請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88523完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅敏輝 | zh_TW |
| dc.contributor.advisor | Min-Hui Lo | en |
| dc.contributor.author | 楊子瑩 | zh_TW |
| dc.contributor.author | Tzu-Ying Yang | en |
| dc.date.accessioned | 2023-08-15T16:40:54Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | 林秉毅、鄭兆尊、陳永明、簡毓瑭 (2021)。40年高解析度臺灣歷史氣候資料。國家災害防救科技中心。
Beniston, M., Diaz, H. F., & Bradley, R. S. (1997). Climatic change at high elevation sites: an overview. Climatic Change, 36(3-4), 233–251. https://doi.org/10.1023/A:1005380714349 Bruijnzeel, L. A., Mulligan, M., & Scatena, F. N. (2011). Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes, 25(3), 465-498. https://doi.org/10.1002/hyp.7974 Bruijnzeel, L. A., Scatena, F. N., & Hamilton, L. S. (Eds.). (2011). Tropical montane cloud forests: science for conservation and management. Cambridge University Press. Bubb, P., May, I., Miles, L., & Sayer, J. (2004). Cloud forest agenda. UNEP-WCMC, Cambridge, UK. Chang, S. C., Lai, I. L., & Wu, J. T. (2002). Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64(1-4), 159-167. https://doi.org/10.1016/S0169-8095(02)00088-1 Chen, F. (2007, April). The Noah land surface model in WRF: a short tutorial. In LSM group meeting. Chen, Y. Y., Huang, W., Wang, W. H., Juang, J. Y., Hong, J. S., Kato, T., & Luyssaert, S. (2019). Reconstructing Taiwan's land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific reports, 9(1), 3643. https://doi.org/10.1038/s41598-019-40063-1 Chu, H. S., Chang, S. C., Klemm, O., Lai, C. W., Lin, Y. Z., Wu, C. C., Lin, J. Y., Jiang, J. Y., Chen, J., Gottgens, J. F., & Hsia, Y. J. (2014). Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrological Processes, 28(3), 1190-1214. https://doi.org/10.1002/hyp.9662 Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey. https://doi.org/10.3133/ofr20111073 Dawson, A. (2016). eofs: A Library for EOF Analysis of Meteorological, Oceanographic, and Climate Data. Journal of Open Research Software, 4(1), p.e14. https://doi.org/10.5334/jors.122 European Centre for Medium-Range Weather Forecasts. (2017). ERA5 Reanalysis (Updated monthly) [Data set]. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6X34W69. Fischer, D. T., Still, C. J., Ebert, C. M., Baguskas, S. A., & Williams, A. P. (2016). Fog drip maintains dry season ecological function in a California coastal pine forest. Ecosphere, 7(6), e01364. https://doi.org/10.1002/ecs2.1364 Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., Zhang, K., Robertson, E., Kautz, M., Martens, B., Jiang, C., Arneth, A., Georgievski, G., Li, W., Ceccherini, G., Anthoni, P., Lawrence, P., Wiltshire, A., Pongratz, J., ... & Cescatti, A. (2020). Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 10(4), 356-362. https://doi.org/10.1038/s41558-020-0717-0 Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1-2), 73-106. https://doi.org/10.1016/S0012-8252(01)00056-3 Grubb, P.J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics, 8(1), 83-107. Gu, R. Y., Lo, M. H., Liao, C. Y., Jang, Y. S., Juang, J. Y., Huang, C. Y., Chang, S. C., Hsieh, C. I., Chen, Y. Y., Chu, H., & Chang, K. Y. (2021). Early peak of latent heat fluxes regulates diurnal temperature range in montane cloud forests. Journal of Hydrometeorology, 22(9), 2475-2487. https://doi.org/10.1175/JHM-D-21-0005.1 Hamilton, L. S., Juvik, J.O., & Scatena, F. N. (1993). Tropical montane cloud forests: proceedings of an international symposium at San Juan, Puerto Rico, 31 May-5 June 1993. Kayaba, N., Yamada, T., Hayashi, S., Onogi, K., Kobayashi, S., Yoshimoto, K., Kamiguchi, K., & Yamashita, K. (2016). Dynamical regional downscaling using the JRA-55 reanalysis (DSJRA-55). Sola, 12, 1-5. https://doi.org/10.2151/sola.2016-001 Lai, G. Y., Liu, H. C., Chung, C. H., Wang, C. K., & Huang, C. Y. (2021). Lidar-derived environmental drivers of epiphytic bryophyte biomass in tropical montane cloud forests. Remote Sensing of Environment, 253, 112166. https://doi.org/10.1016/j.rse.2020.112166 Mata-Guel, E. O., Soh, M. C. K., Butler, C. W., Morris, R. J., Razgour, O., & Peh, K. S.-H. (2023). Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biological Reviews, 98, 1200-1224. https://doi.org/10.1111/brv.12950 Mildenberger, K., Beiderwieden, E., Hsia, Y. J., & Klemm, O. (2009). CO2 and water vapor fluxes above a subtropical mountain cloud forest—The effect of light conditions and fog. Agricultural and Forest Meteorology, 149(10), 1730-1736. https://doi.org/10.1016/j.agrformet.2009.06.004 Nair, U. S., Lawton, R. O., Welch, R. M., & Pielke, R. A. (2003). Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. Journal of Geophysical Research: Atmospheres, 108(D7), 4206. https://doi.org/10.1029/2001JD001135 Oliveira, R. S., Eller, C. B., Bittencourt, P. R., & Mulligan, M. (2014). The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany, 113(6), 909-920. https://doi.org/10.1093/aob/mcu060 Pauchard, A., Kueffer, C., Dietz, H., Daehler, C. C., Alexander, J., Edwards, P. J., Arévalo, J. R., Cavieres, L. A., Guisan, A., Haider, S., Jakobs, G., McDougall, K., Millar, C. I., Naylor, B. J., Parks, C. G., Rew, L. J., & Seipel, T. (2009). Ain't no mountain high enough: plant invasions reaching new elevations. Frontiers in Ecology and the Environment, 7(9), 479-486. https://doi.org/10.1890/080072 Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., & Adler, C. (2022). Climate changes and their elevational patterns in the mountains of the world. Reviews of Geophysics, 60(1), e2020RG000730. https://doi.org/10.1029/2020RG000730 Pounds, J. A., Fogden, M. P., & Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature, 398(6728), 611-615. https://doi.org/10.1038/19297 Schulz, H. M., Thies, B., Chang, S. C., & Bendix, J. (2016). Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach. Atmospheric Measurement Techniques, 9(3), 1135-1152. https://doi.org/10.5194/amt-9-1135-2016 Schulz, H. M., Li, C. F., Thies, B., Chang, S. C., & Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLoS One, 12(2), e0172663. https://doi.org/10.1371/journal.pone.0172663 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., Huang, X., Wang, W., & Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. http://dx.doi.org/10.5065/D68S4MVH Stadtmüller, T. (1987). Cloud forests in the humid tropics: a bibliographic review. Still, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature, 398(6728), 608-610. https://doi.org/10.1038/19293 Williams, A. P., Schwartz, R. E., Iacobellis, S., Seager, R., Cook, B. I., Still, C. J., Husak, G., & Michaelsen, J. (2015). Urbanization causes increased cloud base height and decreased fog in coastal Southern California. Geophysical Research Letters, 42(5), 1527-1536. https://doi.org/10.1002/2015GL063266. Yang, X. (2005a). Analysis blending using a spatial filter in grid-point model coupling. Hirlam Newsletter, 48, 49-55. Yang, X. (2005b). Background blending using an incremental spatial filter. Hirlam Newsletter, 49, 3-11. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88523 | - |
| dc.description.abstract | 頻繁的雲霧籠罩與高相對濕度在雲霧森林的水文氣候循環中扮演重要的角色。在其獨特的微氣候特徵之下,雲霧森林孕育著多樣的物種,使其被視為全球的生物多樣性熱點。然而,過去有許多研究提及雲霧森林在氣候變遷下的脆弱度,其中有眾多文獻強調了氣候變遷下雲霧減少對雲霧森林的影響。相較於整個熱帶而言,臺灣的雲霧森林在森林面積中佔有相對高的比例,但過去有較少文獻針對臺灣的雲霧森林討論其在氣候變遷下所受到的衝擊。本研究透過分析臺灣東部1980到2021年的降尺度氣候資料,討論雲霧森林與非雲霧森林區域的微氣候在平均態及長期變異上的差異。結果顯示,坐落於中海拔區域的雲霧森林,其白天的相對濕度相較於臺灣東部其他區域有最高的平均量值以及最小的年際變化。當地的高相對濕度可以歸因於其白天大量的水氣來源,以及在克勞修斯-克萊佩龍方程(Clausius-Claypeyron relation)對溫度的非線性影響之下比低海拔地區小得多的飽和水氣量。另一方面,由於雲霧森林及高海拔區域的地表蒸發散量大多取決於當地能量多寡而非可用水量,使當地蒸發散得以調節乾濕年時,地表向大氣的水氣供應。在相近的水氣變化下,雲霧森林相較於高海拔區域更暖的溫度使其白天的相對濕度擁有較小的變化幅度。從相對濕度年際變化的穩定性來看,臺灣東部的雲霧森林展現出相較於其他區域更大的韌性,有別於過去文獻所強調在氣候變遷下雲霧森林的脆弱度。未來研究需更進一步了解外部水氣供應對雲霧森林相對濕度變化的貢獻,並且探討本研究所發現雲霧森林的韌性在未來氣候變遷下是否還將存在。 | zh_TW |
| dc.description.abstract | Frequent immersion of clouds at ground level and high relative humidity (RH) play vital roles in the hydroclimatological cycle of montane cloud forests (MCFs). These unique microclimates support a wide variety of species, making MCFs renowned as global biodiversity hotspots. However, the vulnerability of MCFs to climate change has been frequently mentioned in previous research, with many studies highlighting the impacts of reduced cloud and fog occurrence on these ecosystems that heavily rely on fog. While some of these studies have examined the conditions of MCFs in Taiwan, there remains a dearth of research on this topic. By analyzing downscaled climate data with a spatial resolution of 2km and a temporal resolution of hourly from 1980 to 2021, our study investigated the microclimate characteristics of MCFs in Eastern Taiwan. We compared these characteristics, including their mean state and long-term variations, with those of non-cloud-forested regions that encompassed all land types other than cloud forests. Our findings revealed that the MCFs, located in the mid-altitudes of Eastern Taiwan, exhibited the highest average daytime RH among the analyzed regions, while displaying the smallest interannual variations. The high mean RH can be attributed to the abundant water vapor supply during the daytime and the nonlinear effect of the Clausius-Clapeyron (C-C) relation on temperature that resulted in much smaller saturated water vapor amounts in the MCFs compared to lower elevations. Both the MCFs and high-altitude regions experienced energy-limited conditions, regulating their water vapor supply through evapotranspiration in dry and wet years. However, the warmer temperatures in the MCFs contributed to smaller variations in daytime RH compared to high-altitude regions. The high resilience of RH in Eastern Taiwan’s MCFs, with minimal interannual variations, suggests a contrast to the vulnerability emphasized in previous studies. Further investigations may be necessary to facilitate our understanding of the contribution of non-local water vapor supply to changes in RH and to determine whether the resilience we found in the MCFs will persist in the face of future climate change. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:40:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:40:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 Chapter 2 Data and Methodology 5 2.1 Downscaled historical climate data 5 2.2 Montane cloud forest map 8 2.3 Data analysis 10 2.3.1 Analyzed regions 10 2.3.2 Data processing 10 Chapter 3 Results 12 3.1 Mean state of RH along the altitude 12 3.2 Long-term variation of RH along the altitude 13 3.2.1 Trends 13 3.2.2 Interannual variations 14 Chapter 4 Discussion 16 4.1 The roles of water vapor supply and temperature on RH characteristics in MCFs 16 4.2 Relations of annual precipitation and RH in different elevations 19 4.3 Differences in RH characteristics among seasons 20 4.4 RH characteristics in Western Taiwan 23 4.5 Vulnerable or resilient 24 Chapter 5 Conclusions 27 FIGURES 30 REFERENCES 52 APPENDIX 59 | - |
| dc.language.iso | en | - |
| dc.subject | 雲霧森林 | zh_TW |
| dc.subject | 微氣候 | zh_TW |
| dc.subject | 相對濕度 | zh_TW |
| dc.subject | 韌性 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | relative humidity | en |
| dc.subject | microclimate | en |
| dc.subject | resilience | en |
| dc.subject | montane cloud forests | en |
| dc.subject | climate change | en |
| dc.title | 臺灣東部山區雲霧森林之微氣候韌性 | zh_TW |
| dc.title | The Resilience of Micro-climate in Eastern Taiwan Montane Cloud Forest Areas | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林博雄;黃倬英;莊振義;中井太郎 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Hsiung Lin;Cho-Ying Huang;Jehn-Yih Juang;Taro Nakai | en |
| dc.subject.keyword | 雲霧森林,相對濕度,微氣候,韌性,氣候變遷, | zh_TW |
| dc.subject.keyword | montane cloud forests,relative humidity,microclimate,resilience,climate change, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202302427 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 6.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
