請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐治平 | zh_TW |
| dc.contributor.advisor | Jyh-Ping Hsu | en |
| dc.contributor.author | 鄭定承 | zh_TW |
| dc.contributor.author | Ding-Cheng Zheng | en |
| dc.date.accessioned | 2023-08-15T16:45:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-29 | - |
| dc.identifier.citation | References of Chapter 1
1 Z. Jia, B. Wang, S. Song and Y. Fan, Renew. Sust. Energ. Rev., 2014, 31, 91–100. 2 S. Chou, R. Wang, L. Shi, Q. She, C. Tang and A.G. Fane, J. Membr. Sci., 2012, 389, 25–33. 3 R.J. Aaberg, ReFocus, 2003, 4, 48–50. 4 Y.C. Kim and M. Elimelech, J. Membr. Sci., 2013, 429, 330–337. 5 L.H. Yeh, F. Chen, Y.T. Chiou and Y.S. Su, Small, 2017, 13, 1702691. 6 H.C. Yeh, C.C. Chang and R.J. Yang, Rsc. Adv., 2014, 4, 2705–2714. 7 Z. Zhang, L. He, C.C. Zhu, Y.C. Qian, L.P. Wen and L. Jiang, Nat. Commun., 2020, 11, 875. 8 J.P. Hsu, T.C. Su, C.Y. Lin and S. Tseng, Electrochim. Acta, 2019, 294, 84–92. 9 D.-K. Kim, C. Duan, Y.-F. Chen and A. Majumdar, Microfluid. Nanofluid., 2010, 9, 1215–1224. 10 B.E. Logan and M. Elimelech, Nature, 2012, 488, 313–319. 11 J.W. Post, J. Veerman, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, K. Nymeijer and C.J.N. Buisman, J. Membr. Sci., 2007, 288, 218–230. 12 T.-W. Lin and J.-P. Hsu, J. Colloid Interface Sci., 2020, 564, 491–498. 13 M. Gao, P.-.C. Tsai, Y.-.S. Su, P.-.H. Peng and L.-H. Yeh, Small, 2020, 16, 2006013. 14 L.H. Yeh, Z.Y. Huang, Y.C. Liu, M.J. Deng, T.H. Chou, H.C.O. Yang, T. Ahamad, S. M. Alshehri and K.C.W. Wu, J. Mater. Chem. A, 2019, 7, 26791–26796. 15 Z. Zhang, P.P. Zhang, S. Yang, T. Zhang, M. Löffler, H.H. Shi, M.R. Lohe and X.L. Feng, Proc. Natl. Acad. Sci. USA, 2020, 117, 13959–13966. 16 J. Chen, W. Xin, X.-Y. Kong, Y. Qian, X. Zhao, W. Chen, Y. Sun, Y. Wu, L. Jiang and L. Wen, ACS Energy Letters, 2019, 5, 742–748. 17 G. Laucirica, M. E. Toimil-Molares, C. Trautmann, W. Marmisollé and O. Azzaroni, Chem. Sci., 2021, 12, 12874–12910. 18 C.Y. Lin, C. Combs, Y.S. Su, L.-H. Yeh and Z. S. Siwy, J. Am. Chem. Soc., 2019, 141 (8), 3691–3698. 19 X. Chen, Z. Luo, R. Long, Z. Liu and W. Liu, Renew. Energ., 2022, 187, 440-449. 20 R. Long, F. Wu, X. Chen, Z. Liu and W. Liu, Int. J. Heat Mass Transf., 2021, 168, 120842. 21 R. Long, Z. Kuang, Z. Liu and W. Liu, Phys. Chem. Chem. Phys., 2018, 20, 7295–7302. 22 W. Guo, L. Cao, J. Xia, F.-Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang and L. Jiang, Adv. Funct. Mater., 2010, 20, 1339–1344. 23 A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S.T. Purcell and L. Bocquet, Nature, 2013, 494, 455–458. 24 J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis and A. Radenovic, Nature, 2016, 536, 197–200. 25 K.X. Chen, L.N. Yao, F. Yan, S.S. Liu, R.J. Yang and B. Su, J. Mater. Chem. A, 2019, 7, 25258–25261. 26 S. Balme, T. Ma, E. Balanzat and J.-M. Janot, J. Membr. Sci., 2017, 544, 18–24. 27 M.H.A. Haider, S. Nasir, M. Ali, P. Ramirez, J. Cervera, S. Mafe and W. Ensinger, Mater. Today Energy, 2022, 23, 100909. 28 X.B. Zhu, J.D. Zhong, J.R. Hao, Y.Z. Wang, J.J. Zhou, J.W. Liao, Y.J. Dong, J. H. Pang, H.B. Zhang, Z.Z. Wang, W. Zhang, W.T. Zheng, Z.H. Jiang, Y.H. Zhou and L. Jiang, Adv. Energy Mater., 2020, 10, 2001552. 29 Y. Xu, Y. Song and F. Xu, Nano Energy, 2021, 79, 105468. 30 Z. Wu, P. Ji, B. Wang, N. Sheng, M. Zhang, S. Chen and H. Wang, Nano Energy, 2021, 80, 105554. 31 K. Kwon, S.J. Lee, L. Li, C. Han and D. Kim, Int. J. Energy Res., 2014, 38, 530–537. 32 C. Chen, D. Liu, L. He, S. Qin, J. Wang, J.M. Razal, N.A. Kotov and W. Lei, Joule, 2020, 4 (1), 247–261. 33 J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao and L. Jiang, J. Am. Chem. Soc., 2014, 136, 12265–12272. 34 C.-W. Chang, C.-W. Chu, Y.-S. Su and L.-H. Yeh, J. Mater. Chem. A, 2022, 10, 2867–2875. 35 J. Hwang, S. Kataoka, A. Endo and H. Daiguji, Lab. Chip, 2016, 16, 3824–3832. 36 F. Yan, L.N. Yao, K.X. Chen, Q. Yang and B. Su, J. Mater. Chem. A, 2019, 7, 2385–2391. 37 J. Gao, X. Liu, Y. Jiang, L. Ding, L. Jiang and W. Guo, Small, 2019, 15, 1804279. 38 L.X. Cao, Q. Wen, Y.P. Feng, D.Y. Ji, H. Li, N. Li, L. Jiang and W. Guo, Adv. Funct. Mater., 2018, 28, 1804189. 39 J.J. Su, D.Y. Ji, J.L. Tang, H. Li, Y.P. Feng, L.X. Cao, L. Jiang and W. Guo, Chinese J. Chem., 2018, 36, 417–420. 40 J.P. Hsu, T.C. Su, P.H. Peng, S.C. Hsu, M.J. Zheng and L.H. Yeh, ACS Nano, 2019, 13, 13374–13381. 41 L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, X. Zhang, N. Li, W. Guo and L. Jiang, Adv. Funct. Mater., 2017, 27, 1604302. 42 V.-P. Mai and R.-J. Yang, Appl. Energy, 2020, 274, 115294. 43 R. Long, Z. Kuang, Z. Liu and W. Liu, J. Membr. Sci., 2018, 561, 1–9. 44 R. Long, Z. Kuang, Z. Liu and W. Liu, Nat. Sci. Rev., 2019, 6, 1266-1273. 45 J. Jung, J. Kim, H.S. Lee, I.S. Kang and K. Choi, ACS Nano, 2019, 13, 10761–10767. 46 C. Li, L. Wen, Y. Xin Cheng, L. Gao and L. Jiang, Sci. Adv., 2021, 7, eabg2183. 47 Y. Sun, T. Dong, C. Lu, W. Xin, L. Yang, P. Liu, Y. Qian, Y. Zhao, X.-Y. Kong, L. Wen and L. Jiang, Angew. Chem. Int. Ed., 2020, 59, 17423–17428. 48 R.R. Li, J.Q. Jiang, Q.Q. Liu, Z.Q. Xie and J. Zhai, Nano Energy, 2018, 53, 643–649. 49 P. Cheng, S. Chen, X. Li, Y.L. Xu, F. Xu and A.J. Ragauskas, Energy Convers. Manag., 2022, 255, 115321. 50 H.-Y. Lo, T.-Y. Tsou and J.-P. Hsu, J. Membr. Sci., 2022, 644, 120075. 51 Y.S. Su, S.C. Hsu, P.H. Peng, J.Y. Yang, M. Gao and L.H. Yeh, Nano Energy, 2021, 84, 105930. 52 R. Long, Z.Q. Luo, Z.F. Kuang, Z.C. Liu and W. Liu, Nano Energy, 2020, 67, 104284. 53 Y.-T. Chen, T.-Y. Tsou and J.-P. Hsu, Taiwan Inst. Chem. Eng., 2022, 134, 104351. 54 A. Gadaleta, C. Sempere, S. Gravelle, A. Siria, R. Fulcrand, C. Ybert and L. Bocquet, Phys. Fluids, 2014, 26, 12005. 55 K. Yazda, K. Bleau, Y. Zhang, X. Capaldi, T. StDenis, P. Grutter and W.W. Reisner, Nano Lett., 2021, 21, 4152–4159. 56 S. Tseng, J.Y. Lin and J.P. Hsu, Anal. Chim. Acta, 2014, 847, 80–89. 57 J.-P. Hsu, Y.-H. Tai, L.-H. Yeh and S. Tseng, Langmuir, 2012, 28 (1), 1013–1019. 58 P.H. Peng, H.C.O. Yang, P.C. Tsai and L.H. Yeh, ACS Appl. Mater. Interfaces, 2020, 12, 17139–17146. 59 J. Hwang, T. Sekimoto, W.L. Hsu, S. Kataoka, A. Endo and H. Daiguji, Nanoscale, 2017, 9, 12068–12076. 60 S. Tseng, Y.M. Li, C.Y. Lin and J.P. Hsu, Nanoscale, 2016, 8, 2350–2357. 61 G.C. Benson and A.R. Gordon, J. Chem. Phys., 1945, 13, 473–474. 62 F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang and W. Guo, Mater. Chem. Front., 2018, 2, 935–941. 63 F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang and W. Guo, Inorg. Chem. Front., 2018, 5, 1677–1682. References of Chapter 2 [1] Z. Zhang, L. He, C. Zhu, Y. Qian, L. Wen, L. Jiang, Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface, Nat. Commun. 11 (2020) 875. [2] D.-K. Kim, C. Duan, Y.-F. Chen, A. Majumdar, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluid. Nanofluid. 9 (2010) 1215-1224. [3] J.-P. Hsu, T.-C. Su, C.-Y. Lin, S. Tseng, Power generation from a pH-regulated nanochannel through reverse electrodialysis: Effects of nanochannel shape and non-uniform H+ distribution, Electrochim. Acta 294 (2019) 84-92. [4] C.-Y. Lin, C. Combs, Y.-S. Su, L.-H. Yeh, Z.S. Siwy, Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power, J. Am. Chem. Soc. 141 (2019) 3691-3698. [5] D.-C. Zheng, L.-H. Yeh, Improved rectification and osmotic power in polyelectrolyte-filled mesopores, Micromachines 11 (2020) 949. [6] J.-P. Hsu, T.-C. Su, P.-H. Peng, S.-C. Hsu, M.-J. Zheng, L.-H. Yeh, Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel, ACS Nano 13 (2019) 13374-13381. [7] F. Morrison Jr, J. Osterle, Electrokinetic energy conversion in ultrafine capillaries, J. Chem. Phys. 43 (1965) 2111-2115. [8] X. Xuan, D. Li, Thermodynamic analysis of electrokinetic energy conversion, J. Power Sources 156 (2006) 677-684. [9] J.F. Osterle, Electrokinetic energy conversion, J. Appl. Mech. 31 (1964) 161. [10] F.H. van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Power generation by pressure-driven transport of ions in nanofluidic channels, Nano Lett. 7 (2007) 1022-1025. [11] J. Zhang, K. Zhan, S. Wang, X. Hou, Soft interface design for electrokinetic energy conversion, Soft Matter 16 (2020) 2915-2927. [12] J. Tan, J. Duan, Y. Zhao, B. He, Q. Tang, Generators to harvest ocean wave energy through electrokinetic principle, Nano Energy 48 (2018) 128-133. [13] T.-W. Lin, J.-P. Hsu, Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH, J. Colloid Interface Sci. 564 (2020) 491-498. [14] G. Yang, W. Lei, C. Chen, S. Qin, L. Zhang, Y. Su, J. Wang, Z. Chen, L. Sun, X. Wang, Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation, Nano Energy 75 (2020) 104954. [15] K. Chen, L. Yao, F. Yan, S. Liu, R. Yang, B. Su, Thermo-osmotic energy conversion and storage by nanochannels, J. Mater. Chem. A 7 (2019) 25258-25261. [16] X. Zhao, L. Li, W. Xie, Y. Qian, W. Chen, B. Niu, J. Chen, X.-y. Kong, L. Jiang, L. Wen, pH-regulated thermo-driven nanofluidics for nanoconfined mass transport and energy conversion, Nanoscale Advances 2 (2020) 4070-4076. [17] L. Li, Q. Wang, Thermoelectricity in heterogeneous nanofluidic channels, Small 14 (2018) 1800369. [18] J. Zhong, C. Huang, Influence factors of thermal driven ion transport in nano-channel for thermoelectricity application, Int. J. Heat Mass Transf. 152 (2020) 119501. [19] A.G. Razaqpur, Y. Wang, X. Liao, Y. Liao, R. Wang, Progress of photothermal membrane distillation for decentralized desalination: A review, Water Res. 201 (2021) 117299. [20] D.B. Gingerich, M.S. Mauter, Quantity, quality, and availability of waste heat from United States thermal power generation, Environ. Sci. Technol. 49 (2015) 8297-8306. [21] L. Fu, S. Merabia, L. Joly, Understanding fast and robust thermo-osmotic flows through carbon nanotube membranes: Thermodynamics meets hydrodynamics, J. Phys. Chem. Lett. 9 (2018) 2086-2092. [22] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (2012) 294-303. [23] I. Johnson, W.T. Choate, A. Davidson, Waste heat recovery. Technology and opportunities in U.S. industry, Technical Report, BCS, Inc., Laurel, MD (United States), 2008. [24] W. Xian, P. Zhang, C. Zhu, X. Zuo, S. Ma, Q. Sun, Bionic thermosensation inspired temperature gradient sensor based on covalent organic framework nanofluidic membrane with ultrahigh sensitivity, CCS Chem 3 (2021) 2464-2472. [25] K. Chen, L. Yao, B. Su, Bionic thermoelectric response with nanochannels, J. Am. Chem. Soc. 141 (2019) 8608-8615. [26] V.-P. Mai, W.-H. Huang, R.-J. Yang, Charge regulation and pH effects on thermo-osmotic conversion, Nanomaterials 12 (16) (2022) 2774. [27] M. Bonetti, S. Nakamae, M. Roger, P. Guenoun, Huge Seebeck coefficients in nonaqueous electrolytes, J. Chem. Phys. 134 (2011) 114513. [28] W. Zhang, Q. Wang, M. Zeng, C. Zhao, Thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries, Int. J. Heat Mass Transf. 143 (2019) 118569. [29] N.S. Lynn, D.S. Dandy, Passive microfluidic pumping using coupled capillary/evaporation effects, Lab Chip 9 (2009) 3422-3429. [30] K. Liu, T. Ding, J. Li, Q. Chen, G. Xue, P. Yang, M. Xu, Z.L. Wang, J. Zhou, Thermal–electric nanogenerator based on the electrokinetic effect in porous carbon film, Adv Energy Mater 8 (2018) 1702481. [31] C. Li, K. Liu, H. Liu, B. Yang, X. Hu, Capillary driven electrokinetic generator for environmental energy harvesting, Mater. Res. Bull. 90 (2017) 81-86. [32] J. Bae, T.G. Yun, B.L. Suh, J. Kim, I.-D. Kim, Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle, Energy Environ. Sci. 13 (2) (2020) 527-534. [33] Y. Roy, D.M. Warsinger, Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration, Desalination 420 (2017) 241-257. [34] Y.-X. Lin, Y.-K. Liou, S.L. Lee, S.-Y. Chen, F.-T. Tao, T.-W. Cheng, K.-L. Tung, Preparation of PVDF/PMMA composite membrane with green solvent for seawater desalination by gap membrane distillation, J. Membr. Sci. 679 (2023) 121676. [35] P. Godart, Heat-driven direct reverse osmosis for high-performance and robust ad hoc seawater desalination, Desalination 500 (2021) 114800. [36] T. Xiao, Z. Lin, C. Liu, L. Liu, Q. Li, Integration of desalination and energy conversion in a thermo-osmotic system using low-grade heat: Performance analysis and techno-economic evaluation, Appl. Therm. Eng. 223 (2023) 120039. [37] D. Brogioli, F. La Mantia, N.Y. Yip, Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies, Renew. Energy 133 (2019) 1034-1045. [38] D. Brogioli, N.Y. Yip, Energy efficiency analysis of membrane distillation for thermally regenerative salinity gradient power technologies, Desalination 531 (2022) 115694. [39] E. Shaulsky, V. Karanikola, A.P. Straub, A. Deshmukh, I. Zucker, M. Elimelech, Asymmetric membranes for membrane distillation and thermo-osmotic energy conversion, Desalination 452 (2019) 141-148. [40] Y.-T. Chen, J.-P. Hsu, Pressure-driven power generation and ion separation using a non-uniformly charged nanopore, J. Colloid Interface Sci. 607 (2022) 1120-1130. [41] C.-Y. Lin, F. Chen, L.-H. Yeh, J.-P. Hsu, Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size, Phys. Chem. Chem. Phys. 18 (2016) 30160-30165. [42] R. Yang, S. Liu, L. Zhou, X. Lin, B. Su, Thermoelectric response of ion-selective membranes: modelling and experimental studies, Chemelectrochem 8 (3) (2021) 585-591. [43] Q. Ren, Q. Cui, K. Chen, J. Xie, P. Wang, Salinity-gradient power harvesting using osmotic energy conversion with designed interfacial nanostructures under thermal modulation, Desalination 535 (2022) 115802. [44] H.-Y. Lo, T.-Y. Tsou, J.-P. Hsu, Ion transport in a non-isothermal electrokinetic energy conversion system, Electrochim. Acta 427 (2022) 140887. [45] V.-P. Mai, R.-J. Yang, Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect, Appl. Energy 274 (2020) 115294. [46] S. Tseng, Y.-M. Li, C.-Y. Lin, J.-P. Hsu, Salinity gradient power: influences of temperature and nanopore size, Nano 8 (2016) 2350-2357. [47] J.-P. Hsu, Y.-H. Tai, L.-H. Yeh, S. Tseng, Importance of temperature effect on the electrophoretic behavior of charge-regulated particles, Langmuir 28 (2012) 1013-1019. [48] R. Long, Z. Kuang, Z. Liu, W. Liu, Temperature regulated reverse electrodialysis in charged nanopores, J. Membr. Sci. 561 (2018) 1-9. [49] C. Li, Z. Liu, Y. Wang, A. Ali, Z.Q. Tian, Energy harvesting from charged conical nanopore with salinity and temperature gradient, Int. J. Heat Mass Transf. 200 (2023) 123509. [50] D.-C. Zheng, J.-P. Hsu, Enhancing the osmotic energy conversion of a nanoporous membrane: influence of pore density, pH, and temperature, Phys. Chem. Chem. Phys. 25 (2023) 6089-6101. [51] C. Li, Z. Liu, H. Zhang, N. Qiao, Z. Zhang, J. Zhou, Z.Q. Tian, Surface charge and thermal dependence of energy conversion in nanochannels, Int. Commun. Heat Mass Transf. 135 (2022) 106121. [52] P.-H. Peng, H.-C. Ou Yang, P.-C. Tsai, L.-H. Yeh, Thermal dependence of the mesoscale ionic diode: Modeling and experimental verification, ACS Appl. Mater. Interfaces 12 (2020) 17139-17146. [53] K. Xiao, G. Xie, Z. Zhang, X.Y. Kong, Q. Liu, P. Li, L. Wen, L. Jiang, Enhanced stability and controllability of an ionic diode based on funnel‐shaped nanochannels with an extended critical region, Adv. Mater. 28 (2016) 3345-3350. [54] R. Long, Z. Luo, Z. Kuang, Z. Liu, W. Liu, Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion, Nano Energy 67 (2020) 104284. [55] T.-Y. Tsou, J.-P. Hsu, Pressure-driven ion separation through a pH-regulated cylindrical nanopore, J. Membr. Sci. 604 (2020) 118073. [56] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: Fundamentals and applications, Prog. Polym. Sci. 59 (2016) 41-85. [57] A. Würger, Transport in charged colloids driven by thermoelectricity, Phys. Rev. Lett. 101 (2008) 108302. [58] V.-P. Mai, R.-J. Yang, Active control of salinity-based power generation in nanopores using thermal and pH effects, RSC Adv. 10 (32) (2020) 18624-18631. [59] F. Qian, W. Zhang, D. Huang, W. Li, Q. Wang, C. Zhao, Electrokinetic power generation in conical nanochannels: regulation effects due to conicity, Phys. Chem. Chem. Phys. 22 (2020) 2386-2398. [60] M. Gao, P.C. Tsai, Y.S. Su, P.H. Peng, L.H. Yeh, Single mesopores with high surface charges as ultrahigh performance osmotic power generators, Small 16 (2020) 2006013. [61] C.-C. Chang, Asymmetric electrokinetic energy conversion in slip conical nanopores, Nanomaterials 12 (2022) 1100. [62] F.H. Van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Lett. 6 (2006) 2232-2237. [63] M. Jokinen, J.A. Manzanares, K. Kontturi, L. Murtomäki, Thermal potential of ion-exchange membranes and its application to thermoelectric power generation, J. Membr. Sci. 499 (2016) 234-244. [64] A.P. Bregulla, A. Würger, K. Günther, M. Mertig, F. Cichos, Thermo-osmotic flow in thin films, Phys. Rev. Lett. 116 (2016) 188303. [65] X. Wang, M. Liu, D. Jing, A. Mohamad, O. Prezhdo, Net unidirectional fluid transport in locally heated nanochannel by thermo-osmosis, Nano Lett. 20 (12) (2020) 8965-8971. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88542 | - |
| dc.description.abstract | 由於對水資源和用電需求越來越高,採用奈米流體裝置來得到乾淨且永續的能源轉換以及淡水,是一種不錯的方法。具有離子選擇性這種特性的薄膜,擁有把天然梯度,像是濃度差、壓力差等,轉換成電能的潛力,還有乾淨的水也可以透過除鹽技術來生產。而想辦法提升能源轉換效率和除鹽表現,是具有效益的。
第一章節中,濃鹽差發電,是透過具有離子選擇性的孔洞,把混合的自由能轉換成電能,而這有不錯的潛力。針對實際應用層面,發展以薄膜為規模的多孔洞性材料是極其需要的。不幸的是,嚴重的濃度極化會使得所能獲得的功率明顯下降,尤其在孔密度很高的時候。為了緩解這個問題,我們提出,在具有多個奈米孔洞的薄膜兩端,施加額外壓差的方法,以及也有考慮所需消耗的有關功率。得到的結果顯示,施加負壓差可以提升所能獲得的功率,因為選擇性有所提升。此外,如果薄膜的孔密度很高的話,為了使所能獲得的能源具有經濟效益,增長孔道長度是必須的。舉例來說,如果是孔道長度為2000奈米與孔密度為2.5×〖10〗^9 pores/cm2的情況下,可以得到213 mW/m2的功率密度提升,藉著施加-1 bar的壓差,在pH 11和323 K下,成功獲取到正的淨功率密度。還有在不同條件下的系統表現以及相關機制亦會被仔細探討檢視。以上的研究成果已發表於國際期刊Physical Chemistry Chemical Physics。 第二章節中,由於對水資源和用電需求越來越高,藉由利用廢熱來施加溫度梯度,以達到提升電動能源轉換以及除鹽表現,貌似是個不錯的方法。此外,用一個對稱因子的參數,來表示不同孔道形狀,而不同孔道幾何的影響是有被考慮的。另外,有提出一個除鹽指標,用來評估除鹽表現,主要用以檢視除鹽率和體積流率之間的權衡。再者,針對產生的功率和能源轉換效率,NaCl的表現要比KCl來得好,這是因為鈉離子的擴散係數比鉀離子來得小。另一方面,因為溫差所造成的熱擴散影響對NaCl比較明顯,所以溫差對NaCl的除鹽率之影響,是比KCl來得顯著。然後由於選擇性的因素,施加正溫差會降低除鹽率,施加逆溫差則會提升除鹽率。此外,正壓差下的除鹽率會稍微比負壓差下的除鹽率來得大,因為從tip端施壓會有較大的進入電場強度。最後根據所提出之除鹽指標的評估,正溫差擁有比逆溫差還要好的除鹽表現,而這和電動能源轉換之表現的情況正好相反,也就是說,逆溫差的能源轉換效率是優於正溫差的能源效率。 | zh_TW |
| dc.description.abstract | As the demands for water resources and electricity are increasingly significant, adopting nanofluidic device for obtaining clean and sustainable energy conversion as well as freshwater is a great way. The membrane having the property of ion selectivity has a potential to transform natural gradient (e.g., salinity gradient, hydraulic pressure gradient) into electricity, and the clean water can also be produced through desalination. It is beneficial to improve the energy conversion efficiency and desalination performance.
In chapter 1, salinity gradient power, which converts Gibbs free energy of mixing to electric energy through an ion-selective pore has a great potential. Towards practical use, developing membrane-scaled nanoporous materials is desirable and necessary. Unfortunately, the presence of a significant ion concentration polarization (ICP) lowers appreciably the power harvested, especially at a high pore density. To alleviate this problem, we suggest applying an extra pressure difference △P across a membrane containing multiple nanopores, taking account of the associated power consumption. The results gathered reveal that applying a negative pressure difference can improve the power harvested due to the enhanced selectivity. In addition, if the pore density of a membrane is high, raising its pore length is necessary to make the energy harvested economic. For example, if the pore length is 2000 nm and pore density 2.5×〖10〗^9 pores/cm2, an increment in power density of 213 mW/m2 can be obtained by applying △P=-1 bar at pH 11 and 323 K, where a net positive power density can be retrieved. The performance of the system considered under various conditions is examined in detail, along with associated mechanisms. In chapter 2, as the demands for freshwater and electricity are increasingly significant, exploiting waste heat to apply temperature gradients for improving the electrokinetic energy conversion (EKEC) and desalination performances seems a great way. In addition, the effect of different pore geometries, characterized by a symmetric factor, is taken into consideration. A desalination index is proposed to evaluate the performance of desalination, examining the trade-off between the ion rejection rate and the volumetric flow rate. Besides, the power production and efficiency of NaCl are better than those of KCl because the diffusivity of Na+ is smaller than that of K+. On the other hand, since the thermo-diffusion induced by temperature difference ∆T for the case of NaCl is more significant, ∆T influences rejection rate of NaCl more appreciably than that of KCl. Due to the selectivity, applying a positive (negative) ∆T lowers (raises) rejection rate. In addition, the rejection rate at positive pressure difference (∆P>0) is slightly larger than that at ∆P<0 because the former has a stronger inlet electric field. According to the assessment of desalination index proposed, a positive ∆T manifests a better desalination performance than a negative ∆T, which is opposite to the EKEC performance, that is, energy efficiency of negative ∆T is better than that of positive ∆T. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:45:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:45:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
中文摘要 III Abstract V List of Tables VIII List of Figures IX CHAPTER 1 Enhancing the osmotic energy conversion of a nanoporous membrane: influence of pore density, pH, and temperature 1 References of Chapter 1 19 CHAPTER 2 Electrokinetic energy conversion and desalination of an asymmetric nanopore with applied temperature gradients 34 References of Chapter 2 57 Conclusions 85 | - |
| dc.language.iso | en | - |
| dc.subject | 滲透能源轉換 | zh_TW |
| dc.subject | 溫度梯度 | zh_TW |
| dc.subject | 除鹽 | zh_TW |
| dc.subject | 奈米流體裝置 | zh_TW |
| dc.subject | 施加壓差 | zh_TW |
| dc.subject | 電動能源轉換 | zh_TW |
| dc.subject | Applied pressure difference | en |
| dc.subject | Electrokinetic energy conversion | en |
| dc.subject | Osmotic energy conversion | en |
| dc.subject | Thermal gradient | en |
| dc.subject | Nanofluidic device | en |
| dc.subject | Desalination | en |
| dc.title | 利用施加壓差來提升滲透能源轉換與利用溫度梯度來改進電動能源轉換和除鹽表現 | zh_TW |
| dc.title | Enhancing the Osmotic Energy Conversion with Applied Pressure Difference and Improving Electrokinetic Energy Conversion and Desalination Performance with Thermal Gradients | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉宣良;郭勇志;曾琇瑱 | zh_TW |
| dc.contributor.oralexamcommittee | Hsuan-Liang Liu;Yung-Chih Kuo;Shio-jenn Tseng | en |
| dc.subject.keyword | 奈米流體裝置,施加壓差,電動能源轉換,滲透能源轉換,溫度梯度,除鹽, | zh_TW |
| dc.subject.keyword | Nanofluidic device,Applied pressure difference,Electrokinetic energy conversion,Osmotic energy conversion,Thermal gradient,Desalination, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202302050 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
