold plasma brush generated at atmospheric pressure." Rev Sci Instrum, 2007. 78(1): p. 015104.
Mariotti, D., "Nonequilibrium and effect of gas mixtures in an atmospheric microplasma." Applied Physics Letters, 2008. 92: p. 151505-1-3.
Pappas, D., "Status and potential of atmospheric plasma processing of materials." Journal of Vacuum Science & Technology A, 2011. 29(2).
Chiang, W.H., D. Mariotti, R.M. Sankaran, J.G. Eden, et al., "Microplasmas for Advanced Materials and Devices." Adv Mater, 2020. 32(18): p. e1905508.
Lin, L. and Q. Wang, "Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis." Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962.
Staack, D., B. Farouk, A. Gutsol and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge." Plasma Sources Science & Technology, 2005. 14(4): p. 700-711.
Kogelschatz, U., "Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications." Plasma Chemistry and Plasma Processing, 2002.
Li, Q., J. Liu, Y. Dai, W. Xiang, et al., "Fabrication of SiN(x) Thin Film of Micro Dielectric Barrier Discharge Reactor for Maskless Nanoscale Etching." Micromachines (Basel), 2016. 7(12).
Ji, B., T. Wang, M. Li, L. Shi, et al., "Localized Surface Hydrophilicity Tailoring of Polyimide Film for Flexible Electronics Manufacturing Using an Atmospheric Pressure Ar/H(2)O Microplasma Jet." Micromachines (Basel), 2022. 13(11).
Meyer, C., D. Demecz, E.L. Gurevich, U. Marggraf, et al., "Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy." Journal of Analytical Atomic Spectrometry, 2012. 27(4).
Wang, C.Y. and C.C. Hsu, "Characterization of plasma in aqueous solution using bipolar pulsed power: Tailoring plasma and optical emission with implication for detecting lead." Plasma Processes and Polymers, 2019. 17(2).
Szili, E.J., S.A. Al-Bataineh, P.M. Bryant, R.D. Short, et al., "Controlling the Spatial Distribution of Polymer Surface Treatment Using Atmospheric-Pressure Microplasma Jets." Plasma Processes and Polymers, 2011. 8(1): p. 38-50.
Blajan, M., A. Umeda and K. Shimizu, "Surface Treatment of Glass by Microplasma." IEEE Transactions on Industry Applications, 2013. 49(2): p. 714-720.
Kim, M.C., S.H. Yang, J.H. Boo and J.G. Han, "Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics." Surface and Coatings Technology, 2003. 174-175: p. 839-844.
Mariotti, D. and R.M. Sankaran, "Microplasmas for nanomaterials synthesis." Journal of Physics D: Applied Physics, 2010. 43(32).
Kumar, A., P. Ann Lin, A. Xue, B. Hao, et al., "Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour." Nat Commun, 2013. 4: p. 2618.
Askari, S., A. Ul Haq, M. Macias-Montero, I. Levchenko, et al., "Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas." Nanoscale, 2016. 8(39): p. 17141-17149.
Shimizu, K., M. Blajan and T. Kuwabara, "Removal of Indoor Air Contaminant by Atmospheric Microplasma." IEEE Transactions on Industry Applications, 2011. 47(6): p. 2351-2358.
Zhou, R., T. Zhang, R. Zhou, A. Mai-Prochnow, et al., "Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants." Sci Total Environ, 2021. 750: p. 142295.
Machala, Z., M. Janda, K. Hensel, I. Jedlovský, et al., "Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications." Journal of Molecular Spectroscopy, 2007. 243(2): p. 194-201.
Fridman, G., G. Friedman, A. Gutsol, A.B. Shekhter, et al., "Applied Plasma Medicine." Plasma Processes and Polymers, 2008. 5(6): p. 503-533.
Shimizu, K., H. Fukunaga and M. Blajan, "Biomedical applications of atmospheric microplasma." Current Applied Physics, 2014. 14: p. S154-S161.
Krähling, T., S. Müller, C. Meyer, A.-K. Stark, et al., "Liquid electrode dielectric barrier discharge for the analysis of solved metals." Journal of Analytical Atomic Spectrometry, 2011. 26(10).
Peng, X., X. Guo, F. Ge and Z. Wang, "Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection." Journal of Analytical Atomic Spectrometry, 2019. 34(2): p. 394-400.
Meng, F., X. Li and Y. Duan, "Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement." Sci Rep, 2014. 4: p. 4803.
Brandenburg, R., "Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments." Plasma Sources Science & Technology, 2017. 26(5): p. 29.
Niu, G., A. Knodel, S. Burhenn, S. Brandt, et al., "Review: Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry." Anal Chim Acta, 2021. 1147: p. 211-239.
Gibalov, V. and G. Pietsch, "The Development of Dielectric Barrier Discharges in Gas Gaps and on Surfaces." Journal of Physics D: Applied Physics, 2000. 33: p. 2618.
Laroussi, M., X. Lu and M. Keidar, "Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine." Journal of Applied Physics, 2017. 122(2).
Lee, D.-S., K. Tachibana, H.-J. Yoon and H.-J. Lee, "Enhancement of Optical Emission by Floating Electrodes in a Planar Microdischarge Cell." Japanese Journal of Applied Physics, 2009. 48(5).
Wang, Z.-B., G.-X. Chen, Z. Wang, N. Ge, et al., "Effect of a floating electrode on an atmospheric-pressure non-thermal arc discharge." Journal of Applied Physics, 2011. 110(3).
Cristofolini, A., G. Neretti and C.A. Borghi, "Effect of the charge surface distribution on the flow field induced by a dielectric barrier discharge actuator." Journal of Applied Physics, 2013. 114(7).
Nicolas Gherardi, G.G., Eric Gat, Andr´e Ricard and Fran¸cois Massines, "Transition from glow silent discharge to microdischarges in nitrogen gas." Plasma Sources Science and Technology, 2000. 9: p. 340–346.
Ashpis, D., M. Laun and E. Griebeler, Progress toward Accurate Measurements of Power Consumption of DBD Plasma Actuators, in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012.
Halim, J., "Synthesis and transport properties of 2D transition metal carbides (MXenes)." 2018.
Roth, J.R., Industrial Plasma Engineering. Vol. 1. 1995: Institute of Physics Publishing.
Aubert, X., G. Bauville, J. Guillon, B. Lacour, et al., "Analysis of the self-pulsing operating mode of a microdischarge." Plasma Sources Science and Technology, 2007. 16(1): p. 23-32.
Taylan, O. and H. Berberoglu, "Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor." Journal of Applied Physics, 2014. 116(4).
Lazzaroni, C. and P. Chabert, "Discharge resistance and power dissipation in the self-pulsing regime of micro-hollow cathode discharges." Plasma Sources Science and Technology, 2011. 20(5).
Chabert, P., C. Lazzaroni and A. Rousseau, "A model for the self-pulsing regime of microhollow cathode discharges." Journal of Applied Physics, 2010. 108(11).
Hsu, D.D. and D.B. Graves, "Microhollow cathode discharge stability with flow and reaction." Journal of Physics D-Applied Physics, 2003. 36(23): p. 2898-2907.
Chu, Y.-H., Development of Portable High Voltage Modules and Application for Microplasma Spectroscopy in Organic Vapor Detection, in Department of Chemical Engineering. 2022, National Taiwan University. p. 1-161.
Dokić, B. and B. Blanusa, Power Electronics. Vol. 3. 2015: Springer Cham.
Electronics Tutorials. Parallel Resonance Circuit. AC Circuits [cited 2023 June 12]; Available from: https://www.electronics-tutorials.ws/accircuits/parallel-resonance.html.
Gaydon, R.W.B.P.a.A.G., "The Identification of Molecular Spectra." 1976.
Asenjo-Castillo, J. and I. Vargas-Blanco, "Espectroscopia de Plasmas en condiciones de presión atmosférica." Revista Tecnología en Marcha, 2016. 29(6).
Fantz, U., "Basics of plasma spectroscopy." Plasma Sources Science & Technology, 2006. 15(4): p. S137-S147.
Harilal, S.S., B.E. Brumfield, N.L. LaHaye, K.C. Hartig, et al., "Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis." Applied Physics Reviews, 2018. 5(2).
Karanassios, V., "Microplasmas for chemical analysis: analytical tools or research toys?", Spectrochimica Acta Part B: Atomic Spectroscopy, 2004. 59(7): p. 909-928.
Li, W., Z. Yin, X. Cheng, W. Hang, et al., "Pulsed microdischarge with inductively coupled plasma mass spectrometry for elemental analysis on solid metal samples." Anal Chem, 2015. 87(9): p. 4871-8.
MICHAEL A. LIEBERMAN, A.J.L., "PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING." 2005.
Hughes, W.C., "Molecular beam epitaxy growth and properties of GaN films on GaN/SiC substrates." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1995. 13(4).
Epping, R. and M. Koch, "On-Site Detection of Volatile Organic Compounds (VOCs)." Molecules, 2023. 28(4).
Spinelle, L., M. Gerboles, G. Kok, S. Persijn, et al., "Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds." Sensors (Basel), 2017. 17(7).
Liu, X., S. Cheng, H. Liu, S. Hu, et al., "A survey on gas sensing technology." Sensors (Basel), 2012. 12(7): p. 9635-65.
Amiri, V., H. Roshan, A. Mirzaei, G. Neri, et al., "Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review." Sensors (Basel), 2020. 20(11).
Saruhan, B., R. Lontio Fomekong and S. Nahirniak, "Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics." Frontiers in Sensors, 2021. 2.
Dey, A., "Semiconductor metal oxide gas sensors: A review." Materials Science and Engineering: B, 2018. 229: p. 206-217.
Jha, R.K., "Non-Dispersive Infrared Gas Sensing Technology: A Review." IEEE Sensors Journal, 2022. 22(1): p. 6-15.
Dinh, T.-V., I.-Y. Choi, Y.-S. Son and J.-C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction." Sensors and Actuators B: Chemical, 2016. 231: p. 529-538.
Hodgkinson, J., R. Smith, W.O. Ho, J.R. Saffell, et al., "Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor." Sensors and Actuators B: Chemical, 2013. 186: p. 580-588.
N. Tandon, A.C., "A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings." Tribology International 1999. 32: p. 469–480.
Liu, Y., D. Habibi, D. Chai, X. Wang, et al., "A Comprehensive Review of Acoustic Methods for Locating Underground Pipelines." Applied Sciences, 2020. 10(3).
Khan, M.A.H., M.V. Rao and Q. Li, "Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO(2), SO(2) and H(2)S." Sensors (Basel), 2019. 19(4).
Dhall, S., B.R. Mehta, A.K. Tyagi and K. Sood, "A review on environmental gas sensors: Materials and technologies." Sensors International, 2021. 2.
Szulczyński, B. and J. Gębicki, "Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air." Environments, 2017. 4(1).
Liu, Z., X. Feng, C. Dong and M. Jiao, "Study on Denoising Method of Photoionization Detector Based on Wavelet Packet Transform." Chemosensors, 2023. 11(2).
Coelho Rezende, G., S. Le Calvé, J.J. Brandner and D. Newport, "Micro photoionization detectors." Sensors and Actuators B: Chemical, 2019. 287: p. 86-94.
Xu, W., Y. Cai, S. Gao, S. Hou, et al., "New understanding of miniaturized VOCs monitoring device: PID-type sensors performance evaluations in ambient air." Sensors and Actuators B: Chemical, 2021. 330.
Manginell, R.P., J.M. Bauer, M.W. Moorman, L.J. Sanchez, et al., "A monolithically-integrated muGC chemical sensor system." Sensors (Basel), 2011. 11(7): p. 6517-32.
Regmi, B.P. and M. Agah, "Micro Gas Chromatography: An Overview of Critical Components and Their Integration." Anal Chem, 2018. 90(22): p. 13133-13150.
Arthur J. Mccormack, S.C.T., and W. D. Cooke, "Sensitive Selective Gas Chromatography Detector Based on Emission Spectrometry of Organic Compounds." Analytical Chemistry, 1965. 37: p. 1470-1476.
A. H. Mohamad, J.T.C., T. M. Davidson, and J. A. Caruso, "Detection of Halogenated Compounds by Capillary Gas Chromatography With Helium Plasma Mass Spectrometry Detection." Applied Spectroscopy, 1989. 43: p. 1127-1131.
Meng, F. and Y. Duan, "Nitrogen microplasma generated in chip-based ingroove glow discharge device for detection of organic fragments by optical emission spectrometry." Anal Chem, 2015. 87(3): p. 1882-8.
Wang, B., W. Cao and Y. Duan, "Selective detection of organophosphate nerve agents using microplasma device." Anal. Methods, 2014. 6(6): p. 1848-1854.
Meyer, C., R. Heming, E.L. Gurevich, U. Marggraf, et al., "Radiofrequency driven and low cost fabricated microhollow cathode discharge for gaseous atomic emission spectrometry." J. Anal. At. Spectrom., 2011. 26(3): p. 505-510.
Li, W., C. Zheng, G. Fan, L. Tang, et al., "Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons." Anal Chem, 2011. 83(13): p. 5050-5.
Mitra, B. and Y.B. Gianchandani, "The Detection of Chemical Vapors in Air Using Optical Emission Spectroscopy of Pulsed Microdischarges From Two- and Three- Electrode Microstructures." IEEE Sensors Journal, 2008. 8(8): p. 1445-1454.
Guchardi, R. and P.C. Hauser, "Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector." The Analyst, 2004. 129(4).
Jan C. T. Eijkel, H.S., Andreas Manz, "A dc Microplasma on a Chip Employed as an Optical Emission Detector for Gas Chromatography." Anal. Chem, 2000. 72: p. 2547-2552.
Yang, T., D.X. Gao, Y.L. Yu, M.L. Chen, et al., "Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath." Talanta, 2016. 146: p. 603-8.
Jan C. T. Eijkel, H.S., Andreas Manz, "A Molecular Emission Detector on a Chip Employing a Direct Current Microplasma." Anal. Chem, 1999. 71: p. 2600-2606.
Guchardi, R. and P.C. Hauser, "A capacitively coupled microplasma in a fused silica capillary." J. Anal. At. Spectrom., 2003. 18(9): p. 1056-1059.
Ken KAKEGAWA, R.H., Mari AIDA, Hidekazu MIYAHARA, Shoji MARUO, Akitoshi OKINO, "Development of a High-Density Microplasma Emission Source for a Micro Total Analysis System." Analytical Sciences, 2017. 33: p. 505-510.
Hoskinson, A.R., J. Hopwood, N.W. Bostrom, J.A. Crank, et al., "Low-power microwave-generated helium microplasma for molecular and atomic spectrometry." Journal of Analytical Atomic Spectrometry, 2011. 26(6).
Zhe Jin, Y.S., and Yixiang Duan, "A Low-Power, Atmospheric Pressure, Pulsed Plasma Source for Molecular Emission Spectrometry." Anal. Chem, 2001. 73: p. 360-365.
Yixiang Duan, Y.S., and Zhe Jin, "Capillary-discharge-based portable detector for chemical vapor monitoring." Review of Scientific Instruments, 2003. 74: p. 2811-2816.
Robert S. Braman, A.D., "Direct Current Discharge Spectral Emission-Type Detector." Analytical Chemistry, 1968. 40: p. 95-106.
Vander Wal, R.L., J.H. Fujiyama-Novak, C.K. Gaddam, D. Das, et al., "Atmospheric microplasma jet: spectroscopic database development and analytical results." Appl Spectrosc, 2011. 65(9): p. 1073-82.
Wu, Z., M. Chen, P. Li, Q. Zhu, et al., "Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia." Analyst, 2011. 136(12): p. 2552-7.
Yang, Y., Y. Wang, X. Hou, Y. Lin, et al., "Can low-temperature point discharge Be used as atomic emission source for sensitive determination of cyclic volatile methylsiloxanes?", Anal Chim Acta, 2020. 1124: p. 121-128.
Jiang, X., C. Li, Z. Long and X. Hou, "Selectively enhanced molecular emission spectra of benzene, toluene and xylene with nano-MnO2in atmospheric ambient temperature dielectric barrier discharge." Analytical Methods, 2015. 7(2): p. 400-404.
Wu, Z., J. Jiang and N. Li, "Cold excitation and determination of hydrogen sulfide by dielectric barrier discharge molecular emission spectrometry." Talanta, 2015. 144: p. 734-9.
Han, B., X. Jiang, X. Hou and C. Zheng, "Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds." Anal Chem, 2014. 86(1): p. 936-42.
Jiang, X., Z. Hu, H. He, J. Luo, et al., "A two-dimensional sensor based on dielectric barrier discharge molecular optical emission and chemiluminescence for discrimination analysis of volatile halohydrocarbons." Microchemical Journal, 2016. 129: p. 16-22.
Li, C., X. Jiang and X. Hou, "Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines." Microchemical Journal, 2015. 119: p. 108-113.
Vander Wal, R.L., C.K. Gaddam and M.J. Kulis, "An Investigation of Micro-Hollow Cathode Glow Discharge Generated Optical Emission Spectroscopy for Hydrocarbon Detection and Differentiation." Applied Spectroscopy, 2014. 68(6): p. 649-656.
Luo, D.B., D.C. Ma, Y. He, X.S. Li, et al., "Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling." Microchemical Journal, 2017. 130: p. 33-39.
Fujiyama-Novak, J.H., C.K. Gaddam, D. Das, R.L. Vander Wal, et al., "Detection of explosives by plasma optical emission spectroscopy." Sensors and Actuators B: Chemical, 2013. 176: p. 985-993.
Luo, D.B., Y.X. Duan, Y. He and B. Gao, "A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit." Sci Rep, 2014. 4: p. 7451.
Yuan, X., X. Ding, Z. Zhao, X. Zhan, et al., "Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry." Journal of Analytical Atomic Spectrometry, 2012. 27(12).
Mitra, B., B. Levey and Y.B. Gianchandani, "Hybrid Arc/Glow Microdischarges at Atmospheric Pressure and Their Use in Portable Systems for Liquid and Gas Sensing." IEEE Transactions on Plasma Science, 2008. 36(4): p. 1913-1924.
Sivachandiran, L., F. Thevenet, P. Gravejat and A. Rousseau, "Isopropanol saturated TiO2 surface regeneration by non-thermal plasma: Influence of air relative humidity." Chemical Engineering Journal, 2013. 214: p. 17-26.
Zhang, S., X. Shen and J. Liang, "Double dielectric barrier discharge cells for promoting the catalytic degradation of volatile organic compound released by industrial processes." Environmental Science and Pollution Research, 2019. 26(19): p. 19930-19941.
Seto, T., S.-B. Kwon, M. Hirasawa and A. Yabe, "Decomposition of Toluene with Surface-Discharge Microplasma Device." Japanese Journal of Applied Physics, 2005. 44(7R).
Ray, D., R. Saha and S. Ch, "DBD Plasma Assisted CO2 Decomposition: Influence of Diluent Gases." Catalysts, 2017. 7(9).
Shimizu, K., Y. Kurokawa and M. Blajan, "Fundamental Study of Hexadecane Removal by Atmospheric Microplasma." IEEE Transactions on Industry Applications, 2018. 54(1): p. 599-604.
Shimizu, K., T. Kuwabara and M. Blajan, "Study on decomposition of indoor air contaminants by pulsed atmospheric microplasma." Sensors (Basel), 2012. 12(11): p. 14525-36.
Kuroki, T., T. Fujioka, R. Kawabata, M. Okubo, et al., "Regeneration of Honeycomb Zeolite by Nonthermal Plasma Desorption of Toluene." IEEE Transactions on Industry Applications, 2009. 45(1): p. 10-15.
Hong, K.H., S.J. Oh and S.H. Moon, "Degradation of pentachlorophenol by ozone generated by a pulsed power corona discharge." Water Air and Soil Pollution, 2003. 145(1): p. 187-203.
Hirasawa, M., T. Seto and S.-B. Kwon, "Decomposition of Volatile Organic Compounds Using Surface-Discharge Microplasma Devices." Japanese Journal of Applied Physics, 2006. 45(3A): p. 1801-1804.
Schmidt-Szałowski, K., K. Krawczyk, J. Sentek, B. Ulejczyk, et al., "Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC." Chemical Engineering Research and Design, 2011. 89(12): p. 2643-2651.
Dimitrakellis, P., M. Giannoglou, A. Zeniou, E. Gogolides, et al., "Food container employing a cold atmospheric plasma source for prolonged preservation of plant and animal origin food products." MethodsX, 2021. 8: p. 101177.
Rodgers, R.C. and G.E. Hill, "Equations for vapour pressure versus temperature: derivation and use of the Antoine equation on a hand-held programmable calculator." Br J Anaesth, 1978. 50(5): p. 415-24.
Li, P. and W.Y. Fan, "The CN free radical in acetonitrile discharges." Journal of Applied Physics, 2003. 93(12): p. 9497-9502.
Duan, Z., F. He, X. Si, J.W. Bradley, et al., "Experimental study of atmospheric-pressure micro-plasmas for the ambient sampling of conductive materials." Journal of Physics D: Applied Physics, 2018. 51(6).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88547-
dc.description.abstract微電漿具有激發反應物並產生放光的能力,透過分析不同波長強度的變化,作為辨識反應物質的特徵峰,因此這種特性也被應用在分析化學中。微電漿低成本、可在常壓下操作等特性使其具有很大的潛力應用在可攜式的氣體檢測裝置上。近幾年發展的微電漿光譜系統需要使用氦氣或氬氣作為載流氣體,因此無法達到真正意義上即時即地的檢測系統。本研究使用兩套系統,分別是以交流電驅動的DBD系統,以及由直流電驅動的針尖對平面微電漿系統,直接在空氣氣氛下進行揮發性有機氣體的檢測,透過調控不同的電漿行為,找出在空氣氣氛下最適合的檢測方法。
第一套系統是採用交流電驅動的DBD系統,透過改變MGD在高壓電極的形狀,如圓形、正方形、正三角形、長方形、箭頭形和等腰三角形等探討對有機氣體檢測的表現,以及探討浮動電極的面積大小,最終找出最適合的MGD設計。分析電源的輸出電壓(3.2至5.2 kVpp)和輸出頻率(1至30 kHz),以及電源的輸出波形找出提升CN特徵峰響應的參數,再透過電性分析了解造成檢測能力差異的原因。
第二套系統是利用直流電驅動的針尖對平面微電漿系統,直流電源使用自製的高壓模組,透過改變電極材料(鐵線、鋁線和鎢線)得到電漿放光表現的差異,同時透過改變系統的電極間距(100至500 μm)、整體流量(1.28到4.55 SLM)等參數條件對於電漿放光的影響,以及在檢測有機氣體能力上的差異。探討直流微電漿系統在不同有機氣體的檢測能力,以及該系統對於區分不同氣有機體的表現,由於在很多檢測系統中是不能有水氣的存在,因此在本研究中也探討水氣對該系統的影響。最後透過改變鎮流電阻的電阻值探討電漿放電的電性變化,以及對於有機氣體檢測表現的影響。
最後會比較DBD系統和直流微電漿系統的放電電性對於檢測能力的差異原因,並且比較兩者的定量分析能力,找出最適合在空氣中檢測揮發性有機氣體的方法,以及該系統的參數控制。
zh_TW
dc.description.abstractMicroplasma possesses the ability to excite reactants and emit light. By analyzing the variations in intensity at different wavelengths, it serves as characteristic peaks for identifying reactant substances. Therefore, this characteristic is also applied in analytical chemistry. The low-cost and operability at atmospheric pressure of microplasma make it highly promising for applications in portable gas detection devices. However, the microplasma spectroscopy systems developed in recent years require helium or argon as carrier gases, preventing the realization of real-time, on-site detection systems. In this study, two systems were used: an alternating current (AC) driven dielectric barrier discharge (DBD) system and a direct current (DC) driven needle-to-plane microplasma system. The volatile organic gas detection was performed directly in ambient air. By manipulating different plasma behaviors, the most suitable detection method in ambient air was determined.
The first system employed an AC-driven DBD system. The performance of organic gas detection was investigated by altering the shapes of the micro-gap discharge (MGD) in the high-voltage electrode, such as circular, square, equilateral triangle, rectangular, arrow, and isosceles triangle shapes. The influence of the floating electrode area was also explored to find the optimal MGD design. The output voltage (3.2 to 5.2 kVpp) and frequency (1 to 30 kHz) of the power supply, as well as the output waveform, were analyzed to identify the parameters that enhance the response of the characteristic peaks. Electrical analysis was further conducted to understand the causes of differences in detection capability.
The second system utilized a DC-driven needle-to-plane microplasma system with a home-made high voltage module. By changing the electrode materials (iron wire, aluminum wire, and tungsten wire), the differences in plasma luminescence performance were obtained. The influence of parameters such as electrode gap (100 to 500 μm) and overall flow rate (1.28 to 4.55 SLM) on plasma luminescence and its impact on the detection capability of organic gases were investigated. The detection capabilities of different organic gases by the DC microplasma system and its performance in distinguishing different organic gases were explored. As moisture should not exist in many detection systems, the effect of moisture on this system was also examined in this study. Finally, by varying the resistance value of the ballast resistor, the electrical characteristics of plasma discharge and its impact on the performance of organic gas detection were investigated.
Ultimately, a comparison will be made between the discharge characteristics of the DBD system and the DC microplasma system to identify the reasons for differences in detection capability. The quantitative analysis abilities of both systems will be compared to determine the most suitable method for detecting volatile organic gases in ambient air, along with the parameter control of the system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:47:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:47:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xviii
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第 2 章 文獻回顧 3
2.1 電漿簡介 3
2.1.1 電漿反應與機制 3
2.1.2 電漿溫度之特徵曲線 5
2.1.3 崩潰電壓與電極間距之關係 6
2.2 微電漿系統 8
2.2.1 微電漿系統之簡介 8
2.2.2 微電漿系統應用 12
2.3 介電層屏蔽放電系統 16
2.3.1 介電層屏蔽放電型微電漿簡介 16
2.3.2 介電層屏蔽放電型微電漿放電原理 18
2.3.3 介電層屏蔽放電型微電漿之消耗功率計算 21
2.4 直流放電系統 24
2.4.1 典型直流放電系統之特徵曲線 24
2.4.2 MHCD系統與自脈衝放電現象 26
2.4.3 自製直流高壓模組運作原理 29
2.5 氣體檢測系統 35
2.5.1 電漿發射光譜 35
2.5.2 常見氣體檢測裝置 38
2.5.3 電漿光譜應用於揮發性有機氣體檢測 43
第 3 章 實驗設備 59
3.1 可撓式微電漿產生裝置 59
3.1.1 可撓式微電漿產生裝置之製備方法 59
3.1.2 可撓式微電漿產生裝置之設計與尺寸 61
3.2 微電漿氣體檢測系統 65
3.2.1 DBD檢測系統 65
3.2.2 直流微電漿檢測系統 69
3.3 光學檢測 73
3.4 電性檢測 76
3.5 電漿光譜模擬軟體 79
3.6 化學藥品與氣體成分 80
第 4 章 實驗結果與討論 81
4.1 DBD氣體檢測系統 81
4.1.1 DBD系統典型光譜 81
4.1.2 高壓電極 85
4.1.3 浮動電極 89
4.1.4 電源參數影響 99
4.2 直流微電漿系統 107
4.2.1 微電漿光譜特徵 107
4.2.2 金屬電極材料 113
4.2.3 電極間距的影響 116
4.2.4 流量影響 118
4.2.5 水氣對直流系統的影響 121
4.2.6 不同揮發性有機物 127
4.3 電性與光譜差異之分析 130
4.3.1 直流微電漿鎮流電阻改變 130
4.3.2 DBD與直流微電漿的比較 136
4.4 定量分析 139
4.4.1 光譜去背 139
4.4.2 定量分析結果 141
第 5 章 結論與未來展望 143
第 6 章 參考文獻 145
第 7 章 附錄 156
7.1 過衝現象之原因 156
-
dc.language.isozh_TW-
dc.title以微電漿光譜法檢測空氣中揮發性有機物之研究zh_TW
dc.titleUsing microplasma spectroscopy for volatile organic compounds detection in airen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建彰;陳奕君zh_TW
dc.contributor.oralexamcommitteeJian-Zhang Chen;I-Chun Chengen
dc.subject.keyword微電漿,介電層屏蔽放電,直流微電漿,電漿發射光譜,可攜式,空氣氣氛,揮發性有機氣體檢測裝置,zh_TW
dc.subject.keywordmicroplasma,DBD,DC microplasma,plasma optical emission spectroscopy,portable,air atmosphere,VOC detector,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU202302490-
dc.rights.note未授權-
dc.date.accepted2023-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
8.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved