請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88514完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂育道 | zh_TW |
| dc.contributor.advisor | Yuh-Dauh Lyuu | en |
| dc.contributor.author | 陳韋勳 | zh_TW |
| dc.contributor.author | Wei-Shiun Chen | en |
| dc.date.accessioned | 2023-08-15T16:38:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | Foucault, T., Kadan, O., & Kandel, E. (2005). Limit order book as a market for liquidity. Review of Financial Studies, 18(4), 1171–1217.
Géron, A. (2022). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. Sebastopol, CA: O'Reilly Media. Graves, A. (2012). Long Short-Term Memory. Berlin, GER: Springer. Hung, J. C., Liu, H. C., & Yang, J. J. (2021). Trading activity and price discovery in Bitcoin futures markets. Journal of Empirical Finance, 62, 107–120. Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M. (2002). Logistic Regression. New York: Springer-Verlag. Lucchese, L., Pakkanen, M., & Veraart, A. (2022). The short-term predictability of returns in order book markets: a deep learning perspective. arXiv preprint arXiv:2211.13777. Medsker, L., & Jain, L. C. (Eds.). (1999). Recurrent Neural Networks: Design and Applications. London: CRC Press. O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43–62. Wang, C., Deng, C., & Wang, S. (2020). Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognition Letters, 136, 190–197. Wu, Y., Mahfouz, M., Magazzeni, D., & Veloso, M. (2021). Towards robust representation of limit orders books for deep learning models. arXiv preprint arXiv:2110.05479. Zaznov, I., Kunkel, J., Dufour, A., & Badii, A. (2022). Predicting stock price changes based on the limit order book: a survey. Mathematics, 10(8), 1234. Zhang, Z., Zohren, S., & Roberts, S. (2019). DeepLOB Deep convolutional neural networks for limit order books. IEEE Transactions on Signal Processing, 67(11), 3001–3012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88514 | - |
| dc.description.abstract | 近年來比特幣期貨市場發展迅速,成為投資人熱門的領域之一,本研究採用經過傳統金融市場驗證的深度學習模型DeepLOB,利用幣安交易所的比特幣期貨限價委託簿預測該市場未來價格的漲跌。透過與傳統線性模型的比較,發現DeepLOB模型具有更準確的預測能力,顯示其在擷取市場特徵和捕捉趨勢方面表現得更優異。此外,由於DeepLOB模型使用的限價委託簿表示法會導致其不穩定的預測結果,本研究採用Wu、Mahfouz、Magazzeni和Veloso提出的限價委託簿穩健表示法來取代模型原始的方法,實驗結果顯示新的表示法有助於提升DeepLOB模型的預測能力。
總體而言,本研究顯示DeepLOB模型在幣安交易所的比特幣期貨市場中比傳統線性模型表現得更優異,且透過使用限價委託簿穩健表示法可以進一步提升預測準確度。這些結果為投資人提供有益的參考,協助他們在比特幣期貨市場中做出更明智的決策。 | zh_TW |
| dc.description.abstract | In recent years, the Bitcoin futures exchanges have experienced rapid development and have become a popular area for investors. This thesis applies the DeepLOB, a deep learning model validated in traditional financial markets. It utilizes the limit order book of Bitcoin futures from the Binance exchange to forecast futures price movements. Through a comparison with traditional linear models, it is found that the DeepLOB model demonstrates more accurate predictive capabilities, indicating its superior performance in capturing market features and trends.
The original representation of the limit order book in the DeepLOB model can lead to unstable predictions. This thesis adopts the robust representation of Wu, Mahfouz, Magazzeni and Veloso (2021). Experimental results show that the new representation contributes to improving the predictive capabilities of the DeepLOB model. Overall, this thesis demonstrates that the DeepLOB model outperforms traditional linear models for the Bitcoin futures traded on the Binance exchange, and the robust limit order book representation further enhances accuracy in prediction. These findings provide valuable insights for investors, assisting them in making more informed decisions in the Bitcoin futures markets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:38:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:38:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1 研究動機與簡介 1 1.2 論文架構 3 第二章 背景知識 4 2.1 模型介紹 4 2.1.1 羅吉斯迴歸 4 2.1.2 前饋神經網路 5 2.1.3 卷積神經網路 6 2.1.4 遞迴神經網路 8 2.1.5 DeepLOB 10 2.2 限價委託簿的穩健表示法 13 第三章 實驗方法 15 3.1 實驗設計 15 3.2 實驗資料 15 3.2.1 資料來源 15 3.2.2 資料切割 16 3.2.3 資料正規化 17 3.3 預測目標值設計 17 3.4 模型績效評比指標 20 第四章 實驗結果 21 4.1 實驗一結果 21 4.2 實驗二結果 23 第五章 結論與後續研究 25 5.1 結論 25 5.2 後續研究 25 參考文獻 27 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | DeepLOB | zh_TW |
| dc.subject | 限價委託簿 | zh_TW |
| dc.subject | 幣安交易所 | zh_TW |
| dc.subject | 比特幣期貨 | zh_TW |
| dc.subject | 穩健表示法 | zh_TW |
| dc.subject | limit order book | en |
| dc.subject | DeepLOB | en |
| dc.subject | robust representation | en |
| dc.subject | Bitcoin futures | en |
| dc.subject | Binance Exchange | en |
| dc.title | 基於限價委託簿,使用深度學習模型預測比特幣期貨之未來價格漲跌 | zh_TW |
| dc.title | Predicting Bitcoin Futures Price Movements by Deep Learning Based on the Limit Order Book | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王釧茹;金國興;陸裕豪 | zh_TW |
| dc.contributor.oralexamcommittee | Chuan-Ju Wang;Gow-Hsing King;U-Hou Lok | en |
| dc.subject.keyword | 比特幣期貨,幣安交易所,限價委託簿,DeepLOB,穩健表示法, | zh_TW |
| dc.subject.keyword | Bitcoin futures,Binance Exchange,limit order book,DeepLOB,robust representation, | en |
| dc.relation.page | 28 | - |
| dc.identifier.doi | 10.6342/NTU202302237 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-28 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 1.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
