請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | zh_TW |
| dc.contributor.advisor | Cheng-Che Hsu | en |
| dc.contributor.author | 余浩安 | zh_TW |
| dc.contributor.author | Hao-An Yu | en |
| dc.date.accessioned | 2023-08-15T16:46:50Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-28 | - |
| dc.identifier.citation | 1. Tachibana, K., "Current status of microplasma research." Ieej Transactions on Electrical and Electronic Engineering, 2006. 1(2): p. 145-155.
2. Pappas, D., "Status and potential of atmospheric plasma processing of materials." Journal of Vacuum Science & Technology A, 2011. 29(2): p. 17. 3. Iza, F., G.J. Kim, S.M. Lee, J.K. Lee, et al., "Microplasmas: Sources, particle kinetics, and biomedical applications." Plasma Processes and Polymers, 2008. 5(4): p. 322-344. 4. Karanassios, V., "Microplasmas for chemical analysis: analytical tools or research toys?", Spectrochimica Acta Part B-Atomic Spectroscopy, 2004. 59(7): p. 909-928. 5. Weagant, S., V. Chen and V. Karanassios, "Battery-operated, argon-hydrogen microplasma on hybrid, postage stamp-sized plastic-quartz chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer." Analytical and Bioanalytical Chemistry, 2011. 401(9): p. 2865-2880. 6. Lu, Q.F., H. Luo, J. Yu, Y.J. Kang, et al., "Evaluation of a sampling system coupled to liquid cathode glow discharge for the determination of rubidium, cesium and strontium in water samples." Microchemical Journal, 2020. 158. 7. Mezei, P. and T. Cserfalvi, "Electrolyte cathode atmospheric glow discharges for direct solution analysis." Applied Spectroscopy Reviews, 2007. 42(6): p. 573-604. 8. Kogelschatz, U., "Applications of microplasmas and microreactor technology." Contributions to Plasma Physics, 2007. 47(1-2): p. 80-88. 9. Staack, D., B. Farouk, A. Gutsol and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge." Plasma Sources Science & Technology, 2005. 14(4): p. 700-711. 10. Kogelschatz, U., "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications." Plasma Chemistry and Plasma Processing, 2003. 23(1): p. 1-46. 11. Massines, F., P. Segur, N. Gherardi, C. Khamphan, et al., "Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling." Surface & Coatings Technology, 2003. 174: p. 8-14. 12. Eden, J.G., S.J. Park, J.H. Cho, M.H. Kim, et al., "Plasma science and technology in the limit of the small: Microcavity plasmas and emerging applications." Ieee Transactions on Plasma Science, 2013. 41(4): p. 661-675. 13. Kim, G.J., F. Iza and J.K. Lee, "Electron and ion kinetics in a micro hollow cathode discharge." Journal of Physics D-Applied Physics, 2006. 39(20): p. 4386-4392. 14. Moselhy, M., I. Petzenhauser, K. Frank and K.H. Schoenbach, "Excimer emission from microhollow cathode argon discharges." Journal of Physics D-Applied Physics, 2003. 36(23): p. 2922-2927. 15. Laroussi, M. and T. Akan, "Arc-free atmospheric pressure cold plasma jets: a review." Plasma Processes and Polymers, 2007. 4(9): p. 777-788. 16. Schoenbach, K.H. and K. Becker, "20 years of microplasma research: a status report." European Physical Journal D, 2016. 70(2). 17. Miclea, M. and J. Franzke, "Analytical detectors based on microplasma spectrometry." Plasma Chemistry and Plasma Processing, 2007. 27(2): p. 205-224. 18. He, Q., Z.L. Zhu and S.H. Hu, "Flowing and nonflowing liquid electrode discharge microplasma for metal ion detection by optical emission spectrometry." Applied Spectroscopy Reviews, 2014. 49(3): p. 249-269. 19. Pai, D.Z., G.D. Stancu, D.A. Lacoste and C.O. Laux, "Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the glow regime." Plasma Sources Science & Technology, 2009. 18(4): p. 8. 20. Roth, J.R., "Industrial plasma engineering : Applications to nonthermal plasma processing. Vol. 2. 1995. 21. Becker, K.H., K.H. Schoenbach and J.G. Eden, "Microplasmas and applications." Journal of Physics D-Applied Physics, 2006. 39(3): p. R55-R70. 22. Qiu, H., K. Martus, W.Y. Lee and K. Becker, "Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures." International Journal of Mass Spectrometry, 2004. 233(1-3): p. 19-24. 23. Schoenbach, K.H., M. Moselhy and W.H. Shi, "Self-organization in cathode boundary layer microdischarges." Plasma Sources Science & Technology, 2004. 13(1): p. 177-185. 24. Fanelli, F. and F. Fracassi, "Atmospheric pressure non-equilibrium plasma jet technology: General features, specificities and applications in surface processing of materials." Surface & Coatings Technology, 2017. 322: p. 174-201. 25. Walsh, J.L. and M.G. Kong, "Contrasting characteristics of linear-field and cross-field atmospheric plasma jets." Applied Physics Letters, 2008. 93(11): p. 3. 26. Wilson, C.G. and Y.B. Gianchandani, "Spectral detection of metal contaminants in water using an on-chip microglow discharge." Ieee Transactions on Electron Devices, 2002. 49(12): p. 2317-2322. 27. Kitano, A., A. Iiduka, T. Yamamoto, Y. Ukita, et al., "Highly sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow." Analytical Chemistry, 2011. 83(24): p. 9424-9430. 28. Lin, L.L. and Q. Wang, "Microplasma: A new generation of technology for functional nanomaterial synthesis." Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962. 29. Wang, T., J.Q. Liu, L.P. Shi, X.Q. Zhang, et al., "Maskless atmospheric pressure PECVD of SiOx films on both planar and nonplanar surfaces using a flexible atmospheric microplasma generation device." Plasma Processes and Polymers, 2020. 17(1). 30. Yick, S., Z.J. Han and K. Ostrikov, "Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing." Chemical Communications, 2013. 49(28): p. 2861-2863. 31. Ichiki, T., R. Taura and Y. Horiike, "Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets." Journal of Applied Physics, 2004. 95(1): p. 35-39. 32. Yeh, Y.J. and W.H. Chiang, "Ag microplasma-engineered nanoassemblies on cellulose papers for surface-enhanced Raman scattering and catalytic nitrophenol reduction." Acs Applied Nano Materials, 2021. 4(6): p. 6364-6375. 33. Nolan, H., D.Y. Sun, B.G. Falzon, P. Maguire, et al., "Thermoresponsive nanocomposites incorporating microplasma synthesized magnetic nanoparticles-Synthesis and potential applications." Plasma Processes and Polymers, 2019. 16(2). 34. Jenkins, G., J. Franzke and A. Manz, "Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip." Lab on a Chip, 2005. 5(7): p. 711-718. 35. Karanassios, V., K. Johnson and A.T. Smith, "Micromachined, planar-geometry, atmospheric-pressure, battery-operated microplasma devices (MPDs) on chips for analysis of microsamples of liquids, solids, or gases by optical-emission spectrometry." Analytical and Bioanalytical Chemistry, 2007. 388(8): p. 1595-1604. 36. Miclea, M., K. Kunze, J. Franzke and K. Niemax, "Plasmas for lab-on-the-chip applications." Spectrochimica Acta Part B-Atomic Spectroscopy, 2002. 57(10): p. 1585-1592. 37. Goree, J., B. Liu, D. Drake and E. Stoffels, "Killing of S-mutans bacteria using a plasma needle at atmospheric pressure." Ieee Transactions on Plasma Science, 2006. 34(4): p. 1317-1324. 38. Iqbal, T., A.U. Rehman, M.A. Khan, M. Shafique, et al., "Copper oxide nanosheets prepared by facile microplasma electrochemical technique with photocatalytic and bactericidal activities." Journal of Materials Science-Materials in Electronics, 2020. 31(19): p. 16649-16660. 39. Eden, J.G., S.J. Park, N.P. Ostrom, S.T. McCain, et al., "Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: Arrays, emitters and photodetectors." Journal of Physics D-Applied Physics, 2003. 36(23): p. 2869-2877. 40. El-Habachi, A., W.H. Shi, M. Moselhy, R.H. Stark, et al., "Series operation of direct current xenon chloride excimer sources." Journal of Applied Physics, 2000. 88(6): p. 3220-3224. 41. Park, S., A.E. Mironov, J. Kim, S.J. Park, et al., "194 nm microplasma lamps driven by excitation transfer: Optical sources for the Hg-199 ion atomic clock and photochemistry." Plasma Sources Science & Technology, 2022. 31(4): p. 15. 42. Kogelschatz, U., B. Eliasson and W. Egli, "From ozone generators to flat television screens: History and future potential of dielectric-barrier discharges." Pure and Applied Chemistry, 1999. 71(10): p. 1819-1828. 43. Kozlov, K.V., H.E. Wagner, R. Brandenburg and P. Michel, "Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure." Journal of Physics D-Applied Physics, 2001. 34(21): p. 3164-3176. 44. Massines, F., N. Gherardi, N. Naude and P. Segur, "Glow and Townsend dielectric barrier discharge in various atmosphere." Plasma Physics and Controlled Fusion, 2005. 47: p. B577-B588. 45. Lee, D., J.M. Park, S.H. Hong and Y. Kim, "Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium-oxygen mixture." Ieee Transactions on Plasma Science, 2005. 33(2): p. 949-957. 46. Brandenburg, R., Z. Navratil, J. Jansky, P. St'ahel, et al., "The transition between different modes of barrier discharges at atmospheric pressure." Journal of Physics D-Applied Physics, 2009. 42(8): p. 10. 47. Meyer, C., S. Muller, E.L. Gurevich and J. Franzke, "Dielectric barrier discharges in analytical chemistry." Analyst, 2011. 136(12): p. 2427-2440. 48. Rahel, J. and D.M. Sherman, "The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure." Journal of Physics D-Applied Physics, 2005. 38(4): p. 547-554. 49. Belinger, A., S. Dap and N. Naude, "Influence of the dielectric thickness on the homogeneity of a diffuse dielectric barrier discharge in air." Journal of Physics D-Applied Physics, 2022. 55(46): p. 13. 50. Naude, N., J.P. Cambronne, N. Gherardi and F. Massines, "Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge." Journal of Physics D-Applied Physics, 2005. 38(4): p. 530-538. 51. Li, M., C.R. Li, H.M. Zhan, J.B. Xu, et al., "Effect of surface charge trapping on dielectric barrier discharge." Applied Physics Letters, 2008. 92(3): p. 3. 52. Eliasson, B. and U. Kogelschatz, "Modeling and applications of silent discharge plasmas." Ieee Transactions on Plasma Science, 1991. 19(2): p. 309-323. 53. Bogaczyk, M., R. Wild, L. Stollenwerk and H.E. Wagner, "Surface charge accumulation and discharge development in diffuse and filamentary barrier discharges operating in He, N-2 and mixtures." Journal of Physics D-Applied Physics, 2012. 45(46): p. 11. 54. Massines, F., C. Sarra-Bournet, F. Fanelli, N. Naude, et al., "Atmospheric pressure low temperature direct plasma technology: Status and challenges for thin film deposition." Plasma Processes and Polymers, 2012. 9(11-12): p. 1041-1073. 55. Kogelschatz, U., "Collective phenomena in volume and surface barrier discharges." Journal of Physics: Conference Series, 2010. 257. 56. Gibalov, V.I. and G.J. Pietsch, "Dynamics of dielectric barrier discharges in different arrangements." Plasma Sources Science & Technology, 2012. 21(2): p. 35. 57. Gibalov, V.I. and G.J. Pietsch, "The development of dielectric barrier discharges in gas gaps and on surfaces." Journal of Physics D-Applied Physics, 2000. 33(20): p. 2618-2636. 58. Wagner, H.E., R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, et al., "The barrier discharge: Basic properties and applications to surface treatment." Vacuum, 2003. 71(3): p. 417-436. 59. Starostin, S.A., P.A. Premkumar, M. Creatore, E.M. van Veldhuizen, et al., "On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films." Plasma Sources Science & Technology, 2009. 18(4): p. 9. 60. Pipa, A.V. and R. Brandenburg, "The equivalent circuit approach for the electrical diagnostics of dielectric barrier discharges: The classical theory and recent developments." Atoms, 2019. 7(1): p. 18. 61. Laurentie, J.C., J. Jolibois and E. Moreau, "Surface dielectric barrier discharge: Effect of encapsulation of the grounded electrode on the electromechanical characteristics of the plasma actuator." Journal of Electrostatics, 2009. 67(2-3): p. 93-98. 62. Kriegseis, J., B. Moller, S. Grundmann and C. Tropea, "Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators." Journal of Electrostatics, 2011. 69(4): p. 302-312. 63. Corke, T.C., M.L. Post and D.M. Orlov, "Single dielectric barrier discharge plasma enhanced aerodynamics: Physics, modeling and applications." Experiments in Fluids, 2009. 46(1): p. 1-26. 64. Cui, Z.T., Q.J. Liu, Z.K. Cai, J.M. Wang, et al., "Modified equivalent circuit for coplanar dielectric barrier discharge considering undischarged areas." Physics of Plasmas, 2023. 30(1): p. 8. 65. Wu, S.Q., G.W. Huang, W.X. Cheng, W. Chen, et al., "The influences of the electrode dimension and the dielectric material on the breakdown characteristics of coplanar dielectric barrier discharge in ambient air." Plasma Processes and Polymers, 2017. 14(12): p. 11. 66. Homola, T., V. Prukner, P. Hoffer and M. Simek, "Multi-hollow surface dielectric barrier discharge: an ozone generator with flexible performance and supreme efficiency." Plasma Sources Science & Technology, 2020. 29(9). 67. Gibalov, V.I. and G.J. Pietsch, "Properties of dielectric barrier discharges in extended coplanar electrode systems." Journal of Physics D-Applied Physics, 2004. 37(15): p. 2093-2100. 68. Neretti, G., A. Popoli, S.G. Scaltriti and A. Cristofolini, "Real time power control in a high voltage power supply for dielectric barrier discharge reactors: Implementation strategy and load thermal analysis." Electronics, 2022. 11(10): p. 14. 69. Ashpis, D.E., M.C. Laun and E.L. Griebeler, "Progress toward accurate measurement of dielectric barrier discharge plasma actuator power." Aiaa Journal, 2017. 55(7): p. 2254-2268. 70. Falkenstein, Z. and J.J. Coogan, "Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures." Journal of Physics D-Applied Physics, 1997. 30(5): p. 817-825. 71. Kriegseis, J., S. Grundmann and C. Tropea, "Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators." Journal of Applied Physics, 2011. 110(1): p. 9. 72. Spinelle, L., M. Gerboles, G. Kok, S. Persijn, et al., "Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds." Sensors, 2017. 17(7). 73. Di Rosa, A.R., F. Leone, F. Cheli and V. Chiofalo, "Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment - a review." Journal of Food Engineering, 2017. 210: p. 62-75. 74. Majchrzak, T., W. Wojnowski, T. Dymerski, J. Gebicki, et al., "Electronic noses in classification and quality control of edible oils: a review." Food Chemistry, 2018. 246: p. 192-201. 75. Liu, X., S.T. Cheng, H. Liu, S. Hu, et al., "A survey on gas sensing technology." Sensors, 2012. 12(7): p. 9635-9665. 76. Kangas, M.J., R.M. Burks, J. Atwater, R.M. Lukowicz, et al., "Colorimetric sensor arrays for the detection and identification of chemical weapons and explosives." Critical Reviews in Analytical Chemistry, 2017. 47(2): p. 138-153. 77. James, D., S.M. Scott, Z. Ali and W.T. O'Hare, "Chemical sensors for electronic nose systems." Microchimica Acta, 2005. 149(1-2): p. 1-17. 78. Hemalatha, T., S. Akilandeswari, T. Krishnakumar, S.G. Leonardi, et al., "Comparison of electrical and sensing properties of pure, Sn- and Zn-doped CuO gas sensors." Ieee Transactions on Instrumentation and Measurement, 2019. 68(3): p. 903-912. 79. Choi, N.J., H.K. Lee, S.E. Moon and W.S. Yang, "Fast response formaldehyde gas sensor for USN application." Sensors and Actuators B-Chemical, 2012. 175: p. 132-136. 80. Bai, H. and G.Q. Shi, "Gas sensors based on conducting polymers." Sensors, 2007. 7(3): p. 267-307. 81. Stradiotto, N.R., H. Yamanaka and M.V.B. Zanoni, "Electrochemical sensors: a powerful tool in analytical chemistry." Journal of the Brazilian Chemical Society, 2003. 14(2): p. 159-173. 82. Mujahid, A. and F.L. Dickert, "Surface acoustic wave (SAW) for chemical sensing applications of recognition layers." Sensors, 2017. 17(12): p. 26. 83. Bhattacharjee, S., A.A. Ralib, A. Vyakaranam, S.D. Svpk, et al., "Study of multichannel QCM prospects in VOC detection." Journal of Physics: Conference Series, 2021. 1900(1): p. 012020. 84. Yang, L., R.W. Zhang, D. Staiculescu, C.P. Wong, et al., "A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications." Ieee Antennas and Wireless Propagation Letters, 2009. 8: p. 653-656. 85. Askim, J.R., M. Mahmoudi and K.S. Suslick, "Optical sensor arrays for chemical sensing: the optoelectronic nose." Chemical Society Reviews, 2013. 42(22): p. 8649-8682. 86. James W. Robinson, E.S.F., George M. Frame II, "Undergraduate Instrumental Analysis." 7th Edition ed. 2014, Boca Raton: CRC Press. 87. McNaghten, E.D., A.M. Parkes, B.C. Griffiths, A.I. Whitehouse, et al., "Detection of trace concentrations of helium and argon in gas mixtures by laser-induced breakdown spectroscopy." Spectrochimica Acta Part B-Atomic Spectroscopy, 2009. 64(10): p. 1111-1118. 88. Janzen, M.C., J.B. Ponder, D.P. Bailey, C.K. Ingison, et al., "Colorimetric sensor arrays for volatile organic compounds." Analytical Chemistry, 2006. 78(11): p. 3591-3600. 89. Harilal, S.S., B.E. Brumfield, N.L. LaHaye, K.C. Hartig, et al., "Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis." Applied Physics Reviews, 2018. 5(2): p. 32. 90. Tian, Y.F., P. Wu, X. Wu, X.M. Jiang, et al., "Corona discharge radical emission spectroscopy: a multi-channel detector with nose-type function for discrimination analysis." Analyst, 2013. 138(8): p. 2249-2253. 91. Yuan, X., X.L. Ding, Z.J. Zhao, X.F. Zhan, et al., "Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry." Journal of Analytical Atomic Spectrometry, 2012. 27(12): p. 2094-2101. 92. McCormack, A.J., S.C. Tong and W.D. Cooke, "Sensitive selective gas chromatography detector based on emission spectrometry of organic compounds." Analytical Chemistry, 1965. 37(12): p. 1470-+. 93. Braman, R.S. and A. Dynako, "Direct current discharge spectral emission-type detector." Analytical Chemistry, 1968. 40(1): p. 95-&. 94. Braman, R.S., "Direct current discharge emission spectra for detection and identification of some air pollutant compounds." Atmospheric Environment, 1971. 5(8): p. 669-&. 95. Eijkel, J.C.T., H. Stoeri and A. Manz, "A DC microplasma on a chip employed as an optical emission detector for gas chromatography." Analytical Chemistry, 2000. 72(11): p. 2547-2552. 96. Jin, Z., Y.X. Su and Y.X. Duan, "A low power, atmospheric pressure, pulsed plasma source for molecular emission spectrometry." Analytical Chemistry, 2001. 73(2): p. 360-365. 97. Duan, Y.X., Y.X. Su and Z. Jin, "Capillary-discharge-based portable detector for chemical vapor monitoring." Review of Scientific Instruments, 2003. 74(5): p. 2811-2816. 98. Guchardi, R. and P.C. Hauser, "A capacitively coupled microplasma in a fused silica capillary." Journal of Analytical Atomic Spectrometry, 2003. 18(9): p. 1056-1059. 99. Guchardi, R. and P.C. Hauser, "Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector." Analyst, 2004. 129(4): p. 347-351. 100. Mitra, B. and Y.B. Gianchandani, "The detection of chemical vapors in air using optical emission spectroscopy of pulsed microdischarges from two- and three-electrode microstructures." Ieee Sensors Journal, 2008. 8(7-8): p. 1445-1454. 101. Mitra, B., B. Levey and Y.B. Gianchandani, "Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing." Ieee Transactions on Plasma Science, 2008. 36(4): p. 1913-1924. 102. Hoskinson, A.R., J. Hopwood, N.W. Bostrom, J.A. Crank, et al., "Low-power microwave-generated helium microplasma for molecular and atomic spectrometry." Journal of Analytical Atomic Spectrometry, 2011. 26(6): p. 1258-1264. 103. Li, W., C.B. Zheng, G.Y. Fan, L. Tang, et al., "Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons." Analytical Chemistry, 2011. 83(13): p. 5050-5055. 104. Wal, R.L.V., J.H. Fujiyama-Novak, C.K. Gaddam, D. Das, et al., "Atmospheric microplasma jet: Spectroscopic database development and analytical results." Applied Spectroscopy, 2011. 65(9): p. 1073-1082. 105. Eun, C.K. and Y.B. Gianchandani, "Microdischarge-based sensors and actuators for portable microsystems: Selected examples." Ieee Journal of Quantum Electronics, 2012. 48(6): p. 814-826. 106. Fujiyama-Novak, J.H., C.K. Gaddam, D. Das, R.L. Vander Wal, et al., "Detection of explosives by plasma optical emission spectroscopy." Sensors and Actuators B-Chemical, 2013. 176: p. 985-993. 107. Han, B.J., X.M. Jiang, X.D. Hou and C.B. Zheng, "Dielectric barrier discharge carbon atomic emission spectrometer: Universal GC detector for volatile carbon-containing compounds." Analytical Chemistry, 2014. 86(1): p. 936-942. 108. Luo, D.B., Y.X. Duan, Y. He and B. Gao, "A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit." Scientific Reports, 2014. 4. 109. Meng, F.Y., X.M. Li and Y.X. Duan, "Chip-based ingroove microplasma with orthogonal signal collection: New approach for carbon-containing species detection through open air reaction for performance enhancement." Scientific Reports, 2014. 4. 110. Vander Wal, R.L., C.K. Gaddam and M.J. Kulis, "An investigation of micro-hollow cathode glow discharge generated optical emission spectroscopy for hydrocarbon detection and differentiation." Applied Spectroscopy, 2014. 68(6): p. 649-656. 111. Wang, B., W.Q. Cao and Y.X. Duan, "Selective detection of organophosphate nerve agents using microplasma device." Analytical Methods, 2014. 6(6): p. 1848-1854. 112. Jiang, X., C.H. Li, Z. Long and X.D. Hou, "Selectively enhanced molecular emission spectra of benzene, toluene and xylene with nano-MnO2 in atmospheric ambient temperature dielectric barrier discharge." Analytical Methods, 2015. 7(2): p. 400-404. 113. Li, C.H., X. Jiang and X.D. Hou, "Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines." Microchemical Journal, 2015. 119: p. 108-113. 114. Meng, F.Y. and Y.X. Duan, "Nitrogen microplasma generated in chip-based ingroove glow discharge device for detection of organic fragments by optical emission spectrometry." Analytical Chemistry, 2015. 87(3): p. 1882-1888. 115. Zhu, H.B., M.L. Zhou, J. Lee, R. Nidetz, et al., "Low-power miniaturized helium dielectric barrier discharge photoionization detectors for highly sensitive vapor detection." Analytical Chemistry, 2016. 88(17): p. 8780-8786. 116. Jiang, X., Z.M. Hu, H.W. He, J. Luo, et al., "A two-dimensional sensor based on dielectric barrier discharge molecular optical emission and chemiluminescence for discrimination analysis of volatile halohydrocarbons." Microchemical Journal, 2016. 129: p. 16-22. 117. Yang, T., D.X. Gao, Y.L. Yu, M.L. Chen, et al., "Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath." Talanta, 2016. 146: p. 603-608. 118. Luo, D.B., D.C. Ma, Y. He, X.S. Li, et al., "Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling." Microchemical Journal, 2017. 130: p. 33-39. 119. Li, M.T., S.X. Huang, K.L. Xu, X.M. Jiang, et al., "Miniaturized point discharge-radical optical emission spectrometer: a multichannel optical detector for discriminant analysis of volatile organic sulfur compounds." Talanta, 2018. 188: p. 378-384. 120. Sun, A.C. and D.A. Hall, "Point-of-Care smartphone-based electrochemical biosensing." Electroanalysis, 2019. 31(1): p. 2-16. 121. Ong, D.S.Y. and M. Poljak, "Smartphones as mobile microbiological laboratories." Clinical Microbiology and Infection, 2020. 26(4): p. 421-424. 122. Guo, J., "Smartphone-powered electrochemical dongle for Point-of-Care monitoring of blood β-Ketone." Analytical Chemistry, 2017. 89(17): p. 8609-8613. 123. Jiang, H.W., A. Sun, A.G. Venkatesh and D.A. Hall, "An audio jack-based electrochemical impedance spectroscopy sensor for Point-of-Care diagnostics." Ieee Sensors Journal, 2017. 17(3): p. 589-597. 124. Fan, Y., S.Y. Shi, J.S. Ma and Y.H. Guo, "Smartphone-based electrochemical system with multi-walled carbon nanotubes/thionine/gold nanoparticles modified screen-printed immunosensor for cancer antigen 125 detection." Microchemical Journal, 2022. 174: p. 8. 125. Jung, Y., H. Park, J.A. Park, J. Noh, et al., "Fully printed flexible and disposable wireless cyclic voltammetry tag." Sci Rep, 2015. 5: p. 8105. 126. Kaile, K., C. Fernandez and A. Godavarty, "Development of a smartphone-based optical device to measure hemoglobin concentration changes for remote monitoring of wounds." Biosensors-Basel, 2021. 11(6): p. 14. 127. Zhao, X.F., Y.P. Liu, B. Shu, Z.N. Guo, et al., "Portable smartphone-based device for on-site detection of Hg2+ in water samples." International Journal of Environmental Analytical Chemistry, 2022. 102(11): p. 2451-2460. 128. Mitchell, S.K., T. Martin and C. Keplinger, "A pocket-sized ten-channel high voltage power supply for soft electrostatic actuators." Advanced Materials Technologies, 2022. 7(8): p. 13. 129. Suzuki, K., A. Komuro, S. Sato, M. Sakurai, et al., "Development of small high-voltage AC power supply for a dielectric barrier discharge plasma actuator." Review of Scientific Instruments, 2021. 92(2): p. 9. 130. Yafia, M., A. Ahmadi, M. Hoorfar and H. Najjaran, "Ultra-portable smartphone controlled integrated digital microfluidic system in a 3D-printed modular assembly." Micromachines, 2015. 6(9): p. 1289-1305. 131. Wiley, J.S., J.T. Shelley and R.G. Cooks, "Handheld low-temperature plasma probe for portable "Point-and-Shoot" ambient ionization mass spectrometry." Analytical Chemistry, 2013. 85(14): p. 6545-6552. 132. ElectronicBeliever (2017), "Snubber circuit design analysis", Retrieved from http://electronicsbeliever.com/snubber-circuit-design-analysis/. 133. Amjad, M., Z. Salam, M. Facta and S. Mekhilef, "Analysis and implementation of transformerless LCL resonant power supply for ozone generation." Ieee Transactions on Power Electronics, 2013. 28(2): p. 650-660. 134. Su, C.F., C.T. Liu, J.S. Wu and M.T. Ho, "Development of a high-power-factor power supply for an atmospheric-pressure plasma jet." Electronics, 2021. 10(17): p. 21. 135. ElectronicsTutorials (2013), "Amplifier classes", Retrieved from https://www.electronics-tutorials.ws/amplifier/amplifier-classes.html. 136. Instruments, T. (2017), "LM386 low voltage audio power amplifier", Retrieved from https://www.ti.com/document-viewer/LM386/datasheet/abstract#x4453. 137. Chu, Y.-H. (2022) Development of portable high voltage modules and application for microplasma spectroscopy in organic vapor detection, National Taiwan University Department of Chemical Engineering, Taipei, Retrieved from 10.6342/NTU202201749 138. Audio, M.N. (2017), "Fast fourier transformation FFT - basics", Retrieved from https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft. 139. Nersisyan, G. and W.G. Graham, "Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium." Plasma Sources Science & Technology, 2004. 13(4): p. 582-587. 140. Ivkovic, S.S., N. Cvetanovic and B.M. Obradovic, "Experimental study of gas flow rate influence on a dielectric barrier discharge in helium." Plasma Sources Science & Technology, 2022. 31(9): p. 15. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88546 | - |
| dc.description.abstract | 微電漿指的是放電尺度落在個位數毫米(mm)以下的電漿,常壓下微電漿具有低成本、低功耗、高反應性、體積小等優點。本研究旨在建立一可攜式常壓微電漿系統應用於揮發性有機物(Volatile Organic Compounds, VOCs)之檢測。一般高壓電源具有體積大、價格高昂等缺點,而市售之可攜式高壓模組則具有較差的可調性而難以完美取代笨重的高壓電源。因此本研究中設計一藍芽遙控、可調整操作頻率之高壓模組作為微電漿系統之電壓源。本研究可分為兩部份,首先是藍芽遙控高壓模組之開發與演進,接著是微電漿氣體檢測器之建立。
藍芽遙控高壓模組以智慧型手機作為訊號產生裝置,利用手機內的應用程式設定輸出訊號正弦波的頻率、振幅,輸出訊號藉由藍芽傳輸送至高壓模組上的藍芽音訊接收模組,隨後經過LM386功率放大器,進行波型修飾和功率放大後,作為控制BJT的開關訊號。本研究之高壓模組以行動電源作為直流電壓源,由於直流電無法透過變壓器調整輸出電壓,因此以藍芽訊號控制BJT開關製造電流變化,透過變壓器將電壓升至數千伏用於點起電漿。 藍芽遙控高壓模組有三種操作模式,分別為調節模式、掃描模式、突衝模式。調節模式以固定振幅、頻率輸出正弦波之訊號,固定藍芽遙控模組之操作條件,用於微電漿系統操作窗之尋找和VOCs檢量線之建立;掃描模式則可將振幅或頻率以線性方式連續變化,可在數秒內蒐集未知氣體對不同條件之響應;突衝模式下藍芽訊號以設定之突衝頻率、訊號頻率和開啟訊號時間不斷交替開關,潛在應用為長時間之氣體檢測、以及利用不同粒子之存活時間差調整電漿中粒子的比例等。本研究利用電性和光譜分析不同條件下的電漿表現,以掃描模式分析甲醇、乙醇、異丙醇等VOCs在不同頻率下之光譜差異,顯示微電漿氣體檢測系統發展為電子鼻之可能性;此外,掃描模式可用於尋找不同VOCs最適當之檢量線操作條件,接著利用調節模式建立檢量線。在氬氣環境下當頻率為18kHz時監測CH特徵峰可測得甲醇、乙醇、異丙醇之LOD分別為2.40 ppm、1.25 ppm、761 ppb。 | zh_TW |
| dc.description.abstract | Microplasma refers to plasma discharge with dimensions falling below a few millimeters (mm). Microplasma at atmospheric pressure offers advantages such as low cost, low power consumption, high reactivity, and small size. The aim of this study is to establish a portable atmospheric microplasma system for the detection of Volatile Organic Compounds (VOCs). Conventional high-voltage power supplies used for plasma generation are bulky and expensive. Portable high-voltage modules available in the market lack adjustability, making it difficult to replace the conventional high-voltage power supply. Therefore, in this study, a Bluetooth-controlled high-voltage module with adjustable operating frequency is designed as the voltage source for the microplasma system. The research can be divided into two parts: the development and evolution of the Bluetooth-Modulated Power Source (BMPS), and the establishment of the microplasma gas detector.
The Bluetooth-Modulated Power Source (BMPS) uses a smartphone as a signal generation device. The output signal's frequency and amplitude of the sine wave are set through an application on the phone. The output signal is transmitted via Bluetooth to the Bluetooth audio receiver module on the BMPS. It then goes through an LM386 power amplifier for waveform modification and power amplification, serving as the control signal for the BJT switch. In this research, a mobile power supply is used as the DC voltage source for the high-voltage module. Since DC voltage cannot be adjusted through a transformer, the BJT switch is controlled by the Bluetooth signal to create changes in current. The voltage is then increased to several kilovolts using a transformer for plasma ignition. The BMPS has three operating modes: regulate mode, sweep mode, and burst mode. In regulate mode, a fixed amplitude and frequency sinusoidal signal is output, and the operating conditions of the BMPS are fixed. This mode is used to search for the operating window of the microplasma system and establish the VOCs calibration curve. Sweep mode allows continuous linear variations of amplitude or frequency, enabling the collection of responses from unknown gases under different conditions within seconds. In burst mode, the Bluetooth signal alternates between set burst frequency, waveform frequency, and signal-on time, potentially applicable for long-term gas detection and adjusting the particle ratio in plasma based on the difference in particle survival time. This study analyzes plasma performance under different conditions through electrical and spectral analysis. In sweep mode, the spectral differences of VOCs such as methanol, ethanol, and isopropanol at different frequencies are examined, demonstrating the potential of the microplasma gas detection system as an electronic nose. Furthermore, sweep mode can be used to find the optimal operating conditions for different VOCs and establish calibration curves. In an argon environment, when the frequency is 18 kHz, the LODs (Limits of Detection) for detecting methanol, ethanol, and isopropanol are measured as 2.40 ppm, 1.25 ppm, and 761 ppb, respectively. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:46:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:46:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 XIX 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第 2 章 文獻回顧 3 2.1 電漿簡介 3 2.1.1 電漿產生機制與常見反應機構 3 2.1.2 壓力對電漿系統的影響 4 2.1.3 崩潰電壓與帕邢定律 5 2.2 微電漿簡介 6 2.2.1 常壓微電漿系統 6 2.2.2 常壓微電漿的應用 11 2.3 介電層屏蔽放電系統 15 2.3.1 DBD放電原理、特徵與其電性 15 2.3.2 DBD等效電路與常見之DBD種類 20 2.4 氣體檢測器 25 2.4.1 常見氣體檢測器72-77 25 2.4.2 微電漿在氣體檢測器上的發展 31 2.5 可攜式檢測系統 38 2.5.1 智慧型手機檢測器發展與應用 38 2.5.2 可攜式高壓電源供應器 40 2.5.3 電子元件介紹 43 第 3 章 實驗設備與架構 52 3.1 微電漿產生裝置之製備 52 3.1.1 銅箔基板碳粉熱轉印法 52 3.1.2 微電漿電極設計要點 54 3.2 藍芽遙控高壓模組 56 3.2.1 藍芽升壓模組運作機制137 56 3.3 電漿量測方法 59 3.3.1 電性檢測 59 3.3.2 光學檢測 61 3.3.3 化學藥品與氣體成分 62 3.4 微電漿氣體檢測平台 63 第 4 章 實驗結果與討論 65 4.1 藍芽遙控高壓模組之開發與演進 65 4.1.1 藍芽音訊模組的種類選擇 65 4.1.2 交連電容選擇 68 4.1.3 放大器理論斜率計算對應實際放大器斜率之差異 72 4.1.4 緩衝電路 75 4.1.5 電漿電壓波型分析 79 4.2 微電漿氣體檢測系統 86 4.2.1 微電漿光譜特徵 86 4.2.2 氣體流速對光譜影響 88 4.2.3 藍芽模組操控模式 90 4.2.4 掃描模式 93 4.2.5 突衝模式 100 4.2.6 微電漿氣體檢測流程圖與揮發性有機物檢量線之建立 104 第 5 章 結論與未來展望 108 第 6 章 參考文獻 110 第 7 章 附錄 123 7.1 掃描模式電訊號與光譜儀之同步方法 123 7.2 主成分分析特徵擷取結果 126 7.3 線性判別分析分類結果 139 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微電漿 | zh_TW |
| dc.subject | 電漿發射光譜 | zh_TW |
| dc.subject | 介電層屏蔽放電 | zh_TW |
| dc.subject | 氬氣電漿 | zh_TW |
| dc.subject | 藍芽遙控電漿 | zh_TW |
| dc.subject | 可攜式 | zh_TW |
| dc.subject | 氣體檢測器 | zh_TW |
| dc.subject | gas detector | en |
| dc.subject | microplasma | en |
| dc.subject | plasma optical emission spectroscopy | en |
| dc.subject | dielectric barrier discharge | en |
| dc.subject | Bluetooth remote control plasma | en |
| dc.subject | argon plasma | en |
| dc.subject | portable | en |
| dc.title | 可攜式高壓模組之開發及微電漿氣體感測器系統之建立 | zh_TW |
| dc.title | Development of Portable High Voltage Module and Volatile Organic Compounds Sensor Based on Microplasma Spectroscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳奕君;謝之真 | zh_TW |
| dc.contributor.oralexamcommittee | I-Chun Cheng;Chih-Chen Hsieh | en |
| dc.subject.keyword | 微電漿,氣體檢測器,可攜式,藍芽遙控電漿,氬氣電漿,介電層屏蔽放電,電漿發射光譜, | zh_TW |
| dc.subject.keyword | microplasma,gas detector,portable,Bluetooth remote control plasma,argon plasma,dielectric barrier discharge,plasma optical emission spectroscopy, | en |
| dc.relation.page | 143 | - |
| dc.identifier.doi | 10.6342/NTU202302312 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 13.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
