請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88519完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林偲妘 | zh_TW |
| dc.contributor.advisor | Szu-Yun Lin | en |
| dc.contributor.author | 聶禎佑 | zh_TW |
| dc.contributor.author | Chen-Yu Nieh | en |
| dc.date.accessioned | 2023-08-15T16:39:52Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | 1. 白仁德, 地方社區水災、坡地災害回復力之評估與建構-子計畫:鄉鎮區層級坡地災害回復力之評估與建構(I). 2002.行政院國家科學委員會專題研究計畫 計畫編號,NSC101-2625-M004-001
2. Bruneau, M., S.E. Chang, R.T. Eguchi, G.C. Lee, T.D. O'Rourke, A.M. Reinhorn, M. Shinozuka, K. Tierney, W.A. Wallace, and D. von Winterfeldt, A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 2019. 19(4): p. 733-752 3. 關鍵基礎設施災害脆弱度評估與風險管理:災害衝擊評估方法1. 2011, 國家災害防救科技中心.NCDR 100-T33 4. 關鍵基礎設施災害脆弱度評估與風險管理:災害衝擊評估方法2. 2013, 國家災害防救科技中心.NCDR 101-T14 5. 陳譽仁, 基於系統韌性最佳化之相依基礎設施災後修復作業, in 土木工程學研究所. 2019, 國立臺灣大學. p. 1-79 6. Albert, R., I. Albert, and G.L. Nakarado, Structural vulnerability of the North American power grid. Phys Rev E Stat Nonlin Soft Matter Phys, 2004. 69(2 Pt 2): p. 025103 7. Golara, A. and A. Esmaeily, Quantification and Enhancement of the Resilience of Infrastructure Networks. Journal of Pipeline Systems Engineering and Practice, 2017. 8(1) 8. Cagnan, R.D.Z., Restoration Modeling of Lifeline Systems. 2004 9. 鄧敏政、李維森、李中生, 我國地下管線 安全管理現況介紹. 2016, 土木水利 第四十三卷 第三期 p.39 – 46 10. 天然氣事業部業務簡介(110). 2021, 台灣中油股份有限公司 11. 天然氣事業部業務簡介(111). 2022, 台灣中油股份有限公司 12. 林茂文, 邁向非核家園與擴供天然氣之影響分析. 2018, 石油季刊 第 54 卷第 2 期 13. 110 年度國內液化石油氣市場分析. 2022, 經濟部能源局 14. 陳宏市, 液化天然氣輸送 工程—液化與氣化. 2011, 科學發展465期 15. 李皇章, 臺灣天然氣的現況與展望. 2019, 石油季刊 第 55 卷第 1 期 16. 周桂蘭, 運用系統動態模型評估臺灣液化天然氣安全存量風險. 2019, 臺灣鑛業,第 71 卷第 4 期,第 1-15 頁 17. 台灣中油股份有公司. Available from: https://www.cpc.com.tw/cp.aspx?n=3599. 18. Walter W. Chen, B.-j.S., Yi-Chih Chen, Jui-Huang Hung, Howard H. Hwang, Seismic response of natural gas and water pipelines in the Ji-Ji earthquake. Soil Dynamics and Earthquake Engineering, 2002 19. 施邦築, 九二一集集地震 維生管線損害之後續調查與初步研究. 2000 20. 瓦斯協會106年度理監事赴日本福岡參訪出國報告. 2017 21. 李心平、蔡秀芝、廖菀辰、楊子濬、陳貞榮, 0206美濃地震台南市政府災害應變與體系探討. 2017, 中華防災學刊 Vol.9 No.01 22. 0206 地震災情彙整與實地調查報告. 2016, 國家災害防救科技中心 國家地震工程研究中心 23. 0206 地震災害應變處置報告第 16 報. 2016, 中央災害應變中心 24. Gantes, C.J. and G. Bouckovalas, Seismic Verification of the High Pressure Natural Gas Pipeline Komotini–Alexandroupoulis–Kipi in Areas of Active Fault Crossings. Structural Engineering International, 2018. 23(2): p. 204-208 25. 許智豪、鄧敏政, 災害衝擊下之維生系統功能評估方法. 2020, 中國土木水利工程學刊 第三十二卷 第二期 26. J. H. Williams, T.M.W., L. Wotherspoon, N. Horspool, R. Paulik, E. M. Lane, M.W. Hughes, TSUNAMI VULNERABILITY OF CRITICAL INFRASTRUCTURE DEVELOPMENT OF FUNCTIONS FOR IMPACT ASSESSMENT. 2020 27. 李敏誠 Lee, M.-C., 地下管線受震之損害研究 Surveys on the Damage of Buried Pipeline After Earthquake, in 土木工程學研究所. 2008, 國立台灣大學 28. 吳佳容, 迅捷維生管線災損評估境況模擬系統之研究與實作 Implementation of Rapid Earthquake Loss Estimation and Scenario Simulation System of Lifelines, in 土木與防災研究所. 2004, 國立臺北科技大學 29. Farahani, S., A. Tahershamsi, and B. Behnam, Earthquake and post-earthquake vulnerability assessment of urban gas pipelines network. Natural Hazards, 2020. 101(2): p. 327-347 30. Teng, M.-C. and S.-S. Ke, Disaster impact assessment of the underground hazardous materials pipeline. Journal of Loss Prevention in the Process Industries, 2021. 71 31. Hou, G. and Q. Li, Firefighting capacity evaluation of water distribution system subjected to multi-ignitions of post-earthquake fires. Structural Safety, 2021. 88 32. Mina, D., D. Forcellini, and H. Karampour, Analytical fragility curves for assessment of the seismic vulnerability of HP/HT unburied subsea pipelines. Soil Dynamics and Earthquake Engineering, 2020. 137 33. 公共給水原水導管地震風險評估技術之研究. 2017, 經濟部水利署 34. Hazus Earthquake Model Technical Manual. 2020, FEMA 35. 黃沛群, 地下維生管線地震損害評估 以虛擬管線為例, in 土木工程研究所. 2002, 國立中央大學 36. 葉錦勳、洪李陵、文慶霖, 瓦斯系統之耐震損害評估及其應用 Seismic Damage Assessment of Gas System and Its Applications. 2005, 國家地震工程研究中心.NCREE-05-021 37. De Risi, R., F. De Luca, O.-S. Kwon, and A. Sextos, Scenario-Based Seismic Risk Assessment for Buried Transmission Gas Pipelines at Regional Scale. Journal of Pipeline Systems Engineering and Practice, 2018. 9(4) 38. Omidvar, B. and H.K. Kivi, Multi-hazard failure probability analysis of gas pipelines for earthquake shaking, ground failure and fire following earthquake. Natural Hazards, 2016. 82(1): p. 703-720 39. Hwang, H., Y.-H. Chiu, W.-Y. Chen, and B.-J. Shih, Analysis of Damage to Steel Gas Pipelines Caused by Ground Shaking Effects during the Chi-Chi, Taiwan, Earthquake. Earthquake Spectra, 2019. 20(4): p. 1095-1110 40. Golara, A., Probabilistic seismic hazard analysis of interconnected infrastructure: a case of Iranian high-pressure gas supply system. Natural Hazards, 2014. 73(2): p. 567-577 41. Dell’Isola, M., G. Ficco, L. Lavalle, L. Moretti, A. Tofani, and F. Zuena, A resilience assessment simulation tool for distribution gas networks. Journal of Natural Gas Science and Engineering, 2020. 84 42. Cimellaro, G.P., A. De Stefano, and O. Villa, Serviceability of Natural Gas Distribution Networks after Earthquakes. Journal of Earthquake and Tsunami, 2013. 07(02) 43. 洪泰昌, 天然氣管線震害災損量化推估與對策 The Quantitative Earthquake Loss Estimation and Mitigation Countermeasures for Gas Pipeline, in 土木與防災研究所. 2009, 國立臺北科技大學 44. Kröger, W., Critical infrastructures at risk: A need for a new conceptual approach and extended analytical tools. Reliability Engineering & System Safety, 2008. 93(12): p. 1781-1787 45. Little, R.G., Controlling Cascading Failure: Understanding the Vulnerabilities of Interconnected Infrastructures. Journal of Urban Technology, 2010. 9(1): p. 109-123 46. 黃俊能, 國家關鍵基礎設施防護(NCIP)脆弱度評估及相依性分析之研究. 2012 47. Korkali, M., J.G. Veneman, B.F. Tivnan, J.P. Bagrow, and P.D. Hines, Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence. Sci Rep, 2017. 7: p. 44499 48. Poljanšek, K., F. Bono, and E. Gutiérrez, Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks. Earthquake Engineering & Structural Dynamics, 2012. 41(1): p. 61-79 49. 黃憲章, 震後火災救援能力探討研究-以台中市為例, in 土地管理學系碩士班. 2007, 逢甲大學 50. 洪祥瑗、文慶霖、柯明淳、劉季宇、葉錦勳, 自來水地下管線、輸電鐵塔 與震後火災之災損推估模式研究. 2007 51. 葉錦勳、劉季宇、洪祥瑗、黃李暉、范秋屏、陳志欣、陳世良、周寶卿、於積瑨, 106水利署公共給水原水導管地震風險評估技術之研究. 2017 52. 台灣地震損失評估系統(TELES)使用手冊. 2022 53. 政府資料開放平台. Available from: https://data.gov.tw/dataset/130271. 54. Wang, Y.-J., C.-H. Chan, Y.-T. Lee, K.-F. Ma, J.B.H. Shyu, R.-J. Rau, and C.-T. Cheng, Probabilistic Seismic Hazard Assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 2016. 27(3) 55. 南部中洲構造規模6.9大規模地震消防救災方案. 2021, 內政部 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88519 | - |
| dc.description.abstract | 現今社會中,地震災害不僅損害建築物,對於重大基礎建設的衝擊如自來水、汙水、電力、瓦斯與其他維生管線等也大大影響災後的民生生活水準,本研究欲針對維生管線中的天然氣管線,分析中低壓管線受到地震災害破壞之風險,並考慮搶修管線時開關閥關閉將擴大影響範圍。地震災害除了造成天然氣網絡系統本身的影響外,洩漏的氣體還造成了震後火災惡化的潛在風險;另一方面,受損管線的修復可能會影響地震災害時的緊急避難交通,這些相依性因素都應在修復過程中加以考慮。本研究藉由臺灣地震損失評估系統(TELES)預估地震參數與天然氣網絡系統之GIS圖資進行疊圖分析。採用管線災損率(Repair Rate, R.R.)之方式評估管線耐震能力,以蒙地卡羅模擬(Monte Carlo Simulation)天然氣管線破壞,並透過受影響用戶需求端數量來衡量整體網絡之供氣能力。本研究以臺南市新化區與中洲構造斷層規模6.9想定地震為分析案例,參考國內外文獻提出的管線震災模擬分析方法,考量災害當下應變時開關閥關閉擴大影響範圍之情況、評估惡化震後火災的風險以及緊急避難交通之影響,提出綜合的天然氣網絡震災韌性分析框架,決策者可以根據模擬結果作出適當的應對策略。 | zh_TW |
| dc.description.abstract | Earthquake disasters not only deal damage to buildings, but also may significantly affect people’s lives owing to the impacts on critical infrastructures such as water supply, wastewater, electricity, gas, and other lifeline systems. This study will focus on the natural gas network, analyzing the risk of failure in the mid/low-pressure pipelines from the earthquake scenario. During the assessment, it is also considered that the closure of valves as the emergency response could enlarge the affected range. In this study, repair rate, R.R. is applied to evaluate the failure of natural gas pipelines. The simulation of the natural gas network is conducted with Monte Carlo method. In addition to the impacts within the natural gas system itself, the leaking gas may also cause a potential risk of worsening post-earthquake fire. On the other hand, the repair of damaged pipelines may affect the traffic. These cascading effects should be considered during the restoration process. This study refers to the domestic and foreign literature on the method proposed for the simulation analysis of pipeline subject to earthquake disasters, considering the closure of valves, the risk of worsening post-earthquake fire and the influence on traffic. This study provides an analytical framework to access the earthquake hazard risk of natural gas pipelines from the perspective of system functionality and community resilience. The proposed method is demonstrated on the natural gas system in Xinhua District, Tainan, subject to a 6.9 magnitude earthquake scenario. Decision makers can refer to the simulation results when planning related emergency responses and disaster mitigation strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:39:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:39:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES x Chapter 1 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與架構 2 Chapter 2 文獻回顧 3 2.1 引言 3 2.2 韌性與脆弱度及韌性考量因子 3 2.2.1 韌性定義 3 2.2.2 韌性與脆弱度比較 5 2.2.3 韌性函數/曲線 5 2.2.4 相依性與韌性考量因子 5 2.3 天然氣管線系統 6 2.3.1 重大基礎建設與維生管線 6 2.3.2 天然氣背景 6 2.3.3 天然氣供應架構與災害分析 8 2.4 管線震損模擬 10 2.4.1 地震災害模擬 10 2.4.2 管線災損率 10 2.4.3 管線復原修復 11 2.5 天然氣系統相依性 11 2.5.1 相依性分類與關係 12 2.5.2 天然氣相依性類別 13 2.6 小結 14 Chapter 3 研究方法 15 3.1 引言 15 3.2 整體系統社區韌性架構 15 3.3 研究流程 16 3.4 研究假設前提 17 3.5 管線破壞模擬方法 18 3.5.1 地震情境與參數 18 3.5.2 管線災損率公式 19 3.5.3 管線破壞機率 20 3.5.4 管線修復成本 22 3.6 天然氣系統供氣能力評估 23 3.6.1 上下游對應關係 23 3.6.2 供氣能力指標 25 3.7 天然氣網絡相依性—緊急避難之交通需求影響 25 3.8 天然氣網絡相依性—惡化震後火災 26 3.8.1 惡化震後火災風險 26 3.8.2 惡化震後火災脆弱度指標 26 3.9 復原策略與回復指標 27 3.9.1 特定策略復原 27 3.9.2 綜合韌性量化指標 28 3.10 研究方法小結 28 Chapter 4 案例分析 30 4.1 引言 30 4.2 案例假設前提 30 4.3 模擬地震情境資料 31 4.4 管線災損率與破壞機率分布 33 4.4.1 管線災損率(Repair Rate, R.R.) 33 4.4.2 管線破壞機率 35 4.5 系統供氣能力 36 4.5.1 蒙地卡羅模擬(Monte Carlo Simulation) 36 4.5.2 高風險之用戶需求端及開關閥 38 4.5.3 最快恢復供氣策略 39 4.6 天然氣網絡相依性評估與風險 41 4.6.1 天然氣網絡相依性評估—緊急避難之交通需求影響 41 4.6.2 天然氣網絡相依性評估—惡化震後火災 42 4.7 整體復原韌性 47 4.8 小結 47 Chapter 5 結論與未來建議 49 5.1 結論 49 5.2 研究限制與未來建議 50 參考文獻 52 附錄Appendix 55 附錄一 開關閥關閉機率 55 附錄二 用戶需求端受影響機率 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 瓦斯管線系統 | zh_TW |
| dc.subject | 天然氣網絡 | zh_TW |
| dc.subject | 韌性 | zh_TW |
| dc.subject | 相依性 | zh_TW |
| dc.subject | 震災風險評估 | zh_TW |
| dc.subject | Natural gas network | en |
| dc.subject | Resilience | en |
| dc.subject | Seismic risk assessment | en |
| dc.subject | Monte Carlo simulation | en |
| dc.subject | Interdependency | en |
| dc.title | 天然氣網絡震災韌性分析—以臺南市新化區為例 | zh_TW |
| dc.title | Seismic Risk and Resilience Analysis of Natural Gas Networks - Case Study of Xinhua District, Tainan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇文瑞;林其穎 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Jui Su;Chi-Ying Lin | en |
| dc.subject.keyword | 韌性,天然氣網絡,瓦斯管線系統,震災風險評估,相依性, | zh_TW |
| dc.subject.keyword | Resilience,Natural gas network,Monte Carlo simulation,Seismic risk assessment,Interdependency, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202302084 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
