請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88481完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉霆 | zh_TW |
| dc.contributor.advisor | Tyng Liu | en |
| dc.contributor.author | 王紹宇 | zh_TW |
| dc.contributor.author | Shao-Yu Wang | en |
| dc.date.accessioned | 2023-08-15T16:29:51Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-31 | - |
| dc.identifier.citation | [1] G. Howard, D. Bastow, and J. Whitehead, Car Suspension and Handling, Fourth Edition. 2004.
[2] J. Y. Wong, Theory of ground vehicles. John Wiley & Sons, 2008. [3] R. N. Jazar, Vehicle Dynamics: Theory and Application. Springer, 2008. [4] S. P. Chavan, S. H. Sawant, and D. A. Tamboli, "Experimental Verification of Passive Quarter Car Vehicle Dynamic System Subjected to Harmonic Road Excitation with Nonlinear Parameters," 2013. [5] M. M. Moheyeldein, A. M. Abd-El-Tawwab, K. A. Abd El-gwwad, and M. M. M. Salem, "An analytical study of the performance indices of air spring suspensions over the passive suspension," Beni-Suef University Journal of Basic and Applied Sciences, vol. 7, no. 4, pp. 525-534, 2018/12/01/ 2018, doi: https://doi.org/10.1016/j.bjbas.2018.06.004. [6] V. Goga and M. Kľúčik, "Optimization of Vehicle Suspension Parameters with use of Evolutionary Computation," Procedia Engineering, vol. 48, pp. 174–179, 12/31 2012, doi: 10.1016/j.proeng.2012.09.502. [7] M. Hamed, M. Elrawemi, F. Gu, and A. Ball, Effects of Spring Stiffness on Suspension Performances Using Full Vehicle Models. 2018, pp. 430-439. [8] M. Mohsen, H. Kamel, A. Sharaf, and S. El-Demerdash, "Investigation of the Ride Response of a Multi-wheeled Combat Vehicle in Pitch-Bounce Plane," International Conference on Aerospace Sciences and Aviation Technology, vol. 16, pp. 1-13, 05/01 2015, doi: 10.21608/asat.2015.22911. [9] 傅仰銘, "多軸車輛之適乘性分析," 碩士論文, 國立台灣大學機械工程研究所, 2022. [10] W. Faris, Z. BenLahcene, and S. Ihsan, "Assessment of different semi-active control strategies on the performance of off-road vehicle suspension systems," Int. J. of Vehicle Systems Modelling and Testing, vol. 5, pp. 254-271, 11/01 2010, doi: 10.1504/IJVSMT.2010.037129. [11] 黃粲清, "八輪車輛越野效能分析," 碩士論文, 國立台灣大學機械工程研究所, 2014. [12] 楊智麟, "簧下質量對車輛懸吊動態性能影響之分析," 碩士論文, 國立台灣大學機械工程研究所, 2006. [13] Wikipedia contributors, "Hydropneumatic suspension," in Wikipedia, The Free Encyclopedia., ed., ed. [14] Wikipedia contributors, "Citroën Traction Avant," in Wikipedia, The Free Encyclopedia., ed., ed. [15] S. F. van der Westhuizen and P. Schalk Els, "Comparison of different gas models to calculate the spring force of a hydropneumatic suspension," Journal of Terramechanics, vol. 57, pp. 41-59, 2015/02/01/ 2015, doi: https://doi.org/10.1016/j.jterra.2014.11.002. [16] D. Lin, F. Yang, D. Gong, and S. Rakheja, "Design and experimental modeling of a compact hydro-pneumatic suspension strut," Nonlinear Dynamics, vol. 100, no. 4, pp. 3307-3320, 2020/06/01 2020, doi: 10.1007/s11071-020-05714-3. [17] W. Bauer, Hydropneumatic suspension systems. Springer, 2011. [18] A. E. Moulton and A. Best, "Hydragas suspension," SAE paper 790374, 1979. [19] Y. S. Unlusoy and F. Saglam, "Optimization of ride comfort for a three-axle vehicle equipped with interconnected hydro-pneumatic suspension system," vol. 1, 04/12 2018, doi: 10.12989/aae.2018.1.1.000. [20] B. Wang et al., "A comfort performance improved anti-pitch hydraulically interconnected suspension system with switchable dual accumulators," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 237, no. 8, pp. 2022-2035, 2023/07/01 2022, doi: 10.1177/09544070221102020. [21] T. Wen-peng, L. Zhao, and W. Wei, "Modeling and Ride Comfort Optimization of Vehicles with Interconnected Hydro-pneumatic Suspensions," Noise And Vibration Control, vol. 37, no. 6, 2017. [22] 許立翰, "主動式液氣懸吊系統於八輪車輛之連通拓樸及性能分析," 碩士論文, 國立台灣大學機械工程研究所, 2017. [23] D. Cao, "Theoretical analyses of roll-and pitch-coupled hydro-pneumatic strut suspensions," Concordia University, 2008. [24] 劉政勳, "四軸車輛液氣壓懸吊配置之分析," 碩士論文, 國立臺灣大學機械工程研究所, 2022. [25] ISO 8855:2011 Road vehicles–Vehicle dynamics and road-holding ability–Vocabulary, International Organization for Standardization, 2011. [26] ISO 8608:2016 Mechanical Vibration - Road surface profiles - Reporting of measured data, International Organization for Standardization, 2016. [27] M. Agostinacchio, D. Ciampa, and S. Olita, "The vibrations induced by surface irregularities in road pavements – a Matlab® approach," European Transport Research Review, vol. 6, no. 3, pp. 267-275, 2014/09/01 2014, doi: 10.1007/s12544-013-0127-8. [28] 國防部軍備局採購中心, 動力底盤系統乙項(GI00232L249)案, 招標文件. 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88481 | - |
| dc.description.abstract | 本研究為探討多軸車輛搭載液氣壓懸吊時可行的配置與其基本運動性質,主要分析液氣壓懸吊對簧上質量之動態表現、懸吊運動行程及輪胎動態負載的影響。本研究首先以MATLAB建立多軸車輛懸吊模型、獨立型與連通型液氣壓懸吊模型,並以彈簧特性曲線及兩軸半車模型對液氣壓懸吊的運動性質進行初步的分析。再利用液氣壓懸吊的可連通性,討論其於三軸與四軸車輛上可能的配置方式,並且結合傳統懸吊與液氣壓懸吊配置出混合懸吊,分析不同的混合配置對車輛懸吊動態性能的影響。最後針對四軸車輛找出較好的液氣壓懸吊配置,模擬其配置在不同車輛重心設定的車輛懸吊動態性能。經由本研究的探討,平行連通液氣壓懸吊具有較佳的俯仰穩定性及較小的懸吊運動行程,交叉連通液氣壓懸吊則具有較佳的垂向穩定性,將兩者混合配置於四軸車輛可得到相對較穩定的車身垂直與俯仰運動。 | zh_TW |
| dc.description.abstract | The purpose of this study is to investigate the feasible configuration and the ride performance of a multi-axle vehicle equipped with a hydro-pneumatic suspension. First, the multi-axle car model and hydro-pneumatic suspension system model are developed by MATLAB. By applying the spring characteristic curve and two-axle car model, the relationship between hydro-pneumatic suspension system and ride performance is preliminary evaluated. In addition, the different types of interconnected hydro-pneumatic suspension configurations are simulated in this study, and the differences between each configuration are also compared. Finally, a hydro-pneumatic suspension configuration was found for the bounce and pitch motion of four-axle vehicle, and the ride performance of the vehicle is simulated for vehicles with different center of gravity position. The study shows that the parallel-interconnected hydro-pneumatic suspension has better pitch stability and smaller suspension working space, while the cross-interconnected hydro-pneumatic suspension has better vertical stability, and the vertical and pitch motion of the vehicle can be relatively stable by mixing the two configurations in a four-axle vehicle. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:29:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:29:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xi 符號表 xii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 車輛動態模型 2 1.2.2 液氣壓懸吊系統 3 1.3 研究動機與目的 5 1.4 論文架構 6 第二章 理論基礎與數值模擬 7 2.1 車輛動力學 7 2.1.1 四分之一車模型 8 2.1.2 兩軸半車模型 10 2.1.3 多軸半車模型 12 2.1.4 懸吊槓桿比 15 2.2 液氣壓懸吊 16 2.2.1 液氣壓懸吊之基本原理 16 2.2.2 獨立型液氣壓懸吊 18 2.2.3 連通型液氣壓懸吊 28 2.3 車輛懸吊動態性能評估 32 2.4 電腦數值模型 33 2.4.1 模型路面輸入 33 2.4.2 車輛參數設定 38 2.4.3 電腦數值方法 40 第三章 液氣壓懸吊基本性能分析 41 3.1 懸吊參數設定 41 3.2 液氣壓懸吊基本性能 44 3.2.1 獨立型液氣壓懸吊 44 3.2.2 連通型液氣壓懸吊 46 3.3 兩軸半車模型 51 3.4 小結 60 第四章 三軸車輛液氣壓懸吊配置分析 61 4.1 獨立型 62 4.2 連通型 68 4.3 液氣壓懸吊配置位置比較 75 4.3.1 混合獨立型 75 4.3.2 混合平行型 82 4.3.3 混合交叉型 90 4.4 小結 97 第五章 四軸車輛液氣壓懸吊配置分析 98 5.1 獨立型液氣壓懸吊 102 5.2 連通型液氣壓懸吊 108 5.2.1 平行連通 108 5.2.2 交叉連通 116 5.3 液氣壓懸吊與傳統懸吊混合搭配 124 5.3.1 混合平行型– POOP與OPPO 124 5.3.2 混合平行型– POPO與OPOP 131 5.3.3 混合交叉型– COOC與OCCO 137 5.3.4 混合交叉型– COCO與OCOC 143 5.4 混合連通液氣壓懸吊 149 5.5 四軸車輛液氣壓懸吊配置―結論 157 5.6 液氣壓懸吊配置於不同載重設定車輛之分析 159 5.6.1 獨立型液氣壓懸吊 160 5.6.2 交叉連通―AABB 166 5.6.3 混合連通―PCCP 172 5.7 液氣壓懸吊配置於不同載重設定之車輛―結論 178 第六章 結論 179 6.1 結論 179 6.2 未來展望 181 參考文獻 182 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 液氣壓懸吊 | zh_TW |
| dc.subject | MATLAB | zh_TW |
| dc.subject | 車輛懸吊動態性能 | zh_TW |
| dc.subject | 車輛動態 | zh_TW |
| dc.subject | 車輛模型 | zh_TW |
| dc.subject | 多軸車輛 | zh_TW |
| dc.subject | 連通式懸吊 | zh_TW |
| dc.subject | Interconnected suspension | en |
| dc.subject | Hydro-pneumatic suspension | en |
| dc.subject | MATLAB | en |
| dc.subject | Ride Performance | en |
| dc.subject | Vehicle model | en |
| dc.subject | Vehicle dynamics | en |
| dc.subject | Multi-axle vehicle | en |
| dc.title | 多軸車輛液氣壓懸吊配置方法之探討 | zh_TW |
| dc.title | Analysis of the Hydro-pneumatic Suspension Configurations for Multi-Axle Vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇偉儁;尤正吉 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Jiun Su;Cheng-Chi Yu | en |
| dc.subject.keyword | 液氣壓懸吊,連通式懸吊,多軸車輛,車輛模型,車輛動態,車輛懸吊動態性能,MATLAB, | zh_TW |
| dc.subject.keyword | Hydro-pneumatic suspension,Interconnected suspension,Multi-axle vehicle,Vehicle model,Vehicle dynamics,Ride Performance,MATLAB, | en |
| dc.relation.page | 184 | - |
| dc.identifier.doi | 10.6342/NTU202302259 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 13.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
