Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志豪zh_TW
dc.contributor.advisorChih-hao Hsiehen
dc.contributor.author林哲越zh_TW
dc.contributor.authorJhe-Yue Linen
dc.date.accessioned2023-08-15T16:45:34Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-20-
dc.identifier.citationAdams, C. F., Alade, L. A., Legault, C. M., O’Brien, L., Palmer, M. C., Sosebee, K. A., & Traver, M. L. (2018). Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks. PLoS One, 13(4), e0196583.
Bell, R. J., Richardson, D. E., Hare, J. A., Lynch, P. D., & Fratantoni, P. S. (2015). Disentangling the effects of climate, abundance, and size on the distribution of marine fish: an example based on four stocks from the Northeast US shelf. ICES Journal of Marine Science, 72(5), 1311-1322.
Berkeley, S. A., Hixon, M. A., Larson, R. J., & Love, M. S. (2004). Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries, 29(8), 23-32.
BjØrnstad, O. N., & Falck, W. (2001). Nonparametric spatial covariance functions: estimation and testing. Environmental and Ecological Statistics, 8, 53-70.
Brown, J. H., & Kodric-Brown, A. (1977). Turnover rates in insular biogeography: effect of immigration on extinction. Ecology, 58(2), 445-449.
Buelga Díaz, A., Castañón Fernández, C., Ares, G., Prieto, D. A., & Álvarez, I. D. (2022). RecMin Variograms: visualisation and three-dimensional calculation of variograms in block modelling applications in Geology and Mining. International Journal of Environmental Research and Public Health, 19(19), 12454.
Cressie, N., & Wikle, C. K. (2015). Statistics for spatio-temporal data. John Wiley & Sons.
Defriez, E. J., Sheppard, L. W., Reid, P. C., & Reuman, D. C. (2016). Climate change‐related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea. Global change biology, 22(6), 2069-2080.
Di Cecco, G. J., & Gouhier, T. C. (2018). Increased spatial and temporal autocorrelation of temperature under climate change. Sci Rep, 8(1), 14850. https://doi.org/10.1038/s41598-018-33217-0
Earn, D. J., Levin, S. A., & Rohani, P. (2000). Coherence and conservation. Science, 290(5495), 1360-1364.
Engelhard, G. H., Righton, D. A., & Pinnegar, J. K. (2014). Climate change and fishing: a century of shifting distribution in North Sea cod. Global change biology, 20(8), 2473-2483.
Engen, S., Lande, R., & Sæther, B.-E. (2002). The spatial scale of population fluctuations and quasi-extinction risk. The American Naturalist, 160(4), 439-451.
Engen, S., Lande, R., Sæther, B.-E., & Bregnballe, T. (2005). Estimating the pattern of synchrony in fluctuating populations. Journal of Animal Ecology, 601-611.
Engen, S., Lee, A. M., & Sæther, B.-E. (2018). Spatial distribution and optimal harvesting of an age-structured population in a fluctuating environment. Mathematical biosciences, 296, 36-44.
Frank, K. T., Petrie, B., Leggett, W. C., & Boyce, D. G. (2016). Large scale, synchronous variability of marine fish populations driven by commercial exploitation. Proceedings of the National Academy of Sciences of USA, 113(29), 8248-8253.
Garcia, S. M., Kolding, J., Rice, J., Rochet, M.-J., Zhou, S., Arimoto, T., Beyer, J., Borges, L., Bundy, A., & Dunn, D. (2012). Reconsidering the consequences of selective fisheries. science, 335(6072), 1045-1047.
Grøtan, V., Sæther, B.-E., Engen, S., Solberg, E. J., Linnell, J. D., Andersen, R., Brøseth, H., & Lund, E. (2005). Climate causes large‐scale spatial synchrony in population fluctuations of a temperate herbivore. Ecology, 86(6), 1472-1482.
Hixon, M. A., Johnson, D. W., & Sogard, S. M. (2014). BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES Journal of Marine Science, 71(8), 2171-2185.
Hsieh, C.-h., Reiss, C., Watson, W., Allen, M. J., Hunter, J. R., Lea, R. N., Rosenblatt, R. H., Smith, P. E., & Sugihara, G. (2005). A comparison of long-term trends and variability in populations of larvae of exploited and unexploited fishes in the Southern California region: A community approach. Progress in oceanography, 67(1-2), 160-185.
Hsieh, C.-h., Reiss, C. S., Hewitt, R. P., & Sugihara, G. (2008). Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Canadian Journal of Fisheries and Aquatic Sciences, 65(5), 947-961. https://doi.org/10.1139/f08-017
Hsieh, c. H., Kim, H. J., Watson, W., Di Lorenzo, E., & Sugihara, G. (2009). Climate‐driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Global change biology, 15(9), 2137-2152.
Hsieh, C. H., Reiss, C. S., Hunter, J. R., Beddington, J. R., May, R. M., & Sugihara, G. (2006). Fishing elevates variability in the abundance of exploited species. Nature, 443(7113), 859-862. https://doi.org/10.1038/nature05232
Huse, G., Fernö, A., & Holst, J. C. (2010). Establishment of new wintering areas in herring co-occurs with peaks in the ‘first time/repeat spawner’ratio. Marine Ecology Progress Series, 409, 189-198.
Jared, T., Daniel, L., Michael, L., Tyler, D., Thomas, R., Randall, M., Mark, P., & Eric, K. (2015). Spatial synchrony in cisco recruitment. Fisheries research.
Koenig, W. D., & Liebhold, A. M. (2016). Temporally increasing spatial synchrony of North American temperature and bird populations. Nature Climate Change, 6(6), 614-617.
Krebs, C. J., Boonstra, R., Boutin, S., & Sinclair, A. R. (2001). What drives the 10-year cycle of snowshoe hares? The ten-year cycle of snowshoe hares—one of the most striking features of the boreal forest—is a product of the interaction between predation and food supplies, as large-scale experiments in the Yukon have demonstrated. BioScience, 51(1), 25-35.
Kuo, T. C., Mandal, S., Yamauchi, A., & Hsieh, C. h. (2016). Life history traits and exploitation affect the spatial mean‐variance relationship in fish abundance. Ecology, 97(5), 1251-1259.
Lande, R., Engen, S., & Sæther, B.-E. (1999). Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation. The American Naturalist, 154(3), 271-281.
Liebhold, A., Koenig, W. D., & Bjørnstad, O. N. (2004). Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst., 35, 467-490.
Lindegren, M., & Checkley Jr, D. M. (2013). Temperature dependence of Pacific sardine (Sardinops sagax) recruitment in the California Current Ecosystem revisited and revised. Canadian Journal of Fisheries and Aquatic Sciences, 70(2), 245-252.
Marquez, J. F., Lee, A. M., Aanes, S., Engen, S., Herfindal, I., Salthaug, A., & Saether, B. E. (2019). Spatial scaling of population synchrony in marine fish depends on their life history. Ecol Lett, 22(11), 1787-1796. https://doi.org/10.1111/ele.13360
Marquez, J. F., Sæther, B. E., Aanes, S., Engen, S., Salthaug, A., & Lee, A. M. (2021). Age‐dependent patterns of spatial autocorrelation in fish populations. Ecology, 102(12), e03523.
Moran, P. A. (1953). The statistical analysis of the Canadian lynx cycle. Australian Journal of Zoology, 1(3), 291-298.
Myers, R., Mertz, G., & Bridson, J. (1997). Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences, 54(6), 1400-1407.
Nicolau, P. G., Ims, R. A., Sorbye, S. H., & Yoccoz, N. G. (2022). Seasonality, density dependence, and spatial population synchrony. Proc Natl Acad Sci U S A, 119(51), e2210144119. https://doi.org/10.1073/pnas.2210144119
Oken, K. L., Holland, D. S., & Punt, A. E. (2021). The effects of population synchrony, life history, and access constraints on benefits from fishing portfolios. Ecological Applications, 31(4), e2307.
Pan, R. Y., Kuo, T. C., & Hsieh, C. h. (2021). Hump‐shaped relationship between aggregation tendency and body size within fish populations. Ecography, 44(9), 1418-1427.
Paradis, E., Baillie, S., Sutherland, W., & Gregory, R. (1999). Dispersal and spatial scale affect synchrony in spatial population dynamics. Ecology Letters, 2(2), 114-120.
Paradis, E., Baillie, S. R., Sutherland, W. J., & Gregory, R. D. (2000). Spatial synchrony in populations of birds: effects of habitat, population trend, and spatial scale. Ecology, 81(8), 2112-2125.
Pardikes, N. A., Harrison, J. G., Shapiro, A. M., & Forister, M. L. (2017). Synchronous population dynamics in California butterflies explained by climatic forcing. Royal Society open science, 4(7), 170190.
Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science, 308(5730), 1912-1915.
Petatán-Ramírez, D., Ojeda-Ruiz, M. Á., Sánchez-Velasco, L., Rivas, D., Reyes-Bonilla, H., Cruz-Piñón, G., Morzaria-Luna, H. N., Cisneros-Montemayor, A. M., Cheung, W., & Salvadeo, C. (2019). Potential changes in the distribution of suitable habitat for Pacific sardine (Sardinops sagax) under climate change scenarios. Deep Sea Research Part II: Topical Studies in Oceanography, 169, 104632.
Planque, B., Fromentin, J.-M., Cury, P., Drinkwater, K. F., Jennings, S., Perry, R. I., & Kifani, S. (2010). How does fishing alter marine populations and ecosystems sensitivity to climate? Journal of Marine Systems, 79(3-4), 403-417.
Post, E., & Forchhammer, M. C. (2002). Synchronization of animal population dynamics by large-scale climate. Nature, 420(6912), 168-171.
Post, E., & Forchhammer, M. C. (2004). Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend. Proceedings of the National Academy of Sciences of USA, 101(25), 9286-9290.
Ranta, E., Kaitala, V., Lindström, J., & Linden, H. (1995). Synchrony in population dynamics. Proceedings of the Royal Society of London. Series B: Biological Sciences, 262(1364), 113-118.
Sang, H., & Huang, J. Z. (2012). A full scale approximation of covariance functions for large spatial data sets. Journal of the Royal Statistical Society Series B: Statistical Methodology, 74(1), 111-132.
Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., & Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited species. Nature, 465(7298), 609-612.
Sheppard, L. W., Bell, J. R., Harrington, R., & Reuman, D. C. (2016). Changes in large-scale climate alter spatial synchrony of aphid pests. Nature Climate Change, 6(6), 610-613.
Sheppard, L. W., Defriez, E. J., Reid, P. C., & Reuman, D. C. (2019). Synchrony is more than its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas. PLoS Computational Biology, 15(3), e1006744.
Sherman, M. (2011). Spatial statistics and spatio-temporal data: covariance functions and directional properties. John Wiley & Sons.
Stowe, E. S., Wenger, S. J., Freeman, M. C., & Freeman, B. J. (2020). Incorporating spatial synchrony in the status assessment of a threatened species with multivariate analysis. Biological Conservation, 248, 108612.
Stuart-Smith, R. D. (2021). Climate change: Large-scale abundance shifts in fishes. Current Biology, 31(21), R1445-R1447.
Sullaway, G. H., Shelton, A. O., & Samhouri, J. F. (2021). Synchrony erodes spatial portfolios of an anadromous fish and alters availability for resource users. Journal of Animal Ecology, 90(11), 2692-2703.
Sutherland, C., Elston, D. A., & Lambin, X. (2012). Multi‐scale processes in metapopulations: contributions of stage structure, rescue effect, and correlated extinctions. Ecology, 93(11), 2465-2473.
Vargas, A., Restrepo, S., & Diaz, D. (2022). The portfolio effect in a small-scale fishery reduces catch and fishing income variability in a highly dynamic ecosystem. PLoS One, 17(8), e0271172.
Walter, J. A., Sheppard, L. W., Anderson, T. L., Kastens, J. H., Bjørnstad, O. N., Liebhold, A. M., & Reuman, D. C. (2017). The geography of spatial synchrony. Ecology Letters, 20(7), 801-814.
Wang, D., Gouhier, T. C., Menge, B. A., & Ganguly, A. R. (2015). Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518(7539), 390-394.
Wang, H.-Y., Shen, S.-F., Chen, Y.-S., Kiang, Y.-K., & Heino, M. (2020). Life histories determine divergent population trends for fishes under climate warming. Nature Communications, 11(1), 4088.
Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M. J., Alexander, M., Qiu, B., & Visbeck, M. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2(3), 161-166.
Zhang, B., Sang, H., & Huang, J. Z. (2015). Full-scale approximations of spatio-temporal covariance models for large datasets. Statistica Sinica, 99-114.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88541-
dc.description.abstract空間同步效應是指同一物種分散在不同區域的族群會有相似的豐度變化情形,是一種常見的族群時空動態特徵。空間同步效應的強度會受到內在(例如: 個體散布、密度調節及生活史特徵)和外在因素影響(例如: 環境因子和漁撈)而有所不同。了解這些內外在因素對於空間同步效應所造成的影響至關重要,因為空間同步效應的改變會影響重要生態過程及功能,例如物種滅絕危機、疾病傳播和食物生產。在這篇研究當中,我探討氣候變遷和漁撈作用對於魚類族群的空間同步效應之影響,並將魚種的生活史特徵納入考量。我分析加州沿近海16種受捕撈影響和13種沒有受捕撈影響的魚種、海表溫(SST)和風速的空間同步效應之情形(1951-2007),資料取自 California Cooperative Oceanic Fisheries Investigations (CalCOFI)。我估算出各物種在空間距離為零之空間同步效應,在跨物種分析上發現,隨著特定生活史數值(性成熟年齡、性成熟體長、最大體長及食物階層)的增加,空間同步效應會有下降的情形,意味著 K 策略性的物種具有較低程度的空間同步效應。更重要的是,在考慮物種生活史特徵下,受捕撈影響物種相較於沒有受捕撈影響物種,具有較高的空間同步效應值,顯示漁撈會對物種的空間同步效應造成影響。另一方面,氣候變遷也改變環境因子和魚種的空間同步效應。在分析中發現,海表溫、風速及六種中的四種呈現完整的同步效應隨距離衰減之魚種,在氣候暖期顯現出較高程度的空間同步效應,因此環境因子空間同步效應的上升可能是導致魚群空間同步效應上升的主因。這些結果顯示外部因素(例如,氣候變遷及漁撈)會導致物種空間同步效應增加,進而使物種產生不穩定的族群動態,可能導致滅絕危機的提升。結論顯示避免空間同步效應上升具有一定的必要性,這是維持族群動態穩定性及生物資源永續利用的關鍵因素。zh_TW
dc.description.abstractSpatial synchrony, which refers to the simultaneous change of abundance in spatially separated subpopulations of a species, is a common feature in spatio-temporal population dynamics. The degree of spatial synchrony can be influenced by various intrinsic (e.g., dispersal, density regulation, and life-history traits) and extrinsic (e.g., environmental forcing and fishing) processes. Understanding the underlying mechanisms that drive such changes in spatial synchrony is essential because it can impact crucial ecological processes and functionings such as extinction risk, disease outbreak, and food production. In this study, I focus on investigating the response of spatial synchrony to climate transitions and fishing, with consideration of life-history traits of fish species. I extracted data from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) spanning the years from 1951-2007. I analyzed data of 16 exploited and 13 unexploited fish species, as well as sea surface temperature (SST) and wind speed of the CalCOFI region. My findings revealed that, in general, spatial synchrony at distance approaching zero decreases with certain increasing life-history traits (including age at maturation, length at maturation, maximum length, and trophic level). This finding indicates that species with traits associated with K-strategy tend to exhibit lower synchrony in nearby regions. Interestingly, exploited species demonstrated higher spatial synchrony at distance approaching zero values compared to unexploited species, after accounting for their life-history variation, suggesting that fishing has altered the spatial synchrony patterns of species. In addition, climate transitions have a modifying effect on the spatial synchrony of both environmental variables and some fish species. Specifically, during warm climate period, I observed an increase in synchrony for SST, wind speed, and four out of six species with the complete synchrony decay patterns. Thus, the increasing synchrony of environmental variables may be the underlying reason for the increasing synchrony observed among those fish species. My results emphasize that extrinsic factors such as climate transitions and fishing can enhance the spatial synchrony of fish, consequently leading to unstable population dynamics and an elevated risk of extinction. In order to maintain the stability of population dynamics and promote sustainable resource utilization, it is crucial to prevent the occurrence of strong spatial synchrony among subpopulation for a species.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:45:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:45:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
Table of contents vi
List of Figures vii
List of tables viii
Introduction 1
Methods and Materials 7
Data 7
Estimation of spatial synchrony 8
Spatial synchrony under influences of life-history traits, climate transitions and fishing 12
Results 15
Spatial synchrony of fishes 15
Estimation of spatial synchrony parameters 16
Spatial synchrony parameters versus life-history traits 17
Spatial synchrony during climate transitions 18
Spatial synchrony under fishing effects 19
Spatial synchrony versus ecological traits 20
Spatial synchrony of exploited and unexploited species during climate transitions 20
Discussion 22
References 43
Appendix 53
-
dc.language.isoen-
dc.subject族群動態穩定性zh_TW
dc.subject空間同步效應zh_TW
dc.subject生活史特徵zh_TW
dc.subject氣候變遷zh_TW
dc.subject漁撈效應zh_TW
dc.subjectLife-history traitsen
dc.subjectSpatial synchronyen
dc.subjectPopulation dynamics stabilityen
dc.subjectFishingen
dc.subjectClimate transitionsen
dc.title生活史特徵、氣候變遷與漁撈壓力對魚類族群的空間變異之影響zh_TW
dc.titleInfluences of life-history traits, climate transitions and fishing on fish spatial dynamicsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張以杰;柯佳吟;張俊偉;郭庭君zh_TW
dc.contributor.oralexamcommitteeYi-Jay Chang;Chia-Ying Ko;Chun-Wei Chang;Ting-Chun Kuoen
dc.subject.keyword空間同步效應,生活史特徵,氣候變遷,漁撈效應,族群動態穩定性,zh_TW
dc.subject.keywordSpatial synchrony,Life-history traits,Climate transitions,Fishing,Population dynamics stability,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202301753-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-20-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved