請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88487完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃振康 | zh_TW |
| dc.contributor.advisor | Chen-Kang Huang | en |
| dc.contributor.author | 徐令航 | zh_TW |
| dc.contributor.author | Ling-Hang Hsu | en |
| dc.date.accessioned | 2023-08-15T16:31:24Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | 行政院環境保護署。2016。空氣中細菌濃度檢測方法(NIEA E301.15C)。網址: https://www.epa.gov.tw/niea/25CCBDCE257C40E4。上網日期2022-10-9。
梁婉婧,黃振康。2015。光觸媒反應器對於丙酮及氨氣降解效率之探討。台灣農學會報,16(3),279-292. 行政院環境保護署。2020。空氣品質標準法規。網址: https://airtw.epa.gov.tw/cht/Information/Standard/Rules.aspx。上網日期:2020-09-18。 Buchan, A.G., L. Yang, and K.D. Atkinson. 2020. Predicting airborne coronavirus inactivation by far-UVC in populated rooms using a high-fidelity coupled radiation-CFD model. Scientific Reports. 10(1): 19659. Casini, B., B. Tuvo, M.L. Cristina, A.M. Spagnolo, M. Totaro, A. Baggiani, and G.P. Privitera. 2019. Evaluation of an Ultraviolet C (UVC) Light-Emitting Device for Disinfection of High Touch Surfaces in Hospital Critical Areas. International Journal of Environmental Research and Public Health. 16(19). Ciugudeanu, C., D. Beu, and M. Buzdugan. 2021. SteriLightVent - Hybrid UV Lighting Decontamination Device. 2021 International Conference on Applied and Theoretical Electricity (ICATE). 1-5. Fernandes, K.M., A.G.D. Silva, T.B. Matkar, R.R. Parab, and N.J.S. Marchon. 2021. Smart Uv-C Disinfector For Pathogens And Covid-19. 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA). 37-43. Gachovska, T.K., M. Moorjmalani, M.T. Ranibar, G. Gachovski, C. Pintilei, M. Amiali, Z. Bouida, and A. Herrera. 2021. Design of Continuous Flow UVC Lamp for Office Air Germicide Elimination. 2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). 1-6. Gardner, A., S. Ghosh, M. Dunowska, and G. Brightwell. 2021. Virucidal Efficacy of Blue LED and Far-UVC Light Disinfection against Feline Infectious Peritonitis Virus as a Model for SARS-CoV-2. Viruses. 13(8). Heilingloh, C.S., U.W. Aufderhorst, L. Schipper, U. Dittmer, O. Witzke, D. Yang, X. Zheng, K. Sutter, M. Trilling, M. Alt, E. Steinmann, and A. Krawczyk. 2020. Susceptibility of SARS-CoV-2 to UV irradiation. American Journal of Infection Control. 48(10): 1273-1275. Hudson, J., M. Sharma, and S. Vimalanathan. 2009. Development of a Practical Method for Using Ozone Gas as a Virus Decontaminating Agent. Ozone: Science & Engineering. 31(3): 216-223. Jensen, P.A. 2021. Critical Design Parameters in Design and Efficacy of Upper-Room UVC254 Luminaire Systems: Part I: Overview of Major Parameters and Relationships†. Photochemistry and Photobiology. 97(3): 532-541. Kahn, K. and R.M. Mariita. 2021. Quantifying the Impact of Ultraviolet Subtype C in Reducing Airborne Pathogen Transmission and Improving Energy Efficiency in Healthy Buildings: A Kahn–Mariita Equivalent Ventilation Model. Frontiers in Built Environment. 7: 121. Kim, S.-H., S.Y. Chang, M. Sung, J.H. Park, H. Bin Kim, H. Lee, J.-P. Choi, W.S. Choi, and J.-Y. Min. 2016. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards. Clinical Infectious Diseases. 63(3): 363-369. Lelieveld, J., F. Helleis, S. Borrmann, Y. Cheng, F. Drewnick, G. Haug, T. Klimach, J. Sciare, H. Su, and U. Pöschl. 2020. Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. International Journal of Environmental Research and Public Health. 17(21). Liang, J.-J., C.-C. Liao, C.-S. Chang, C.-Y. Lee, S.-Y. Chen, S.-B. Huang, Y.-F. Yeh, K.J. Singh, H.-C. Kuo, Y.-L. Lin, and K.-M. Lu. 2021. The Effectiveness of Far-Ultraviolet (UVC) Light Prototype Devices with Different Wavelengths on Disinfecting SARS-CoV-2. Applied Sciences. 11(22). Memarzadeh, F. and W. Xu. 2012. Role of air changes per hour (ACH) in possible transmission of airborne infections. Building Simulation. 5(1): 15-28. Nardell, E.A. 2021. Air Disinfection for Airborne Infection Control with a Focus on COVID-19: Why Germicidal UV is Essential†. Photochemistry and Photobiology. 97(3): 493-497. Petrović, N. and K. Ð. 2021. IoT for COVID-19 Indoor Spread Prevention: Cough Detection, Air Quality Control and Contact Tracing. 2021 IEEE 32nd International Conference on Microelectronics (MIEL). 297-300. Shen, J., M. Kong, B. Dong, M.J. Birnkrant, and J. Zhang. 2021. A systematic approach to estimating the effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2. Building and Environment. 200: 107926. Sonawane, G.S., P. Dudhe, A. Upadhyay, Y. Patil, and P. Mane. 2021. IoT Based UV Disinfection Machine. 2021 International Conference on Intelligent Technologies (CONIT). 1-7. Sung, W.-T. and S.-J. Hsiao. 2021. Building an indoor air quality monitoring system based on the architecture of the Internet of Things. EURASIP Journal on Wireless Communications and Networking. 2021(1): 153. Trivellin, N., M. Buffolo, F. Onelia, A. Pizzolato, M. Barbato, V.T. Orlandi, C. Del Vecchio, F. Dughiero, E. Zanoni, G. Meneghesso, A. Crisanti, and M. Meneghini. 2021. Inactivating SARS-CoV-2 Using 275 nm UV-C LEDs through a Spherical Irradiation Box: Design, Characterization and Validation. Materials. 14(9). ANSI/ASHARE standard 62.1 2022;ISSN 1041-2336 https://maps6-user-guide.gitbook.io/mapsv6-manual-book-zh/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88487 | - |
| dc.description.abstract | 為達到改善室內空氣品質,本研究初期藉由探討全熱交換器的效能來判斷通風換氣率對於懸浮微粒與CO2所造成的影響。在全熱交換器開啟的情況下,放置在中央處的感測器顯示二氧化碳濃度提早100分鐘達到標準值以下,最低達到420 ppm,而PM2.5濃度維持在6- 10 μg/m3之間;實驗區與辦公區的監測中,得知當裝置開啟時整體流場會達到分布均勻的狀態,有利於整體環境的品質改善;此外利用SolidWorks Flow Simulation對實驗環境風場進行模擬,針對流場不均勻處與短循環問題進行改善,以外接風管的方式將實驗區前段無流動的問題解決後,同時以空氣盒子再次進行監測確認不均勻處之CO2濃度下降至最低525 ppm。
由於通風換氣的設備以及安裝大多成本昂貴且耗費時間、人力,本研究亦希望透過設計與上層殺菌系統概念類似的外掛式殺菌風箱,安裝在室內空調外側來達到殺菌效果。初期經由SolidWorks Flow Simulation 進行設計模擬,找出風箱內隔板最佳的傾斜角度,經由出風口分布表現、滯留時間與結構設計最後選擇使用25度作為傾斜角度,後續進行製作與安裝。 外掛式殺菌風箱建置完成後,以出風口不同風速(低、中、高段速)、開啟不同燈管數量(2組、4組)、殺菌時間(30分鐘、60分鐘)進行總共12個分組進行殺菌率採樣計算,從中可得知最佳組別為低段速、開啟2組燈管、殺菌60分鐘的殺菌率87.4%。 進行夜間殺菌時長的計算,以設備殺菌率70%的旋風筒空氣清淨裝置、87.4%的外掛式殺菌風箱及93.2%的全熱交換器搭配外掛式殺菌風箱比較,分別需要6、4、3小時達到整體環境99.9%滅菌。 藉由相同的設計理念,為提高風箱中的滯留時間與設計因應分離式空調的結構,提出了外掛式殺菌風箱第二版與室內機專用殺菌風箱的設計。外掛式殺菌風箱第二版可提高至2.3秒、殺菌率為97.1%、夜間殺菌至99.9%需2小時;室內機專用風箱為0.6秒、殺菌率為86.0%、夜間殺菌至99.9%需4小時。經由此設計得知能以較低價的紫外線燈管搭配外掛式風箱的設計提供達97.1%的殺菌效果。 | zh_TW |
| dc.description.abstract | In order to improve indoor air quality, this study investigates the effectiveness of energy recovery ventilation (ERV) to determine the impact of the concentration of CO2 and particulate matter. With the ERV activated, the concentration of CO2 reaches below the standard level 100 minutes earlier, reaching a minimum of 420 ppm; while the concentration of PM2.5 remains between 6- 10 μg/ m3. Monitoring of the experimental and office areas reaches a uniformly distributed state. Which is beneficial for the indoor air quality. Furthermore, the airflow is simulated to address the issues of flow non-uniformity and short-circuit. By installing external air duct, the problem of no flow situation in the front section of experimental area is solved, and the concentration of CO2 is confirmed to decrease to a minimum of 525 ppm.
According to the cost and labor involved on the installation of ventilation equipment, this study aims to design an detachable sterilization air box. Through SolidWorks Flow Simulation to determine the optimal tilt angle of the internal partition of the air box. An angle of 25 degrees is selected. After installing the detachable sterilization air box, 12 groups were divided for sterilization rate calculations. From the results, the optimal group had a low airflow rate,、with two groups of lamps turned on and a duration of 60 minutes, achieving a sterilization rate of 87.4%. According to the calculation of night sterilization time, reaching the sterilization rate of 99.9% took 6 hours by the cyclone purifier, took 4 hours by the detachable sterilization air box, took 3 hours by the detachable sterilization air box with ERV. Based on the similar concept, the second version of the detachable sterilization air box is designed, which provided 2.3 seconds of stranded time, 97.1% of sterilization rate, 2 hours to reach 99.9% of sterilization rate to the whole environment; the dedicated version of air-conditioner provided 0.6 seconds of stranded time, 86.0% of sterilization rate, 4 hours to reach 99.9% of sterilization rate. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:31:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:31:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 圖目錄 iv 表目錄 v 第一章 緒論 1 1.1 前言 1 1.2 室內空氣污染物 1 1.2.1 四大分類 1 1.2.2 改善室內空氣品質方法 2 1.3 研究動機與目的 4 第二章 文獻探討 5 2.1 空氣品質監測 5 2.2 污染物傳播 6 2.3 紫外光不同波長之效果 10 2.4 UVC與ACH之結合模擬情況 12 2.5 殺菌設備建置 17 第三章 研究方法 21 3.1 實驗環境介紹 21 3.2 全熱交換器提供換氣率對CO2濃度及懸浮微粒濃度影響分析 22 3.2.1 CO2濃度指標 22 3.2.2 全熱交換器 22 3.2.3 MAPSV6空氣盒子 23 3.2.4濃度數據採樣 24 3.2.5 流場模擬方法 24 3.3 旋風筒紫外線設備滅菌效果分析 25 3.3.1紫外線光強度測試 25 3.3.2旋風筒設計 26 3.4 迷宮式殺菌風箱設計與模擬 27 3.4.1 迷宮式殺菌風箱模型建立 27 3.4.2 風箱內流場模擬 29 3.4.3 實際組裝 30 3.5 環境中細菌採樣與培養 31 3.5.1 單階氣膠衝擊採樣系統 31 3.5.2 細菌培養箱 32 3.5.3 採樣之環境參數設定以及採樣步驟 32 3.5.4 結果處理計算 34 3.5.5 紫外線殺菌風箱性能測試 36 3.6 K-M模型 38 第四章 結果與討論 40 4.1全熱交換器提供換氣率對CO2濃度與PM2.5濃度影響分析與流場模擬改善 40 4.1.1 CO2濃度結果 40 4.1.2 PM2.5濃度結果 44 4.1.3 室內初期流場動線改善 49 4.2 外掛式迷宮紫外線殺菌風箱測試 52 4.2.1 出口風速之格點獨立性分析 52 4.2.2 風機盤管提供不同入口風速下之出口風速圖 53 4.2.3 滯留時長 54 4.2.4 培養箱溫度確認 57 4.3 單階生物氣膠衝擊採樣系統採樣結果 58 4.3.1採樣時間比較 58 4.3.2單階生物氣膠衝擊採樣器系統採樣結果分析 59 4.4 夜晚開殺菌時間計算 69 4.4.1 殺菌後32小時內環境採樣值 69 4.4.2 殺菌時間計算 70 4.4.3 殺菌劑量 73 4.5 K-M模型預估結果 74 4.6 新風箱設計 78 4.7 現有設備對比 82 第五章 結論 83 5.1全熱交換器造成懸浮微粒與二氧化碳濃度分析 83 5.2紫外線殺菌風箱設計 83 5.3 K-M模型驗證 84 5.4建議 85 第六章 參考文獻 86 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 室內空氣品質 | zh_TW |
| dc.subject | 外掛式殺菌風箱設計 | zh_TW |
| dc.subject | 空氣清淨裝置 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 上層殺菌系統 | zh_TW |
| dc.subject | Upper Room Germicidal System | en |
| dc.subject | Indoor Air Quality | en |
| dc.subject | Detachable Sterilization Air Box | en |
| dc.subject | Air Purifier Equipment | en |
| dc.subject | CFD | en |
| dc.title | 應用流場模擬與外掛式殺菌風箱設計於室內空氣品質之改善 | zh_TW |
| dc.title | The Application of Flow Field Simulation and the Detachable Germicidal Air Unit to the Improvement of Indoor Air Quality | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王榮昌;李宜庭 | zh_TW |
| dc.contributor.oralexamcommittee | Jung-Chang Wang;Yi-Ting lee | en |
| dc.subject.keyword | 室內空氣品質,上層殺菌系統,外掛式殺菌風箱設計,空氣清淨裝置,計算流體力學, | zh_TW |
| dc.subject.keyword | Indoor Air Quality,Upper Room Germicidal System,Detachable Sterilization Air Box,Air Purifier Equipment,CFD, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202302295 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2028-07-28 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-07-28 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
