請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | zh_TW |
| dc.contributor.advisor | Chih-Wen Liu | en |
| dc.contributor.author | 劉運豪 | zh_TW |
| dc.contributor.author | Yun-Hao Liu | en |
| dc.date.accessioned | 2023-08-15T16:37:10Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | [1] Shareef, Hussain, Md Mainul Islam, and Azah Mohamed, “A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles,” Renewable and Sustainable Energy Reviews 64, pp. 403-420, 2016.
[2] Deb, S., Tammi, K., Kalita, K., & Mahanta, P. , “Impact of electric vehicle charging station load on distribution network,” Energies 11.1, p. 178, 2018. [3] Shah, R., Mithulananthan, N., Bansal, R. C., & Ramachandaramurthy, V. K, “A review of key power system stability challenges for large-scale PV integration,” Renewable and Sustainable Energy Reviews, 2015. [4] Hou, H., Tang, J., Zhao, B., Zhang, L., Wang, Y., & Xie, C., “Optimal planning of electric vehicle charging station considering mutual benefit of users and power grid,” World Electric Vehicle Journal, p. 244, 2021. [5] Archana A. N. and Rajeev T., “A Novel Reliability Index Based Approach for EV,” IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021. [6] K. e. a. Qian, “Modeling of Load Demand Due to EV Battery,” IEEE transactions on power systems 26.2, 2010. [7] Gampa, S. R., Jasthi, K., Goli, P., Das, D., & Bansal, R. C., “Grasshopper optimization algorithm based two stage fuzzy multiobjective,” Journal of Energy Storage, 2020. [8] Deb, S., Tammi, K., Kalita, K., & Mahanta, P., “Charging Station Placement for Electric Vehicles: A Case Study of Guwahati City, India,” IEEE Access 7, 2019. [9] 台灣電力股份有限公司, "再生能源發電系統併聯技術要點," 2009. [10] Ehsani, Mehrdad, et al, "State of the Art and Trends in Electric and Hybrid Electric Vehicles," Proceedings of the IEEE 109.6, 04 May 2021. [11] "SAE International," [Online]. Available: https://www.sae.org/ . [12] Skouras, Theodoros A., et al, "Electrical vehicles: Current state of the art, future challenges, and perspectives," Clean Technologies 2.1, pp. 1-16, 2019. [13] 陳在相等, “電動車充電對電力品質及電力供應影響之研究,” 台灣電力股份有限公司九十九年度期中報告, 2010. [14] Michael Nicholas, "Estimating electric vehicle charging infrastructure costs across major U.S. metropolitan areas," in NTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION, 2019. [15] Duvall, M, "Transportation electrification: A," 2011 Technique Report of Electric Power Research Institute, 2011. [16] "National Household Travel Survey," Federal Highway Administration, 2017. [17] Zeb, Muhammad Zulqarnain, et al, "Optimal placement of electric vehicle charging stations in the active distribution network," IEEE Access 8, pp. 68124-68134, 2020. [18] “OpenDSS-EPRI,” Electric Power Research Institute, 2001. [線上]. Available: https://www.epri.com/pages/sa/opendss. [19] Kennedy, James, and Russell Eberhart., “Particle swarm optimization,” Proceedings of ICNN'95-international conference on neural networks, 1995. [20] Eberhart, Russell, and James Kennedy, “A new optimizer using particle swarm theory,” MHS'95. Proceedings of the sixth international symposium on micro machine and human science, 1995. [21] Bhatti, Abdul Rauf, et al., “A critical review of electric vehicle charging using solar photovoltaic,” International Journal of Energy Research 40.4, pp. 439-461, 2016. [22] Procopiou, Andreas T., and Luis F. Ochoa, “Asset congestion and voltage management in large-scale MV-LV networks with solar PV,” IEEE Transactions on Power Systems 36.5, pp. 4018-4027, 2021. [23] "配電級再生能源可併容量查詢系統," 台灣電力公司, [Online]. Available: https://hcweb.taipower.com.tw/geohc/. [Accessed 26 6 2023]. [24] Hoke, Anderson, et al, "Maximum photovoltaic penetration levels on typical distribution feeders," in No. NREL/JA-5500-55094. National Renewable Energy Lab.(NREL), United States, 2012. [25] “GLOBAL SOLAR ATLAS,” Energy Sector Management Assistance Program (ESMAP), [線上]. Available: https://globalsolaratlas.info/map. [26] Vipul Agarwal and Mayank Dev, "Introduction to Hybrid Electric Vehicles: State of art," in 2013 Students Conference on Engineering and Systems (SCES), Allahabad, India, 2013. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88509 | - |
| dc.description.abstract | 隨著科技不斷發展,許多國家逐漸重視環保的議題,並希望未來可以朝向電氣化運輸的方向前進,許多政策開始透過限制傳統燃油車的產量來走向普及電動車(Electric Vehicle, EV),然而比起傳統燃油車,電動車的車主更擔心車輛沒有足夠的續航以抵達其目的地,這項問題被稱為里程焦慮(Range Anxiety)。
為了解決這項問題,電網需要廣泛設置充電基礎設施來緩解車主的不安,然而,隨意地設置充電站勢必會對電網帶來負面影響,包括功率損失、電壓下降、三相不平衡率上升等問題。另一方面,隨著未來再生能源的持續發展,再生能源取代傳統燃油機組的趨勢也勢在必行,再生能源的節能減碳的同時,發電間歇性與不確定性會導致的電壓波動以及供電不穩,這些問題將會影響整個系統的穩定性以及可靠性。 本篇論文的主旨就是在未來高再生能源占比導致系統穩定度降低,在不影響電網穩定度的前提下,透過最佳化充電樁設置提供足夠的充電樁供電動車用戶使用。由於電動車資料的公開資料現在仍然相當缺乏,因此我們使用蒙地卡羅方法(Monte Carlo Method)來預測並統計電動車的負載資料,並將此資料當作模擬的基礎來計算所需的充電站負載量,之後定義我們的目標函數,透過粒子群演算法(Particle Swarm Optimization, PSO)來搜尋充電樁適合的設置地點。另一方面,本研究也提出一套改良的PSO演算法與傳統PSO進行比較,最後分析不同再生能源滲透率的前提下,研究充電樁設置策略對電網的影響。 | zh_TW |
| dc.description.abstract | With the continuous development of technology, many countries are gradually paying attention to environmental issues, and hope to move towards electrified transportation in the future. Many policies are beginning to popularize electric vehicles (EV) by restricting the production of pure gasoline vehicles. However, compared to traditional gasoline vehicles, electric vehicle owners are more worried that their vehicles do not have enough range to reach their destinations. This problem is known as Range Anxiety.
To solve this problem, the power grid needs to extensively set up charging infrastructure to alleviate the anxiety of vehicle owners. However, arbitrarily setting up charging stations will inevitably have a negative impact on the power grid, including power loss, voltage drop, and an increase in the rate of three-phase imbalance. On the other hand, with the continuous development of renewable energy in the future, the trend of renewable energy replacing traditional fuel power units is also imperative. While renewable energy is energy-saving and carbon-reducing, the intermittency and uncertainty of power generation can lead to voltage fluctuations and unstable power supply. These issues will affect the stability and reliability of the entire system. The main purpose of this paper is to provide sufficient charger for electric vehicle users by optimizing the setup of charger, under the premise of not affecting the stability of the power grid in a future where a high proportion of renewable energy will reduce system stability. Since the public data of electric vehicles is still quite lacking, we use the Monte Carlo Method to predict and compile the load data of electric vehicles, and use this data as the basis for simulation to calculate the required load capacity of charging stations. We then define our objective function, and use the Particle Swarm Optimization (PSO) algorithm to search for suitable locations for the charging piles. On the other hand, this study also proposes an improved PSO algorithm and compares it with the traditional PSO. Finally, under the premise of different renewable energy penetration rates, we study the impact of charging pile setup strategies on the power grid. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:37:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:37:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目錄 vi 圖目錄 xi 表目錄 xiv 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 2 1.3 文獻回顧 2 1.4 章節摘要 4 第二章 電動車種類及電動車負載生成 6 2.1 前言 6 2.2 再生能源發電系統併聯技術要點 [9] 6 2.3 電動車種類 8 2.3.1 油電混合動力車(Hybrid Electric Vehicle, HEV) 8 2.3.2 插電式油電混合動力車(Plug-in Hybrid Electric Vehicle, PHEV) 9 2.3.3 純電動車(Battery Electric Vehicle, BEV) 9 2.4 國內外電動車充電樁規格比較 10 2.4.1 AC Level-1 10 2.4.2 AC Level-2 10 2.4.3 DC Level 10 2.5 充電樁規格 13 2.6 充電樁設置成本 13 2.7 電動車負載資料來源 14 2.8 電動車負載 16 2.8.1 電動車及充電樁規格 16 2.8.2 滲透率(Penetration rate) 16 2.8.3 產生電動車資料 17 2.8.4 整體流程 22 第三章 充電站設置目標函數及限制函數 24 3.1 前言 24 3.2 問題陳述 24 3.3 目標函式 25 3.4 限制函數 26 3.4.1 基於系統要求的限制條件 26 3.4.2 本研究自訂的限制條件 27 3.5 電力品質指標 29 3.5.1 系統線路損失 29 3.5.2 平均電壓偏差率 29 3.5.3 三相不平衡率 30 3.6 配電模擬軟體OpenDSS 31 3.7 粒子群演算法(Particle Swarm Optimization, PSO) 32 3.7.1 粒子群演算法之起源 32 3.7.2 粒子群演算法的更新方法 32 3.7.3 慣性權重\mathbit{\omega} 33 3.7.4 學習因子\mathbit{c}\mathbf{1}、c2 33 3.7.5 改良PSO演算法 34 3.7.6 粒子群演算法應用在充電樁設置最佳化模型 37 第四章 測試電網 39 4.1 前言 39 4.2 選取測試電網的標準 39 4.3 測試電網選址 41 4.4 測試電網線路模型及參數 42 4.5 再生能源資訊 48 第五章 測試結果 49 5.1 前言 49 5.2 模擬1:充電樁設置 49 5.2.1 不設置充電樁 50 5.2.2 隨機設置充電樁 51 5.2.3 最佳化設置充電樁(傳統PSO) 52 5.2.4 最佳化設置充電樁(改良版PSO) 53 5.2.5 充電樁設置型態比較 55 5.3 模擬2-再生能源滲透率 57 5.3.1 再生能源滲透率10% 57 5.3.2 再生能源滲透率30% 60 5.3.3 再生能源滲透率60% 63 5.4 再生能源滲透率在不同時間點對電網的影響 66 5.4.1 再生能源滲透率對系統電壓的影響 66 5.4.2 再生能源滲透率對一天內的系統損失帶來的影響 68 第六章 總結與未來研究方向 70 6.1 結論 70 6.2 未來研究方向 71 參考文獻 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 再生能源 | zh_TW |
| dc.subject | 電網穩定性 | zh_TW |
| dc.subject | 充電樁設置 | zh_TW |
| dc.subject | 粒子群演算法 | zh_TW |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 配電系統 | zh_TW |
| dc.subject | Electric vehicle (EV) | en |
| dc.subject | Distribution System | en |
| dc.subject | Grid Stability | en |
| dc.subject | Charging stations placement | en |
| dc.subject | PSO | en |
| dc.subject | Renewable Energy | en |
| dc.title | 高再生能源佔比下電動車充電站規劃對電網穩定性之研究 | zh_TW |
| dc.title | Research on the Stability of Power Grid by EV Charging Station Planning under the High Penetration of Renewable Energy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃世杰;楊俊哲 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Jie Huang;Jun-Zhe Yang | en |
| dc.subject.keyword | 粒子群演算法,電動車,充電樁設置,配電系統,電網穩定性,再生能源, | zh_TW |
| dc.subject.keyword | PSO,Electric vehicle (EV),Charging stations placement,Distribution System,Grid Stability,Renewable Energy, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202302254 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
