Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88545
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅弘岳zh_TW
dc.contributor.advisorPETER HONG-YUEH LOen
dc.contributor.author楊婉青zh_TW
dc.contributor.authorWan-Ching Yangen
dc.date.accessioned2023-08-15T16:46:35Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citationAbdulwahab, M. R., Ali, Y. H., Habeeb, F. J., Borhana, A. A., Abdelrhman, A. M.,& Al-Obaidi, S. M. A.(2020). A review in particle image velocimetry techniques(developments and applications). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65(2), 213-229.
Adrian, R. J. (1984). Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs. particle image velocimetry. Applied Optics, 23(11), 1690-1691.https://doi.org/10.1364/ao.23.001690
Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics 23(1), 261-304.
Adrian, R. J. (2005). Twenty years of particle image velocimetry. Experiments in Fluids, 39(2), 159-169. https://doi.org/10.1007/s00348-005-0991-7
Adrian, R. J., & Yao, C.-S. (1985). Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Applied Optics, 24(1),44-52.
Bakker, W., Hofland, B., de Almeida, E., Oldenziel, G., & Overmars, E. F. J.(2021). Pulsed LED line light for large-scale PIV-development and use in wave load measurements. Measurement Science and Technology, 32(11), Article 115205.https://doi.org/10.1088/1361-6501/ac17ce
Bonakdari, H., Larrarte, F., Lassabatere, L., & Joannis, C. (2008). Turbulent velocity profile in fully-developed open channel flows. Environmental Fluid Mechanics, 8(1), 1-17. https://doi.org/10.1007/s10652-007-9051-68.
Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de mathématiques pures et appliquées, 17, 55-108.
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 679-698.
Daily, J. W., & Stephan Jr, S. C. (1952). The solitary wave: its celerity, profile,internal velocities and amplitude attenuation in a horizontal smooth channel.Coastal Engineering Proceedings(3), 2-2.
Debnath, K., & Chaudhuri, S. (2010). Laboratory experiments on local scour around cylinder for clay and clay-sand mixed beds. Engineering Geology, 111(1-4),51-61.https://doi.org/10.1016/j.enggeo.2009.12.003
Egan, G., Chang, G., McWilliams, S., Revelas, G., Fringer, O., & Monismith, S.(2021). Cohesive Sediment Erosion in a Combined Wave-Current Boundary Layer.Journal of Geophysical Research-Oceans, 126(2), Article e2020JC016655.https://doi.org/10.1029/2020jc016655
Garcia, D. (2010). Robust smoothing of gridded data in one and higher dimensionswith missing values. Computational Statistics & Data Analysis, 54(4), 1167-1178.https://doi.org/10.1016/j.csda.2009.09.020
Goring, D., & Raichlen, F. (1980). The generation of long waves in the laboratory.In Coastal Engineering 1980 (pp. 763-783).
Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611-622.
Guo, R. L., & Lo, P. H. Y. (2022). Numerical Investigation on Solitary WaveInteraction with a Vertical Cylinder over a Viscous Mud Bed. Water, 14(7), Article 1135. https://doi.org/10.3390/w14071135
Guo, X. S., Nian, T. K., Wang, Z. T., Zhao, W., Fan, N., & Jiao, H. B. (2020). Low-Temperature Rheological Behavior of Submarine Mudflows. Journal of Waterway Port Coastal and Ocean Engineering, 146(2), Article 04019043. https://doi.org/10.1061/(asce)ww.1943-5460.0000551
Healy, T., Wang, Y., & Healy, J.-A. (2002). Muddy coasts of the world: processes, deposits and function. Elsevier.
Hsu, W. Y., Hwung, H. H., Hsu, T. J., Torres-Freyermuth, A., & Yang, R. Y. (2013). An experimental and numerical investigation on wave-mud interactions. Journal of Geophysical Research-Oceans, 118(3), 1126-1141. https://doi.org/10.1002/jgrc.20103
Huang, H., Dabiri, D., & Gharib, M. (1997). On errors of digital particle image velocimetry. Measurement Science and Technology, 8(12), 1427-1440. https://doi.org/10.1088/0957-0233/8/12/007
Huang, H., Fiedler, H., & Wang, J. (1993). Limitation and improvement of PIV: part II: particle image distortion, a novel technique. Experiments in Fluids, 15(4-5),263-273.
Huh, C. A., Chen, W. F., Hsu, F. H., Su, C. C., Chiu, J. K., Lin, S., Liu, C. S., & Huang, B. J. (2011). Modern (< 100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size disttibution. Continental Shelf Research, 31(1), 47-63.https://doi.org/10.1016/j.csr.2010.11.002
Jahanmiri, M. (2011). Particle image velocimetry: Fundamentals and its applications.
Keane, R., Adrian, R., & Zhang, Y. (1995). Super-resolution particle imaging velocimetry. Measurement Science and Technology, 6(6), 754.
Keane, R. D., & Adrian, R. J. (1990). Optimization of particle image veIocimeters. Part I: Double pulsed systems. Measurement Science and Technology, 1(11), 1202-1215. https://doi.org/10.1088/0957-0233/1/11/013
Keane, R. D., & Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied Scientific Research, 49(3), 191-215. https://doi.org/10.1007/bf00384623
Kompenhans, J., & Reichmuth, J. (1986). Particle imaging velocimetry in a low turbulent wind tunnel and other flow facilities. Advanced Instrumentation for Aero Engine Components, 35, 2.
Korteweg, D. J., & De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443.
Lenshunters. (2021). Flange Focal Distance and Why it Matters. https://lenshunters.com/guides/using-vintage-lenses/flange-focal-distance
Liu, P. L. F., & Chan, I. C. (2007). On long-wave propagation over a fluid-mud seabed. Journal of Fluid Mechanics, 579, 467-480. https://doi.org/10.1017/s0022112007005356
Liu, P. L. F., Park, Y. S., & Cowen, E. A. (2007). Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 574, 449-463. https://doi.org/10.1017/s0022112006004253
McCowan, J. (1891). VII. On the solitary wave. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32(194), 45-58.
Melling, A. (1997). Tracer particles and seeding for particle image velocimetry.Measurement Science and Technology, 8(12), 1406-1416.https://doi.org/10.1088/0957-0233/8/12/005
Miles, J. W. (1980). Solitary waves. Annual Review of Fluid Mechanics 12(1), 11-43.
Nakamura, J. (2017). Image sensors and signal processing for digital still cameras.CRC press.
Park, Y. S., Liu, P. L. F., & Clark, S. J. (2008). Viscous flows in a muddy seabed induced by a solitary wave. Journal of Fluid Mechanics, 598, 383-392. https://doi.org/10.1017/s0022112007009871
Pickering, C. J. D., & Halliwell, N. A. (1984). Laser speckle photography and particle image velocimetry: photographic film noise. Applied Optics, 23(17), 2961-2969.https://doi.org/10.1364/ao.23.002961
Powell, D. M. (2014). Flow resistance in gravel-bed rivers: Progress in research.Earth-Science Reviews, 136, 301-338.https://doi.org/10.1016/j.earscirev.2014.06.001
Prandtl, L. (1905). Uber Flussigkeitsbewegung bei sehr kleiner Reibung.Verhandlungen 3rd Internationalen Mathematiker Kongresses, Heidelberg (1904),Leipzig.https://cir.nii.ac.jp/crid/1571135650381021312
Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2018). Particle image velocimetry: a practical guide. Springer.https://doi.org/10.1007/978-3-319-68852-7
Rayleigh, L. (1876). On waves. Philosophical Magazine, 1, 257-259.https://cir.nii.ac.jp/crid/1573105975301917056
Roberts, J. D., Magalen, J., & Jones, C. (2014). Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model (No. SAND2014-15239). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
Russell, J. (1844). Report on waves, Fourteenth meeting of the British Association for the Advancement of Science. In: London: John Murray.
Russell, J. S. (1845). Report on Waves: Made to the Meetings of the British Association in 1842-43.
Samsami, F., Soltanpour, M., & Shibayama, T. (2015). Spectral analysis of irregular waves in wave-mud and wave-current-mud interactions. Ocean Dynamics, 65(9-10), 1305-1320. https://doi.org/10.1007/s10236-015-0864-4
Scarano, F., & Riethmuller, M. L. (1999). Iterative multigrid approach in PIV image processing with discrete window offset. Experiments in Fluids, 26(6), 513-523. https://doi.org/10.1007/s003480050318
Scarano, F., & Riethmuller, M. L. (2000). Advances in iterative multigrid PIV image processing. Experiments in Fluids, 29(Suppl 1), S051-S060.
Shavit, U., Lowe, R. J., & Steinbuck, J. V. (2007). Intensity Capping: a simple method to improve cross-correlation PIV results. Experiments in Fluids, 42(2), 225-240. https://doi.org/10.1007/s00348-006-0233-7
Soltanpour, M., Shamsnia, S. H., Shibayama, T., & Nakamura, R. (2020).Experimental and analytical investigation of the response of a mud layer to solitary waves. Ocean Dynamics, 70(2), 165-186.https://doi.org/10.1007/s10236-019-01319-6
Swamy, R. S., Sykes, J. M., & Most, S. P. (2010). Principles of Photography in Rhinoplasty for the Digital Photographer. Clinics in Plastic Surgery, 37(2), 213-+. https://doi.org/10.1016/j.cps.2009.12.003
Synolakis, C. E. (1990). Generation of long waves in laboratory. Journal of Waterway, Port, Coastal, and Ocean Engineering 116(2), 252-266.
Thielicke, W., & Sonntag, R. (2021). Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software 9(1).
Thielicke, W., & Stamhuis, E. (2014). PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software 2(1).
Tong, L. L., Zhang, J. S., Zhao, J. L., Zheng, J. H., & Guo, Y. K. (2020). Modelling study of wave damping over a sandy and a silty bed. Coastal Engineering, 161, Article 103756. https://doi.org/10.1016/j.coastaleng.2020.103756
Tonkin, S., Yeh, H., Kato, F., & Sato, S. (2003). Tsunami scour around a cylinder.Journal of Fluid Mechanics, 496, 165-192.https://doi.org/10.1017/s0022112003006402
Vázquez, K., Rodríguez, R., & Esteban, M. (2022). Inventory proposal for monopiles in offshore wind farms. Ocean Engineering, 247, 110741.
Vogt, A., Reichel, F., & Kompenhans, J. (1996). A compact and simple all optical evaluation method for PIV recordings. Developments in Laser Techniques and Applications to Fluid Mechanics: Proceedings of the 7th International Symposium Lisbon, Portugal, 11–14 July, 1994.
Wang, A. J., Ye, X. A., Du, X. Q., & Zheng, B. X. (2014). Observations of cohesive sediment behaviors in the muddy area of the northern Taiwan Strait, China. Continental Shelf Research, 90, 60-69.https://doi.org/10.1016/j.csr.2014.04.002
Wazwaz, A.-M. (2010). Partial differential equations and solitary waves theory. Springer Science & Business Media.
Westerweel, J. (1993). Analysis of PIV interrogation with low-pixel resolution.Optical Diagnostics in Fluid and Thermal Flow 2005, 624-635.
Westerweel, J., Dabiri, D., & Gharib, M. (1997). The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Experiments in Fluids, 23(1), 20-28. https://doi.org/10.1007/s003480050082
Willert, C. E., & Gharib, M. (1991). Digital particle image velocimetry.Experiments in Fluids, 10(4), 181-193.
Wright, S. F., Zadrazil, I., & Markides, C. N. (2017). A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows. Experiments in Fluids, 58(9), Article 108. https://doi.org/10.1007/s00348-017-2386-y
Xu, K. H., Milliman, J. D., Li, A. C., Liu, J. P., Kao, S. J., & Wan, S. M. (2009).Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29(18), 2240-2256.https://doi.org/10.1016/j.csr.2009.08.017
Zabusky, N. J., & Kruskal, M. D. (1965). Interaction of" solitons" in a collisionless plasma and the recurrence of initial states. Physical Review Letters 15(6), 240.
世紀離岸風電設備股份有限公司. 單樁式水下基礎.http://www.cwptw.com/tw/results/50/
李崧瑋. (2022). 孤立波於雙黏性泥質海床上過直立式圓柱之數值研究.
施文育. (2022). 前導下沉N 型波下速度場之探討.
郭榮煉. (2021). 孤立波對泥質海床上直立式圓柱作用的數值研究.
臺灣電力公司. (2018). 離岸風力發電第二期計畫可行性研究.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88545-
dc.description.abstract孤立波是一種波浪形式,其非線性和頻散效應之間的平衡特性使其能夠長時間保持完整性。然而,對於孤立波作用於黏性泥床上的速度場研究仍然有限,尤其是針對孤立波作用於黏性泥床上的垂直圓柱結構物周圍的速度場的研究更加缺乏。以往的文獻主要使用真實的泥土進行實驗,但是由於泥土不透光,無法通過光學方法獲取高精度和高空間解析度的速度場測量數據。在本研究中,以透明黏性流體模仿泥土,並利用粒子影像測速法(particle image velocimetry, PIV)測量了孤立波傳遞到黏性泥床中的垂直圓柱結構物周圍的速度場,同時,利用Canny 邊緣偵測方法捕捉了泥面起伏的變化情況。研究結果顯示,黏性泥床會產生回流現象,即向波浪傳播的反方向流動。當孤立波通過垂直圓柱結構物時,我們觀察到在結構物的迎流側,泥面先上升再下降,而在背流側,泥面也呈現類似的變化。這項研究對於孤立波、黏性泥床和垂直圓柱結構物之間的相互作用,與實驗室前人研究的定性比較結果相似,並提供了較新穎的實驗方法,同時也提供了實驗數據供數值模型進行比對。zh_TW
dc.description.abstractSolitary waves are a wave phenomenon that maintains integrity over a long duration due to the balance between nonlinearity and dispersion effects. However, there is limited research on the velocity field of solitary waves acting on a viscous mud bed, particularly around vertical cylindrical structures. Previous studies mainly employed real soil in experiments, but the opaqueness of soil restricts the acquisition of high-precision and high-spatial-resolution velocity field measurements using optical methods. In this study, a transparent viscous fluid was used as a surrogate for soil, and Particle Image Velocimetry (PIV) was employed to measure the velocity field around vertical cylindrical structures as solitary waves propagated into the viscous mud bed. Additionally, variations in the mud surface were captured using the Canny edge detection method. The results revealed the occurrence of flow reversal, i.e., flow in the opposite direction of wave propagation, in the presence of the viscous mud bed. As the solitary wave passed the vertical cylindrical structures, we observed an upward and then downward movement of the mud surface on the upstream side, while a similar pattern was observed on the downstream side. This study provides insights into the interaction between solitary waves, viscous mud beds, and vertical cylindrical structures, validating qualitatively with previous laboratory studies and offering a novel experimental approach and data for numerical model comparisons.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:46:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:46:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 本文組織架構 5
第二章 孤立波理論 7
2.1 孤立波介紹 7
2.2 水在孤立波作用下的理論 8
2.3 黏性泥床在孤立波作用下的理論 9
2.4 水與泥界面的邊界層11
2.5 孤立波造波理論 12
第三章 實驗設置 13
3.1 實驗設備與材料 13
3.1.1 造波水槽系統架設 13
3.1.1.1 小型造波機結構 15
3.1.1.2 造波運動控制 19
3.1.2 凹槽、圓柱設計與高黏性流體選擇 20
3.1.3 超音波感測器 23
3.1.4 PIV 量測及可視化系統 25
3.1.4.1 高強度LED 光源系統 25
3.1.4.2 流場追蹤物質 26
3.1.4.3 高速攝影機 28
3.2 實驗方法 30
3.2.1 超音波感測器率定 30
3.2.2 實驗前置 31
3.2.3 座標系統與量測視野規劃 31
3.2.4 拍攝參數設定與計算 34
3.2.5 實驗條件 37
3.2.6 邊緣偵測 37
第四章 粒子影像測速方法 39
4.1 PIV 系統量測原理 39
4.2 PIVlab 影像分析原理 39
4.2.1 影像預處理 41
4.2.1.1 對比度受限的自適應直方圖均衡化(CLAHE) 41
4.2.1.2 高通濾波(high-pass) 42
4.2.1.3 強度上限(intensity capping) 42
4.2.2 PIV 分析方法 43
4.2.3 影像後處理 46
第五章 循環水槽速度驗證 48
5.1 循環水槽系統設置 48
5.2 PIV 系統設置 51
5.3 以紊流速度剖面進行驗證 52
第六章 造波水槽之實驗結果與討論 56
6.1 孤立波於固定水深之驗證 56
6.2 孤立波下兩相流速度場及泥面分析 60
6.2.1 水層的自由液面高度及速度場 60
6.2.2 泥層的速度場及泥面起伏高度 63
6.2.3 水層及泥層比對 68
6.2.4 有無泥床的水層速度場討論 69
6.3 孤立波下垂直圓柱周圍速度場及泥面變化分析 71
6.3.1 以水填充凹槽 72
6.3.2 以黏性流體填充凹槽 79
第七章 結論與未來展望 90
7.1 結論 90
7.2 未來展望 91
參考文獻 92
-
dc.language.isozh_TW-
dc.title以實驗方法研究孤立波於黏性泥床上過垂直圓柱zh_TW
dc.titleAn Experimental Investigation on the Propagation of Solitary Waves through a Vertical Cylinder on a Viscous Mud Beden
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張廣安;戴璽恆zh_TW
dc.contributor.oralexamcommitteeKuang-An Chang;Albert Daien
dc.subject.keyword孤立波,速度場,PIV,垂直圓柱,黏性泥床,zh_TW
dc.subject.keywordsolitary waves,velocity field,PIV,vertical cylindrical structures,viscous mud bed,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202302517-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2028-07-31-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
7.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved