Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88522
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周瑞仁zh_TW
dc.contributor.advisorJui-Jen Chouen
dc.contributor.author王妤凌zh_TW
dc.contributor.authorYu-Ling Wangen
dc.date.accessioned2023-08-15T16:40:39Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationCTIMES。2021。破解5G基地台迷思評估大規模MIMO的電磁波效應。台北:CTIMES。網址: https://www.ctimes.com.tw/DispArt/tw/%E6%84%9B%E7%BE%8E%E7%A7%91/%E9%9B%BB%E7%A3%81%E6%B3%A2/5G%E5%9F%BA%E5%9C%B0%E5%8F%B0/MIMO/21102114034S.shtml?fbclid=IwAR2Gj6BCgfmX7Sdf6wYHchZz3QLd69NoI9eVUQUbwPO76v-jsHqKVz23Fg4。上網日期:2022-12-12。
交通部民用航空局。2023。遙控無人機學科測驗指南。台北:交通部民用航空局。網址:https://www.caa.gov.tw/。上網日期:2023-03-12。
元利儀器。2023。AARTOS DDS 無人機偵測系統。台北:元利儀器股份有限公司。網址:https://www.drone-detection-system.com.tw/accessory/。上網日期:2022-04-19。
先創科技股份有限公司。DJI Mavic 3 到底能扛住多大的風。台北:先創國際股份有限公司。網址:https://www.youtube.com/watch?v=fqlqCu4rR4g。上網日期:2022-04-19。
先創科技股份有限公司。大疆DJI Mini 2抗風性不行? 8級風實測結果出爐。台北:先創國際股份有限公司。網址:https://www.youtube.com/watch?v=pnaC-n5ZoHU&t=235s。上網日期:2022-04-19。
台灣e光。2007。基地台的電磁波會影響健康嗎。台北:台灣e光。網址:https://sp1.hso.mohw.gov.tw/doctor/All/ShowDetail.php?q_no=47473。上網日期:2022-12-20。
國家運輸安全調查委員會。2021。台灣飛安統計2012-2021。台北:國家運輸安全調查委員會。網址:https://www.ttsb.gov.tw/media/5636/%E5%8F%B0%E7%81%A3%E9%A3%9B%E5%AE%89%E7%B5%B1%E8%A8%882012-2021.pdf。上網日期:2022-05-14
國立中央大學。2020。中央大學C波段氣象雷達簡介。桃園:國立中央大學大氣科學系雷達氣象實驗室。網址:https://radar.atm.ncu.edu.tw/topics/ncu-c-pol。上網日期:2022-5-17。
智慧財產權e網通。異質網路階層。台北:經濟部智慧財產局。網址: https://tiponet.tipo.gov.tw//downloads/module030/communication_103_2_4.pdf。上網日期:2023-06-12。
美國新聞。2019。猶他州男子在無人機飛入市中心後受傷。美國:美國新聞。網址:https: //www.usnews.com/news/best-states/utah/articles /2019-12-04/utah-man-injured-after-drone-flies-into-his-face。上網日期:2023-06-20。
蔡清彥、黃鐘洺、張長義、陳重功、洪勝富、李建堂、黎定華、陳文士、李文堯、程家平、童雅卿、廖鳳玲。1986。臺灣北部地區氣象觀測設施之分析暨氣象雷達站站址之研究。出自〝國立臺灣大學研究報告〞,1-38。蔡清彥、黃鐘洺、張長義主編。台北:國立臺灣大學。
行政院環保署。2022。非屬原子能游離輻射管制網。台北:行政院環保署。網址: https://nonionized.epa.gov.tw/Measurement.aspx。上網日期:2022-09-04
西雅圖時報。2017。在西雅圖驕傲遊行期間男子因無人機墜毀受傷女子而被定罪。西雅圖:西雅圖時報。網址:https: //www.seattletimes.com/seattle-news/crime/man-convicted-in-drone-crash-that-injured-woman-during-seattles-pride-parade/。上網日期:2023-06-20。
邵珮琪、林清一、吳東凌。2020。無人機於交通運輸領域應用與政策推動之探討。運輸計劃季刊49(3): 201-233。
閻憲廷。2023。無人機風險地圖之建置與視距內操作之規劃。碩士論文。台北:臺灣大學生物機電工程學研究所。
雲爸的私處。2020。教你看懂台灣5G頻段台灣電信業者5G頻段總整理。台北:雲爸的私處。網址: https://dacota.tw/blog/post/taiwan-5g-band. 上網日期:2023-06-23。
Abdallah, R., Kouta, R., Sarraf, C., Gaber, J., and Wack, M. 2017. Fault tree analysis for the communication of a fleet formation flight of UAVs. In “2017 2nd International Conference on System Reliability and Safety (ICSRS)”, 202-206. Milan, Italy: IEEE.
Al-Haddad, L. A., and Jaber, A. A. 2023. An intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform features. Drones 7(2): 82-102.
Allouch, A., Koubaa, A., Khalgui, M., and Abbes, T. 2019. Qualitative and quantitative risk analysis and safety assessment of unmanned aerial vehicles missions over the internet. IEEE Access 7: 53392-53410.
Ancel, E., Capristan, F. M., Foster, J. V., and Condotta, R. C. 2017. Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM). In “17th AIAA Aviation Technology, Integration, and Operations Conference”, 3273. Denver, Colorado: AIAA.
Ancel, E., Capristan, F. M., Foster, J. V., and Condotta, R. C. 2019. In-time non-participant casualty risk assessment to support onboard decision making for autonomous unmanned aircraft. In “AIAA Aviation 2019 forum”, 3053. Dallas, Texas: AIAA.
Ancel, E., Helsel, T., and Heinich, C. M. 2019. Ground risk assessment service provider (GRASP) development effort as a supplemental data service provider (SDSP) for urban unmanned aircraft system (UAS) Operations. In “2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)”,1-8. San Diego, CA, USA: IEEE.
Arain, B., and Kendoul, F. 2014. Real-time wind speed estimation and compensation for improved flight. IEEE Transactions on Aerospace and Electronic Systems 50(2): 1599-1606.
Asim, M., Ehsan, D. N., and Rafique, K. 2005. Probable causal factors in uav accidents based on human factor analysis and classification system. History 1905: 5.
Autel Robotics. 2019. EVO II pro specification. Available at: https://shop.autelrobotics.com/collections/evo-ii/products/evo-ii-pro-6k. Accessed 26 June 2023.
Barr, L. C., Newman, R., Ancel, E., Belcastro, C. M., Foster, J. V., Evans, J., and Klyde, D. H. 2017. Preliminary risk assessment for small, unmanned aircraft systems. In “17th AIAA Aviation Technology, Integration, and Operations Conference”, 3272. Denver, Colorado: AIAA.
Baser, M., Yorulmaz, S., and AkgüL, S. 2013. The role of unmanned aerial system (UAS) in decision process by operational environment's risk level. In “2013 International Conference on Unmanned Aircraft Systems (ICUAS)”,160-166. Atlanta, GA, USA: IEEE.
Belousov, A. O., Zhechev, Y. S., Chernikova, E. B., Nosov, A. V., and Gazizov, T. R. 2022. UAVs protection and countermeasures in a complex electromagnetic Environment. Complexity 2022: 1-16.
Benders, S., Wenz, A., and Johansen, T. A. 2018. Adaptive path planning for unmanned aircraft using in-flight wind velocity estimation. In “2018 International Conference on Unmanned Aircraft Systems (ICUAS)”, 483-492. Dallas, Texas, USA: IEEE.
Bennageh, I., Mahmoudi, H., and Labbadi, M. 2021. Impact of the electromagnetic environment on UAV’s datalink. IOP Conference Series: Earth and Environmental Science 785(1): 12010.
Bertrand, S., Raballand, N., and Viguier, F. 2018. Evaluating ground risk for road networks induced by uav operations. In “2018 International Conference on Unmanned Aircraft Systems (ICUAS)”,168-176. Dallas, Texas, USA: IEEE.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. 1984. Classification and regression trees. CRC press.
Castano, L., and Xu, H. 2019. Safe decision making for risk mitigation of UAS. In “2019 International Conference on Unmanned Aircraft Systems (ICUAS)”, 1326-1335. Atlanta, Georgia, USA: IEEE.
Chu, T., Starek, M. J., Berryhill, J., Quiroga, C., and Pashaei, M. 2021. Simulation and characterization of wind impacts on sUAS flight performance for crash scene reconstruction. Drones 5(3): 67.
Clothier, R. A., and Walker, R. A. 2015. The safety risk management of unmanned aircraft systems. Handbook of unmanned aerial vehicles 2015: 2229-2275.
Dalamagkidis, K., Valavanis, K. P., and Piegl, L. A. 2008. Evaluating the risk of unmanned aircraft ground impacts. In “2008 16th mediterranean conference on control and automation”, 709-716. Corsica, France: IEEE.
Deng, L., and Yu, D. 2014. Deep learning: methods and applications. Foundations and trends® in signal processing 7(3–4): 197-387.
Dmdsolutions. 2020.10 steps to achieving Specific Operations Risk Assessment. U.S.:RAMS academy safety. Available at: https://dmd.solutions/blog/2020/11/04/specific-operations-risk-assessment/. Accessed 27 June 2023.
Drone Surveys. 2022. US Drone Statistics 2023. U.K.: Drone Surveys. Available at: https://dronesurveyservices.com/drone-statistics/. Accessed 20 June 2023.
Dronesgator. 2022. Can Drones Fly in Strong Winds? U.S.: Dronesgator. Available at: https://dronesgator.com/can-drones-fly-in-strong-winds/. Accessed 29 August 2022.
DroneTalks. 2023. A guide to the Specific Operations Risk Assessment (SORA). Switzerland Gmbh: DroneTalks. Available at: https://dronetalks.online/blog/the-basics-of-sora/. Accessed 30 May 2023.
DRONEZON. 2020. Autel Evo 2 Review of Features, Specifications with FAQs. U.S.: DroneZon.com. Available at: https://www.dronezon.com/drone-reviews/autel-evo-2-drone-review-of-features-specifications-with-faqs-answered/. Accessed 20 June 2023.
EASA . 2019. Civil drones. European Union : EASA. Available at: https://www.easa.europa.eu/en/domains/civil-drones#:~:text=Civil%20drones%20%28unmanned%20aircraft%29%20or%20EU%20Regulations%202019%2F947,distinguish%20between%20leisure%20or%20commercial%20civil%20drone%20activities. Accessed 27 June 2023.
Ellis, K., and Borshchova, I. 2023. Towards a quantitative approach for determining DAA system risk ratio. Drones 7(2): 127.
European Union Aviation Safety Agency. 2023. Predefined risk assessment (PDRA). European Union: European Union Aviation Safety Agency. Available at: https://www.easa.europa.eu/en/domains/civil-drones-rpas/specific-category-civil-drones/predefined-risk-assessment-pdra. Accessed 23 May 2023.
FAA Aviation Safety Information Analysis and Sharing (ASIAS). 2008. NTSB Weather-Related Accidents.: FAA Aviation Safety Information Analysis and Sharing (ASIAS). Available at: https://www.asias.faa.gov/apex/f?p=100:8:::NO::P8_STDY_VAR:2. Accessed 12 March 2023.
Fourlas, G. K., and Karras, G. C. 2021. A survey on fault diagnosis methods for uavs. In “2021 International Conference on Unmanned Aircraft Systems (ICUAS)”, 394-403. Athens, Greece: IEEE.
Franco, B. J. D. O. M., and Góes, L. C. S. 2007. Failure analysis methods in unmanned aerial vehicle (UAV) applications. In “Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering”, 11. Associação Brasileira de Engenharia e Ciências Mecânicas: ABCM.
Gao, M., Hugenholtz, C. H., Fox, T. A., Kucharczyk, M., Barchyn, T. E., and Nesbit, P. R. 2021. Weather constraints on global drone flyability. Scientific reports 11(1): 12092.
Gao, Z., Wang, H., Xiang, Z., and Wang, D. 2021. Flight data-based wind disturbance and air data estimation. Atmosphere 12(4): 470.
GENERATION SOLAR. 2020. Cold Weather Battery Use and Care. Canada: Generation solar. Available at: https://www.generationsolar.com/batteries/cold-weather-battery-use-and-care/. Accessed 02 April 2023.
Ghasri, M., and Maghrebi, M. 2021. Factors affecting unmanned aerial vehicles’ safety: A post-occurrence exploratory data analysis of drones’ accidents and incidents in Australia. Safety science 139: 105273.
Guan, Y., Grote, K., Schott, J., and Leverett, K. 2022. Prediction of soil water content and electrical conductivity using random forest methods with UAV multispectral and ground-coupled geophysical data. Remote Sensing 14(4): 1023-1047.
Guglieri, G., Quagliotti, F., and Ristorto, G. 2014. Operational issues and assessment of risk for light UAVs. Journal of Unmanned Vehicle Systems 2(4): 119-129.
Haq, I. N., Leksono, E., Iqbal, M., Sodami, F. N., Kurniadi, D., and Yuliarto, B. 2014. Development of battery management system for cell monitoring and protection. In “2014 international conference on electrical engineering and computer science (ICEECS)”, 203-208. Kuta, Bali, Indonesia: IEEE.
Haq, I. N., Leksono, E., Iqbal, M., Sodami, F. N., Kurniadi, D., and Yuliarto, B. 2014. Development of battery management system for cell monitoring and protection. In “2014 international conference on electrical engineering and computer science (ICEECS)”, 203-208. Denpasar, Indonesia: IEEE.
Hayes, W. C., Erickson, M. S., and Power, E. D. 2007. Forensic injury biomechanics. Annu. Rev. Biomed. Eng. 9: 55-86.
Hegazy, O., Barrero, R., Van Mierlo, J., Lataire, P., Omar, N., and Coosemans, T. 2013. An advanced power electronics interface for electric vehicles applications. IEEE transactions on power electronics 28(12): 5508-5521.
Hfacs. 2014. The HFACS Framework. U.S.: HFACS, Inc. Available at: https://www.hfacs.com/hfacs-framework.html. Accessed 20 May 2023.
Hollenbeck, D., Oyama, M., Garcia, A., and Chen, Y. 2019. Pitch and roll effects of on-board wind measurements using sUAS. In “2019 International Conference on Unmanned Aircraft Systems (ICUAS)”, 1249-1254. Atlanta, GA, USA: IEEE.
Honghong, Z., Xusheng, G., Ying, L., Yarong, W., Jingjuan, S., Liang, T., and Feng, Y. 2022. Risk assessment framework for low-altitude UAV traffic management. Journal of IntelligentFuzzy Systems 42(3): 2775-2792.
Hou, Y., Huang, W., Zhou, H., Gu, F., Chang, Y., and He, Y. 2019. Analysis on wind resistance index of multi-rotor UAV. In “2019 Chinese Control and Decision Conference (CCDC)”,3693-3696. Nanchang, China: IEEE.
Hovenburg, A. R., de Alcantara Andrade, F. A., Rodin, C. D., Johansen, T. A., and Storvold, R. 2018. Inclusion of horizontal wind maps in path planning optimization of UAS. In “2018 International Conference on Unmanned Aircraft Systems (ICUAS)”, 513-520. Dallas, TX, USA: IEEE.
Hu, X., Pang, B., Dai, F., and Low, K. H. 2020. Risk assessment model for UAV cost-effective path planning in urban environments. IEEE Access 8: 150162-150173.
Huang, Y. K., and Chuang, F. C. 2020. A brief on risk management and application models of unmanned aerial vehicles. In “2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII)”,1-4. Kaohsiung, Taiwan: IEEE.
IMARC. 2023. Drone Package Delivery Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028. U.S.: IMARC Group. Available at: https://www.imarcgroup.com/about-us. Accessed 02 April 2023.
Ioannou, S., Dalamagkidis, K., Stefanakos, E. K., Valavanis, K. P., and Wiley, P. H. 2016. Runtime, capacity and discharge current relationship for lead acid and lithium batteries. In “2016 24th Mediterranean Conference on Control and Automation (MED)”, 46-53. Athens, Greece: IEEE.
Jiao, Q., Liu, Y., Zheng, Z., Sun, L., Bai, Y., Zhang, Z., and Yan, Y. 2022. Ground risk assessment for unmanned aircraft systems based on dynamic model. Drones 6(11): 324.
Kaplan, S., and Garrick, B. J. 1981. On the quantitative definition of risk. Risk analysis 1(1): 11-27.
Kasprzyk, P. J., and Konert, A. 2021. Reporting and investigation of unmanned aircraft systems (UAS) accidents and serious incidents. Regulatory perspective. Journal of IntelligentRobotic Systems 103(1): 3.
Khofiyah, N. A., Sutopo, W., and Nugroho, B. D. A. 2019. Technical feasibility battery lithium to support unmanned aerial vehicle (UAV): A technical review. In “Proceedings of the International Conference on Industrial Engineering and Operations Management”, 3591-3601. Industrial Engineering & Operations Management Society: IEOM Society International.
Kim, S. G., Lee, E., Hong, I. P., and Yook, J. G. 2022. Review of intentional electromagnetic interference on UAV sensor modules and experimental study. Sensors 22(6): 2384.
Kobaszyńska-Twardowska, A., Łukasiewicz, J., and Sielicki, P. W. 2022. Risk management model for unmanned aerial vehicles during flight operations. materials 15(7): 2448.
La Cour-Harbo, A. 2017. Mass threshold for ‘harmless’ drones. International Journal of Micro Air Vehicles 9(2): 77-92.
La Cour-Harbo, A. 2019. Quantifying risk of ground impact fatalities for small, unmanned aircraft. Journal of IntelligentRobotic Systems 93(1-2): 367-384.
Langåker, H. A., Kjerkreit, H., Syversen, C. L., Moore, R. J., Holhjem, Ø. H., Jensen, I., and Johnsen, J. E. 2021. An autonomous drone-based system for inspection of electrical substations. International Journal of Advanced Robotic Systems 18(2):1-15.
Lee, J. H., and Lee, I. S. 2022. Estimation of online state of charge and state of health based on neural network model banks using lithium batteries. Sensors, 22(15): 5536.
Lei, Y., and Wang, H. 2020. Aerodynamic performance of a quadrotor MAV considering the horizontal wind. IEEE Access 8: 109421-109428.
Li, J., Cheng, J. H., Shi, J. Y., and Huang, F. 2012. Brief introduction of back propagation (BP) neural network algorithm and its improvement. Advances in Computer Science and Information Engineering 2: 553-558.
Li, N., Liu, X., Yu, B., Li, L., Xu, J., and Tan, Q. 2021. Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions. Energy 219: 119481.
Li, Y., and Liu, M. 2022. Path planning of electric VTOL UAV considering minimum energy consumption in urban areas. Sustainability 14(20): 13421.
Li, Y.; Ding, Q., Li, K., Valtchev, S., Li, S., and Yin, L. 2021. A survey of electromagnetic influence on UAVs from an EHV power converter stations and possible countermeasures. Electronics 2021 10: 701.
Lin, C. E., and Shao, P. C. 2020. Failure analysis for an unmanned aerial vehicle using safe path planning. Journal of Aerospace Information Systems 17(7): 358-369.
Liu, Y., Zhang, X., Wang, Z., Gao, Z., and Liu, C. 2021. Ground risk assessment of UAV operations based on horizontal distance estimation under uncertain conditions. Mathematical Problems in Engineering 2021: 1-12.
Lum, C., Gauksheim, K., Deseure, C., Vagners, J., and McGeer, T. 2011. Assessing and estimating risk of operating unmanned aerial systems in populated areas. In “11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference”, 6918.Virginia Beach, VA: AIAA.
Lyu, T., Song, W., and Du, K. 2019. Human factors analysis of air traffic safety based on HFACS-BN model. Applied Sciences 9(23): 5049.
Lyu, X., Gu, H., Wang, Y., Li, Z., Shen, S., and Zhang, F. 2017. Design and implementation of a quadrotor tail-sitter VTOL UAV. In “2017 IEEE international conference on robotics and automation (ICRA)”, 3924-3930. Singapore: IEEE.
Magister, T. 2010. The small, unmanned aircraft blunt criterion-based injury potential estimation. Safety science 48(10): 1313-1320.
Marino, M., Fisher, A., Clothier, R., Watkins, S., Prudden, S., and Leung, C. S. 2015. An evaluation of multi-rotor unmanned aircraft as flying wind sensors. International Journal of Micro Air Vehicles 7(3): 285-299.
Melnyk, R., Schrage, D., Volovoi, V., and Jimenez, H. 2014. A third-party casualty risk model for unmanned aircraft system operations. Reliability EngineeringSystem Safety 124: 105-116.
Moud, H. I., Shojaei, A., Flood, I., Zhang, X., Hatami, M., and Rinker, M. E. 2018. Qualitative and quantitative risk analysis of unmanned aerial vehicle flights over construction job sites. In “Proceedings of the Eighth International Conference on Advanced Communications and Computation (INFOCOMP 2018)”,22-26. Barcelona, Spain: INFOCOMP.
National Aeronautics and Space Administration. 2022. Risk Assessment for Unmanned Aircraft Systems (UAS). U.S.: National Aeronautics and Space Administration. Available at: https://sacd.larc.nasa.gov/risk-assessment-for-unmanned-aircraft-systems-uas/. Accessed 23 April 2023.
NIST. 2023. Risk. U.S.: National institute of standards and technology. Available at: https://csrc.nist.gov/glossary/term/risk. Accessed 27 June 2023.
NSW government. 2023. Injury scoring. NSW: NSW government. Available at: https://aci.health.nsw.gov.au/networks/trauma/data/injury-scoring. Accessed 23 April 2023.
Oakes, B. D., Mattsson, L. G., Näsman, P., and Glazunov, A. A. 2018. A Systems‐Based Risk Assessment Framework for Intentional Electromagnetic Interference (IEMI) on Critical Infrastructures. Risk Analysis 38(6): 1279-1305.
Omar, N., Van den Bossche, P., Coosemans, T., and Van Mierlo, J. 2013. Peukert revisited—Critical appraisal and need for modification for lithium-ion batteries. Energies 6(11): 5625-5641.
Oncu, M., and Yildiz, S. 2014. An analysis of human causal factors in unmanned aerial vehicle (UAV) accidents. In “MBA professional report”,1-109. Powley, E. and Hudgens, B.: NAVAL POSTGRADUATE SCHOOL MONTEREY CA GRADUATE SCHOOL OF BUSINESS AND PUBLIC POLICY.
Palazzetti, L. 2021. Routing Drones Being Aware of Wind Conditions: a Case Study. In “2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS)”, 343-350. Pafos, Cyprus: IEEE.
PARAZERO. 2017. Safety Incidents Involving Civilian Drones Are Surging. Be’er Israel:PARAZERO. Available at: https://parazero.com/2017/12/10/safety-incidents-involving-civilian-drones-are-surging/. Accessed 30 June 2023.
Paw, Yew Chai, Ang, Yun Mei, and Elisa. 2023. Battery Cycle Life Assessment Dataset for Transporter Drone. Singapore Institute of Technology.
PHYSORG. 2018. Improving drone performance in headwinds. Tohoku : Tohoku University. Available at: https://phys.org/news/2018-02-drone-headwinds.html. Accessed 13 May 2023.
Precedence Research. 2023.Drone Services Market. Canada: Precedence Research. Available at: https://www.precedenceresearch.com/about-us. Accessed 02 April 2023.
PS, R., and Jeyan, M. L. 2020. Mini unmanned aerial systems (UAV)-A review of the parameters for classification of a mini UAV. International Journal of Aviation, Aeronautics, and Aerospace 7(3): 5.
Range Safety Group. 1999. Range safety criteria for unmanned air vehicles - rationale and methodology supplement, Supplement to document . In “Range Commanders Council”, 23-99.
Rattanagraikanakorn, B., Blom, H. A., Sharpanskykh, A., De Wagter, C., Jiang, C., Schuurman, M. J., and Happee, R. 2020. Modeling and simulating human fatality due to quadrotor UAS impact. In “AIAA Aviation 2020 Forum”, 2902.
Raymond, D., Van Ee, C., Crawford, G., and Bir, C. 2009. Tolerance of the skull to blunt ballistic temporo-parietal impact. Journal of biomechanics 42(15): 2479-2485.
REPORT DRONE ACCIDENT. 2019. Fatality Calculations for Falling UAS.UK: REPORT DRONE ACCIDENT. Available at: https://reportdroneaccident.com/817/fatality-calculations-for-falling-uas/. Accessed 23 June 2022.
Rezinkina, M. M., Sokol, Y. I., Zaporozhets, A. O., Gryb, O. G., Karpaliuk, I. T., and Shvets, S. V. 2021. Monitoring of energy objects parameters with using UAVs. In “Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs)” ,1-8. Cham: Springer International Publishing.
Rezinkina, M., Rezinkin, O., and Zaporozhets, A. 2021. UAVs application in power engineering. In “2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD)”, 161-164. Kyiv, Ukraine: IEEE.
Rodrigues, T. A., Patrikar, J., Choudhry, A., Feldgoise, J., Arcot, V., Gahlaut, A., and Samaras, C. 2021. In-flight positional and energy use data set of a DJI Matrice 100 quadcopter for small package delivery. Scientific Data 8(1): 155.
Rodríguez, J. V., Martínez-Inglés, M. T., Garcia-Pardo, J. M. M., Juan-Llácer, L., and Rodríguez-Rodríguez, I. 2023. UTD-PO Solutions for the Analysis of Multiple Diffraction by Trees and Buildings When Assuming Spherical-Wave Incidence. Electronics 12(4): 899.
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., and Chica-Rivas, M. J. O. G. R. 2015. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews 71:804-818.
Roseman, C. A., and Argrow, B. M. 2020. Weather hazard risk quantification for sUAS safety risk management. Journal of Atmospheric and Oceanic Technology 37(7): 1251-1268.
Roßbach, P. 2018. Neural networks vs. random forests–Does it always have to be deep Learning? Germany: Frankfurt school of finance and management.
Rudnick-Cohen, E., Herrmann, J. W., and Azarm, S. 2019. Modeling unmanned aerial system (UAS) risks via Monte Carlo simulation. In “2019 International Conference on Unmanned Aircraft Systems (ICUAS)”, 1296-1305. Atlanta, United States: IEEE.
Said Nawar, S. and Mouazen, A.M. 2017. Comparison between random forests, artificial neural networks, and gradient boosted machines methods of on-line vis-NIR spectroscopy measurements of soil total nitrogen and total carbon. Sensor 17 : 2428-2450.
Scanavino, M., Avi, A., Vilardi, A., and Guglieri, G. 2021. Unmanned aircraft systems performance in a climate-controlled laboratory. Journal of IntelligentRobotic Systems 102(1): 24.
Segal, M. R. 2004. Machine learning benchmarks and random forest regression.
Shafiee, M., Zhou, Z., Mei, L., Dinmohammadi, F., Karama, J., and Flynn, D. 2021. Unmanned aerial drones for inspection of offshore wind turbines: A mission-critical failure analysis. Robotics 10(1): 26.
Shao, P. C. 2020. Risk assessment for UAS logistic delivery under UAS traffic management environment. Aerospace 7(10): 140.
Shelley, A. V. 2016. A model of human harm from a falling unmanned aircraft: implications for UAS regulation. International Journal of Aviation, Aeronautics, and Aerospace 3(3): 1.
Shelley, A. V. 2023. Ground Risk Model for UAVs. International Journal of Aviation, Aeronautics, and Aerospace 10(1): 1.
SKYbrary. 2020. Human Factors Analysis and Classification System (HFACS). European Regions: SKYbrary. Available at: https://www.skybrary.aero/articles/human-factors-analysis-and-classification-system-hfacs. Accessed 20 June 2023.
Sorbelli, F. B., Corò, F., Das, S. K., and Pinotti, C. M. 2020. Energy-constrained delivery of goods with drones under varying wind conditions. IEEE Transactions on Intelligent Transportation Systems 22(9): 6048-6060.
Stakeholder map. 2008. What is a Risk? 10 definitions from different industries and standards. Available at: https://www.stakeholdermap.com/risk/risk-definition.html. Accessed 23 May 2023.
Susini, A. 2015. A technocritical review of drones’ crash risk probabilistic consequences and its societal acceptance. Lnis 7: 27-38.
Tang, C., Yang, C., Cai, R. S., Ye, H., Duan, L., Zhang, Z., and Cai, P. 2019. Analysis of the relationship between electromagnetic radiation characteristics and urban functions in highly populated urban areas. Science of the Total Environment, 654: 535-540.
Tarmizi, A. I., Rotaru, M. D., and Sykulski, J. K. 2016. Magnetic field calculations within substation environment for EMC studies. In “2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)”, 1-6. Florence, Italy: IEEE.
The Washington Post. 2014. Fallen from the skies. U.S.: The Washington Post. Available at: https://www.washingtonpost.com/wp-srv/special/national/drone-crashes/database/. Accessed 23 December 2022.
Thurlbeck, A. P., and Cao, Y. 2019. Analysis and modeling of UAV power system architectures. In “2019 IEEE Transportation Electrification Conference and Expo (ITEC)”, 1-8. Detroit, MI, USA: IEEE.
UASolutions. 2023. Conseil SORA. France: UASolutions. Available at: https://uasolutions.ch/fr/services-conseil-sora-fr/. Accessed 27 June 2023.
UASolutions. 2023. JARUS SORA: Simplifying the Process of Drone Operations in Europe. France: UASolutions. Available at: https://uasolutions.ch/jarus-sora-drone-operations-europe/. Accessed 23 May 2023.
UF/IFAS. 2021. DRONE INJURIES AND SAFETY RECOMMENDATIONS. Available at: https://edis.ifas.ufl.edu/publication/AE560. Accessed 30 June 2023.
University of Florida. 2021. DRONE INJURIES AND SAFETY RECOMMENDATIONS. Florida: University of Florida Institute of Food and Agricultural Sciences. Available at: https://edis.ifas.ufl.edu/publication/AE560. Accessed 20 June 2023.
Wackwitz, K., and Boedecker, H. 2015. Safety risk assessment for uav operation. In “Safe Airspace Integration Project, Part One”, 31-53. Hamburg, Germany: Drone Industry Insights.
Wang, B. H., Wang, D. B., Ali, Z. A., Ting Ting, B., and Wang, H. 2019. An overview of various kinds of wind effects on unmanned aerial vehicle. Measurement and Control 52(7-8): 731-739.
Washington, A., Clothier, R. A., and Silva, J. 2017. A review of unmanned aircraft system ground risk models. Progress in Aerospace Sciences 95: 24-44.
Weibel, R., and Hansman, R. J. 2004. Safety considerations for operation of different classes of UAVs in the NAS. In “AIAA 4th aviation technology, integration and operations (atio) forum”, 6244.Chicago, Illinois: AIAA
Wenz, A., and Johansen, T. A. 2020. Real-time moving horizon estimation of air data parameters and wind velocities for fixed-wing UAVs. In “2020 International Conference on Unmanned Aircraft Systems (ICUAS)”, 998-1006. Athens, Greece: IEEE.
Wild, G., Gavin, K., Murray, J., Silva, J., and Baxter, G. 2017. A post-accident analysis of civil remotely piloted aircraft system accidents and incidents. Journal of Aerospace Technology and Management 9: 157-168.
Wright State University . 2005. A summary of unmanned aircraft accident/incident data: Human factors implications. In “2005 International Symposium on Aviation Psychology”, ed. Williams Ph D, and K. W., 824. Wright Dayton, Ohio: State University.
Xu, C., Liao, X., Tan, J., Ye, H., and Lu, H. 2020. Recent research progress of unmanned aerial vehicle regulation policies and technologies in urban low altitude. IEEE Access 8: 74175-74194.
Yazvinskaya, N. N., Lipkin, M. S., Galushkin, N. E., and Galushkin, D. N. 2022. Peukert Generalized Equations Applicability with Due Consideration of Internal Resistance of Automotive-Grade Lithium-Ion Batteries for Their Capacity Evaluation. Energies 15(8): 2825.
Zhang, D., Cheng, E., Wan, H., Zhou, X., and Chen, Y. 2018. Prediction of electromagnetic compatibility for dynamic datalink of UAV. IEEE Transactions on Electromagnetic Compatibility 61(5): 1474-1482.
Zhang, D., Zhou, X., Cheng, E., Wan, H., and Chen, Y. 2019. Investigation on effects of HPM pulse on UAV's datalink. IEEE Transactions on Electromagnetic Compatibility 62(3): 829-839.
Zhang, J., Campbell, J. F., Sweeney II, D. C., and Hupman, A. C. 2021. Energy consumption models for delivery drones: A comparison and assessment. Transportation Research Part D: Transport and Environment 90: 102668.
Zhang, X., Liu, Y., Zhang, Y., Guan, X., Delahaye, D., and Tang, L. 2018. Safety assessment and risk estimation for unmanned aerial vehicles operating in national airspace system. Journal of Advanced Transportation 2018: 970 - 987.
Zhang, Z., Feng, C., Wang, Z., Xia, Q., and Li, S. 2020. UAV flight risk identification and evaluation scheme. In “2020 International Conference on Unmanned Aircraft Systems (ICUAS)”, 968-974. Athens, Greece: IEEE.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88522-
dc.description.abstract本研究透過無人機墜機可能性推論模型評估地面風險。相對於有人機,由於無人機的取得容易和操作門檻較低,使其快速普及並廣泛應用;加上無人機可在低空飛行且數量急遽增加,這使得地面風險大幅提高。過去的研究著重於某些因素對地面風險的影響,本研究根據前人研究成果進行全面且系統化地評估。地面風險綜合考量墜機發生率、機體衝擊與動態人口密度。其中墜機發生原因包括人為操作、無人機本身的抗風能力和風況、飛航中的能量損失、衛星導航問題以及電磁干擾引起的通訊失效。利用文獻研究、數據、公式以及機器學習工具分別建立人為操作、抗風、能量損失、衛星通訊以及電磁干擾五項墜機推論子模型。研究中比較隨機森林和深度神經網路之差異,並選擇適用的機器學習方法。綜合考慮動態人口密度和機體衝擊所致之傷亡率,計算每平方公里無人機造成的地面風險值。結果顯示使用深度神經網路可以建立一個不斷更新且更接近實際情況的預測模型。未來無人機飛航管理系統若成功地建置,即可收集大量的真實數據,建立一個數據驅動之地面風險評估系統,如此可以提供監管決策、飛航路徑規劃、地面風險地圖建置之參考依據。zh_TW
dc.description.abstractThis study established a model to predict the probability of unmanned aerial vehicle (UAV) crash and conduct ground risk assessment. The greater availability and simpler operation of UAVs compared with manned aerial vehicles have contributed to their growing prevalence and extensive applications among the public. However, the ability of UAVs to fly at low altitudes and the rapidly growing number of UAVs both contribute greatly to the increase in ground risk. Most studies have discussed the effect of few factors on ground risk. To address this research gap, this study conducted a comprehensive and systematic review of relevant literature and accounted for crash probability, UAV impact, and population density in ground risk assessment. Reasons of UAV crashes may concern human operation, wind resistance of UAVs, wind conditions, energy loss during flight, satellite navigation problems, and lost communication due to electromagnetic interference. Accordingly, relevant literature findings, data, equations, and machine learning techniques were employed to establish five crash probability submodels, which were individually based on human operation, wind resistance, energy loss, satellite navigation, or electromagnetic interference. Prediction results obtained from the random forest regression algorithm and deep neural network algorithm were compared to identify the optimal machine learning model. Ground risk attributed to UAV operation per km2 was calculated based on population density and mortality and injuries due to UAV impact. The results verified that the deep neural network model yielded more accurate prediction results through constant update, thereby more closely reflecting real-world situations compared with the random forest model. In sum, the construction of a UAV flight management system enables the collection of immense real-world data, which can be used to create a data-driven ground risk assessment system and thereby provide referential data for regulatory decision-making, flight route planning, and ground risk mapping.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:40:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:40:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1研究背景與動機 1
1.1.1無人機的發展 1
1.1.2隱憂 2
1.2研究目的 3
1.3本研究在團隊研究中之定位 4
1.4研究限制 5
1.5研究章節編排 7
第二章 文獻探討 8
2.1風險 8
2.1.1危害與風險 8
2.1.2風險定義 8
2.1.3常見風險評估方法 9
2.2無人機國際標準安全風險管理評估 12
2.2.1特定運行風險評估(SORA) 12
2.2.2基於UTM的風險評估系統架構 17
2.3相關類似研究 20
2.3.1與分析墜機的可能性相關之研究 21
2.3.2與無人機墜落後可能產生的影響之研究 21
2.4建構深究墜機可能性的地面風險評估系統 23
第三章 材料與方法 25
3.1整體研究架構 25
3.1.1個別因素之墜機可能性推論模型概述 26
3.1.2墜機可能性預測模型之建置概述 27
3.1.3地面風險評估方式概述 27
3.2研究假設與流程 28
3.2.1研究假設 28
3.2.2研究流程與方法 28
3.3無人機墜機原因分析 29
3.4人為操作墜機推論子模型 31
3.4.1人類操作因素分析和分類系統 31
3.4.2設計原理與其評估方式 33
3.5抗風墜機推論子模型 36
3.5.1風與飛航穩定性 36
3.5.2設計原理與其評估方式 37
3.6能量損失墜機推論子模型 38
3.6.1造成能量損失之因素 38
3.6.2設計原理與其評估方式 43
3.7衛星通訊墜機推論子模型 46
3.8電磁干擾墜機推論子模型 47
3.8.1電磁輻射造成無人機墜機的原因 47
3.8.2設計原理與其評估方式 48
3.9權重分析 56
3.9.1事故原因分類方式 56
3.9.2各項因子之權重訂定 57
3.10墜機可能性預測模型之建置 58
3.10.1DNN模型 59
3.10.2模型輸入 60
3.10.3模型標籤定義 60
3.11地面風險評估方式 61
3.12實驗器材和數據 62
3.12.1軟硬體設備 62
3.12.2實驗數據 64
3.12.3應用數據驗證模型表現 66
3.13隨機森林與深度神經網路 66
3.13.1隨機森林 67
3.13.2深度神經網路 70
3.13.3兩者比較 70
第四章 結果與討論 72
4.1人為操作墜機推論結果 72
4.1.1以RF與DNN訓練之結果比較 73
4.1.2舉例說明 77
4.2抗風墜機推論結果 78
4.2.1使用風洞數據修正前之評估結果 78
4.2.2使用風洞數據修正後之評估結果 79
4.3能量損失墜機推論結果 80
4.3.1理想情形下之能量損失墜機推論子模型結果 80
4.3.2較符合實際情況的能量損失墜機推論子模型結果 81
4.4衛星通訊墜機推論結果 92
4.5電磁干擾墜機推論結果 94
4.5.1各項干擾源之結果分析 95
4.5.2臺灣的電磁輻射源對無人機飛航之影響 101
4.5.3考慮輻射強度衰減情形 103
4.6權重分析整合推論子模型 104
4.7墜機可能性預測 105
4.7.1訓練數據的生成方式 106
4.7.2DNN架構對預測模型之訓練成效影響 107
4.7.3 使用RF訓練之結果與DNN的差異 111
4.8地面風險評估 112
第五章 結論 115
5.1結論 115
5.2未來展望 116
參考文獻 117
附錄 136
附錄一 抗風評估式 136
附錄二 無人機每秒所消耗之能量 138
附錄三 理想狀況下之能量損失模型評估式 140
附錄四 遠場 141
附錄五 NASA大氣模型 141
-
dc.language.isozh_TW-
dc.title多旋翼無人機地面風險之評估zh_TW
dc.titleAssessment of Ground Risk for Multi-rotor Unmanned Aerial Vehiclesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張斐章;鍾智昕;王柏東zh_TW
dc.contributor.oralexamcommitteeFi-John Chang;Chih-Hsin Chung;Po-Tong Wangen
dc.subject.keyword無人機,地面風險,墜機,風險評估,無人機飛航管理系統,zh_TW
dc.subject.keywordunmanned aerial vehicle (UAV),ground risk,air crash,risk assessment,unmanned aerial vehicle flight management system,en
dc.relation.page141-
dc.identifier.doi10.6342/NTU202302464-
dc.rights.note未授權-
dc.date.accepted2023-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
6.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved