請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88469完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | zh_TW |
| dc.contributor.advisor | Cheng-Che Hsu | en |
| dc.contributor.author | 王靖元 | zh_TW |
| dc.contributor.author | Ching-Yuan Wang | en |
| dc.date.accessioned | 2023-08-15T16:26:46Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-30 | - |
| dc.identifier.citation | 1. Pappas, D., "Status and potential of atmospheric plasma processing of materials." Journal of Vacuum Science & Technology A, 2011. 29(2).
2. Boyle, W.S. and P. Kisliuk, "Departure from Paschen's Law of Breakdown in Gases." Physical Review, 1955. 97(2): p. 255-259. 3. Terashima, M.S.T.T.T.I.H.F.K., "Micrometer-scale discharge in high-pressure H2O and Xe environments including supercritical fluid." Journal of Applied Physics, 2006. 4. Lock, E.H., A.V. Saveliev and L.A. Kennedy, "Initiation of pulsed corona discharge under supercritical conditions." IEEE Transactions on Plasma Science, 2005. 33(2): p. 850-853. 5. Tachibana, K., "Current status of microplasma research." Ieej Transactions on Electrical and Electronic Engineering, 2006. 1(2): p. 145-155. 6. Iza, F., G.J. Kim, S.M. Lee, J.K. Lee, et al., "Microplasmas: Sources, particle kinetics, and biomedical applications." Plasma Processes and Polymers, 2008. 5(4): p. 322-344. 7. Jan C. T. Eijkel, H.S., Andreas Manz, "A dc Microplasma on a Chip Employed as an Optical Emission Detector for Gas Chromatography." analytical Chemistry, 2000. 8. Yuan, X., J. Tang and Y.X. Duan, "Microplasma Technology and Its Applications in Analytical Chemistry." Applied Spectroscopy Reviews, 2011. 46(7): p. 581-605. 9. Korolev, Y.D. and N.N. Koval, "Low-pressure discharges with hollow cathode and hollow anode and their applications." Journal of Physics D: Applied Physics, 2018. 51(32). 10. Legradic, B., "Arcing in Very Large Area Plasma-Enhanced Chemical Vapour Deposition Reactors." 2011. 11. Brandt, S., A. Schutz, F.D. Klute, J. Kratzer, et al., "Dielectric barrier discharges applied for optical spectrometry." Spectrochimica Acta Part B-Atomic Spectroscopy, 2016. 123: p. 6-32. 12. Winter, J., R. Brandenburg and K.D. Weltmann, "Atmospheric pressure plasma jets: an overview of devices and new directions." Plasma Sources Science and Technology, 2015. 24(6). 13. Stephan Reuter, T.v.W., Klaus-Dieter Weltmann, "The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications." Journal of Physics D: Applied Physics, 2018. 14. Bruggeman, P.J., M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, et al., "Plasma–liquid interactions: a review and roadmap." Plasma Sources Science and Technology, 2016. 25(5). 15. Z. Cao; J. L. Walsh, M.G.K., "Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment." Applied Physics Letters, 2009. 16. Ghasemi, M., P. Olszewski, J.W. Bradley and J.L. Walsh, "Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array." Journal of Physics D: Applied Physics, 2013. 46(5). 17. Angyus, S.B., E. Levei, D. Petreus, R. Etz, et al., "Simultaneous Determination of As, Bi, Sb, Se, Te, Hg, Pb and Sn by Small-Sized Electrothermal Vaporization Capacitively Coupled Plasma Microtorch Optical Emission Spectrometry Using Direct Liquid Microsampling." Molecules, 2021. 26(9). 18. Fassel, V.A., "Quantitative Elemental Analyses by Plasma Emission Spectroscopy." Science, 1978. 19. Y. Yin, J.M., J. A. Hopwood, "Miniaturization of inductively coupled plasma sources." IEEE Transactions on Plasma Science, 1999. 20. Adamovich, I., S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, et al., "The 2017 Plasma Roadmap: Low temperature plasma science and technology." Journal of Physics D-Applied Physics, 2017. 50(32). 21. Vanraes, P. and A. Bogaerts, "Plasma physics of liquids—A focused review." Applied Physics Reviews, 2018. 5(3). 22. Marinov, I., O. Guaitella, A. Rousseau and S.M. Starikovskaia, "Modes of underwater discharge propagation in a series of nanosecond successive pulses." Journal of Physics D: Applied Physics, 2013. 46(46). 23. Corella Puertas, E., A. Dzafic and S. Coulombe, "Investigation of the Electrode Erosion in Pin-to-Liquid Discharges and Its Influence on Reactive Oxygen and Nitrogen Species in Plasma-Activated Water." Plasma Chemistry and Plasma Processing, 2019. 40(1): p. 145-167. 24. Tachibana, K., Y. Takekata, Y. Mizumoto, H. Motomura, et al., "Analysis of a pulsed discharge within single bubbles in water under synchronized conditions." Plasma Sources Science and Technology, 2011. 20(3). 25. Aoki, H., K. Kitano and S. Hamaguchi, "Plasma generation inside externally supplied Ar bubbles in water." Plasma Sources Science and Technology, 2008. 17(2). 26. Wu, J., J. Yu, J. Li, J. Wang, et al., "Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma." Spectrochimica Acta Part B: Atomic Spectroscopy, 2007. 62(11): p. 1269-1272. 27. Chang, H.-w. and C.-c. Hsu, "Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour." Journal of Physics D: Applied Physics, 2012. 45(25). 28. Bruggeman, P. and R. Brandenburg, "Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics." Journal of Physics D: Applied Physics, 2013. 46(46). 29. Shariat, M., M. Karimipour and M. Molaei, "Synthesis of CdS Quantum Dots Using Direct Plasma Injection in Liquid Phase." Plasma Chemistry and Plasma Processing, 2017. 37(4): p. 1133-1147. 30. Daud, N.M., N.A. Masri, N.A.N. Nik Malek, S.I. Abd Razak, et al., "Long-term antibacterial and stable chlorhexidine-polydopamine coating on stainless steel 316L." Progress in Organic Coatings, 2018. 122: p. 147-153. 31. P. Bala Srinivasan *, J.L., R.G. Balajeee, C. Blawert, M. Sto¨ rmer, W. Dietzel, "Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy." 2010. 32. Huang, Y.H., D. Hirose, J. Minami, M.J. Wang, et al., "Fabrication and Characterizations of Axial View Liquid Electrode Plasma Atomic Emission Spectrometry for the Sensitive Determination of Trace Zinc, Cadmium, and Lead." Anal Chem, 2022. 94(23): p. 8209-8216. 33. Malik, L.A., A. Bashir, A. Qureashi and A.H. Pandith, "Detection and removal of heavy metal ions: a review." Environmental Chemistry Letters, 2019. 17(4): p. 1495-1521. 34. Hk, T., "Atomic Absorption Spectroscopic Determination of Heavy Metal Concentrations in Kulufo River, Arbaminch, Gamo Gofa, Ethiopia." Journal of Environmental Analytical Chemistry, 2016. 03(01). 35. Zhong, W.S., T. Ren and L.J. Zhao, "Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry." J Food Drug Anal, 2016. 24(1): p. 46-55. 36. Bingöl, M., G. Yentür, B. Er and A.B. Öktem, "Determination of some heavy metal levels in soft drinks from Turkey using ICP/OES method." Czech Journal of Food Sciences, 2010. 28(3): p. 213-216. 37. Beltrán, B., L.O. Leal, L. Ferrer and V. Cerdà, "Determination of lead by atomic fluorescence spectrometry using an automated extraction/pre-concentration flow system." Journal of Analytical Atomic Spectrometry, 2015. 30(5): p. 1072-1079. 38. Peng, Y.-Z., Y.-M. Huang, D.-X. Yuan, Y. Li, et al., "Rapid Analysis of Heavy Metals in Coastal Seawater Using Preconcentration with Precipitation/Co-precipitation on Membrane and Detection with X-Ray Fluorescence." Chinese Journal of Analytical Chemistry, 2012. 40(6): p. 877-882. 39. Toya, Y., T. Itagaki and K. Wagatsuma, "Correlation between the Gas Temperature and the Atomization Behavior of Analyte Elements in Flame Atomic Absorption Spectrometry Estimated with a Continuum-light-source Spectrometer System." Spectrochimica Acta Part B: Atomic Spectroscopy, 2016. 125: p. 146-151. 40. Parra, E.J., P. Blondeau, G.A. Crespo and F.X. Rius, "An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination." Chem Commun (Camb), 2011. 47(8): p. 2438-40. 41. Han, W., Z.Y. Li, M. Li, W.L. Li, et al., "Electrochemical Extraction of Holmium and Thermodynamic Properties of Ho-Bi Alloys in LiCl-KCl Eutectic." Journal of the Electrochemical Society, 2017. 164(4): p. E62-E70. 42. Arduini, F., C. Majorani, A. Amine, D. Moscone, et al., "Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film." Electrochimica Acta, 2011. 56(11): p. 4209-4215. 43. Gumpu, M.B., U.M. Krishnan and J.B.B. Rayappan, "Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix-a permeability approach." Anal Bioanal Chem, 2017. 409(17): p. 4257-4266. 44. Devi, N.R., M. Sasidharan and A.K. Sundramoorthy, "Gold Nanoparticles-Thiol-Functionalized Reduced Graphene Oxide Coated Electrochemical Sensor System for Selective Detection of Mercury Ion." Journal of The Electrochemical Society, 2018. 165(8): p. B3046-B3053. 45. Xia, F., X. Zhang, C. Zhou, D. Sun, et al., "Simultaneous determination of copper, lead, and cadmium at hexagonal mesoporous silica immobilized quercetin modified carbon paste electrode." J Autom Methods Manag Chem, 2010. 2010: p. 824197. 46. Pei, X., W. Kang, W. Yue, A. Bange, et al., "Disposable copper-based electrochemical sensor for anodic stripping voltammetry." Anal Chem, 2014. 86(10): p. 4893-900. 47. Aglan, R.F., H.M. Saleh and G.G. Mohamed, "Potentiometric determination of mercury (II) ion in various real samples using novel modified screen-printed electrode." Applied Water Science, 2018. 8(5). 48. Ines Oehme, O.S.W., "Optical Sensors for Determination of Heavy Metal Ions." Mikrochimica Acta 1997. 49. Min Hee Lee, J.-S.W., † Jeong Won Lee,† Jong Hwa Jung,‡ and and J.S. Kim, "Highly Sensitive and Selective Chemosensor for Hg2+ Based on the Rhodamine Fluorophore." 2007. 50. Markus Lerchi, E.R., Wilhelm Simon,t and Ernó Pretsch, "Bulk Optodes Based on Neutral Dithiocarbamate Ionophores with High Selectivity and Sensitivity for Silver and Mercury Cations." 1994. 51. Konefał, A., P. Piątek, B. Paterczyk, K. Maksymiuk, et al., "Ionophore based optical sensors using hydrophilic polymer matrix – Ratiometric, pH independent ion-selective optodes." Talanta, 2023. 253. 52. Zhang, Y., J. Liu, X. Mao, G. Chen, et al., "Review of miniaturized and portable optical emission spectrometry based on microplasma for elemental analysis." TrAC Trends in Analytical Chemistry, 2021. 144. 53. Cai, Y., S.H. Li, S. Dou, Y.L. Yu, et al., "Metal Carbonyl Vapor Generation Coupled with Dielectric Barrier Discharge To Avoid Plasma Quench for Optical Emission Spectrometry." Analytical Chemistry, 2015. 87(2): p. 1366-1372. 54. He, Q., Z. Zhu, S. Hu, H. Zheng, et al., "Elemental determination of microsamples by liquid film dielectric barrier discharge atomic emission spectrometry." Anal Chem, 2012. 84(9): p. 4179-84. 55. Zhang, S., H. Luo, M.T. Peng, Y.F. Tian, et al., "Determination of Hg, Fe, Ni, and Co by Miniaturized Optical Emission Spectrometry Integrated with Flow Injection Photochemical Vapor Generation and Point Discharge." Analytical Chemistry, 2015. 87(21): p. 10712-10718. 56. Li, M., K. Li, L. He, X. Zeng, et al., "Point Discharge Microplasma Optical Emission Spectrometer: Hollow Electrode for Efficient Volatile Hydride/Mercury Sample Introduction and 3D-Printing for Compact Instrumentation." Anal Chem, 2019. 91(11): p. 7001-7006. 57. Mezei, T.C.a.P., "Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry." Journal of Analytical Atomic Spectrometry, 1994. 58. Mezei, P. and T. Cserfalvi, "Electrolyte Cathode Atmospheric Glow Discharges for Direct Solution Analysis." Applied Spectroscopy Reviews, 2007. 42(6): p. 573-604. 59. Hall, K.A. and R.K. Marcus, "Parametric optimization and spectral line selection for liquid sampling-atmospheric pressure glow discharge – optical emission spectroscopy." Journal of Analytical Atomic Spectrometry, 2019. 34(12): p. 2428-2439. 60. He, Q., Z.L. Zhu and S.H. Hu, "Flowing and Nonflowing Liquid Electrode Discharge Microplasma for Metal Ion Detection by Optical Emission Spectrometry." Applied Spectroscopy Reviews, 2014. 49(3): p. 249-269. 61. Manjusha, R., R. Shekhar and S. Jaikumar, "Direct determination of impurities in high purity chemicals by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES)." Microchemical Journal, 2019. 145: p. 301-307. 62. Shekhar, R., "Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium." Talanta, 2012. 93: p. 32-6. 63. Zhang, Z., Z. Wang, Q. Li, H. Zou, et al., "Determination of trace heavy metals in environmental and biological samples by solution cathode glow discharge-atomic emission spectrometry and addition of ionic surfactants for improved sensitivity." Talanta, 2014. 119: p. 613-9. 64. Zhu, Z., C. Huang, Q. He, Q. Xiao, et al., "On line vapor generation of osmium based on solution cathode glow discharge for the determination by ICP-OES." Talanta, 2013. 106: p. 133-6. 65. Liu, X., Z. Zhu, D. He, H. Zheng, et al., "Highly sensitive elemental analysis of Cd and Zn by solution anode glow discharge atomic emission spectrometry." Journal of Analytical Atomic Spectrometry, 2016. 31(5): p. 1089-1096. 66. Greda, K., K. Swiderski, P. Jamroz and P. Pohl, "Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn." Anal Chem, 2016. 88(17): p. 8812-20. 67. Van Khoai, D., A. Kitano, T. Yamamoto, Y. Ukita, et al., "Development of high sensitive liquid electrode plasma – Atomic emission spectrometry (LEP-AES) integrated with solid phase pre-concentration." Microelectronic Engineering, 2013. 111: p. 343-347. 68. Kitano, A., A. Iiduka, T. Yamamoto, Y. Ukita, et al., "Highly Sensitive Elemental Analysis for Cd and Pb by Liquid Electrode Plasma Atomic Emission Spectrometry with Quartz Glass Chip and Sample Flow." Analytical Chemistry, 2011. 83(24): p. 9424-9430. 69. Zhu, Y.B., R.E. Russo and G.C.Y. Chan, "Temporal characterization of fundamental plasma parameters in pulsed liquid electrode plasma (LEP) optical emission spectrometry." Spectrochimica Acta Part B-Atomic Spectroscopy, 2021. 179. 70. Barua, S., I.M.M. Rahman, M. Miyaguchi, K. Yunoshita, et al., "Speciation of inorganic selenium in wastewater using liquid electrode plasma-optical emission spectrometry combined with supramolecule-equipped solid-phase extraction system." Microchemical Journal, 2020. 159. 71. Chang, H.W. and C.C. Hsu, "Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior." Plasma Sources Science & Technology, 2011. 20(4). 72. Hsieh, A.-h., H.-w. Chang and C.-c. Hsu, "The bubble to jetting transition mechanism of plasmas in NaNO3solutions sustained by pulsed power." Journal of Physics D: Applied Physics, 2012. 45(41). 73. Wang, C.Y. and C.C. Hsu, "Online, Continuous, and Interference-Free Monitoring of Trace Heavy Metals in Water Using Plasma Spectroscopy Driven by Actively Modulated Pulsed Power." Environ Sci Technol, 2019. 53(18): p. 10888-10896. 74. Wang, Z., R. Gai, L. Zhou and Z. Zhang, "Design modification of a solution-cathode glow discharge-atomic emission spectrometer for the determination of trace metals in titanium dioxide." J. Anal. At. Spectrom., 2014. 29(11): p. 2042-2049. 75. Cristiana Radulescu, I.D.D., Claudia Stihi, Ionica Ionita, Andrei Chilian, Cezarina Necula, Elena Daniela Chelarescu, "Determination of heavy metal levels in water and therapeutic mud by atomic absorption spectrometry." Romanian Journal of Physics, 2014. 76. Kojuncu, Ý., J.M. Bundalevska, Ü. Ay, K. Čundeva, et al., "Atomic Absorption Spectrometry Determination of Cd, Cu, Fe, Ni, Pb, Zn, and TI Traces in Seawater Following Flotation Separation." Separation Science and Technology, 2010. 39(11): p. 2751-2765. 77. Jones, X.H.a.B.T., "Inductively Coupled Plasma/Optical Emission Spectrometry." 2000. 78. Li, F.K., A.J. Gong, L.N. Qiu, W.W. Zhang, et al., "Simultaneous determination of trace rare-earth elements in simulated water samples using ICP-OES with TODGA extraction/backextraction." Plos One, 2017. 12(9). 79. G. Tyler, J.Y., "ICP-OES , ICP-MS and AAS Techniques Compared." 2003. 80. Tamotsu Yamamoto, Y.T. Micro Emission MH6000A. Micro Emission [cited 2023 06]; Available from: https://www.micro-emission.com/products/field.html. 81. Banno, M., E. Tamiya and Y. Takamura, "Determination of trace amounts of sodium and lithium in zirconium dioxide (ZrO2) using liquid electrode plasma optical emission spectrometry." Anal Chim Acta, 2009. 634(2): p. 153-7. 82. Kohara, Y., Y. Terui, M. Ichikawa, K. Yamamoto, et al., "Atomic emission spectrometry in liquid electrode plasma using an hourglass microchannel." Journal of Analytical Atomic Spectrometry, 2015. 30(10): p. 2125-2128. 83. Nakakubo, K., T. Nishimura, F.B. Biswas, M. Endo, et al., "Speciation analysis of inorganic selenium in wastewater using a highly selective cellulose-based adsorbent via liquid electrode plasma optical emission spectrometry." J Hazard Mater, 2022. 424(Pt A): p. 127250. 84. Wu, P., S. He, B. Luo and X. Hou, "Flame Furnace Atomic Absorption Spectrometry: A Review." Applied Spectroscopy Reviews, 2009. 44(5): p. 411-437. 85. Mohd, Y. and D. Pletcher, "The fabrication of lead dioxide layers on a titanium substrate." Electrochimica Acta, 2006. 52(3): p. 786-793. 86. Li, X., D. Pletcher and F.C. Walsh, "Electrodeposited lead dioxide coatings." Chem Soc Rev, 2011. 40(7): p. 3879-94. 87. A.B. Velichenko, D.V.G., F.I. Danilov, "Electrodeposition of lead dioxide at an Au electrode." Electrochimica Acta, 1995. 88. G. Romera-Guereca, T.Y.C., D. Poulikakos, "Explosive vaporization and microbubble oscillations on submicron width thin film strip heaters." Heat and Mass Transfer, 2008. 89. Z. Zhao, S.G., D. Poulikakos, "An investigation of microscale explosive vaporization of water on an ultrathin Pt wire." Heat and Mass Transfer, 2002. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88469 | - |
| dc.description.abstract | 水溶液電漿與水的接觸產生許多的化學反應,使其廣泛應用於多個領域,近年來受到許多人的關注。本研究透過白金電極於水中產生電漿,並且利用微型電腦及微形控制器,操控脈衝模組產生高壓直流脈衝並同步光譜儀收光,建立線上重金屬檢測平台。本研究包含三個部分,分別為系統的建立、光譜與電性診斷、重金屬的定量分析。
第一部分為系統的建立,本研究測試兩種不同的開發板能產生之最短脈衝時間,並且結合兩種開發板之優勢,建立水溶液電漿的控制系統。水溶液電漿檢測系統中最重要的是電漿產生單元,本研究針對三種不同的光路設計,對電漿放光之收光系統進行優化,最後選用裸光纖徑向收光進行測試。 第二部分為光譜與電性診斷,利用系統光譜儀與高壓脈衝訊號同步的特性,針對電流波型與光譜之間的關係進行探討,水溶液電漿特徵電流波型分為兩部分,前半部分為氣泡產生時間,後半部分為電漿產生時間,其中在單一光譜多個高壓脈衝的條件下,越短的脈衝間隔時間,所受到前一個脈衝的熱歷史會越嚴重,從而使氣泡產生時間縮短,使電漿生成時間拉長,最終致使光譜訊號強度隨著脈衝間隔時間越短,而有越強的訊號。在低導電度下,電流波型於電漿產生時間中,會有如產生氣泡時的電流峰值,我們認為與氣泡脫離有關,致使在相同電壓下,導電度越低氣泡脫離的頻率則會越來越高,而光譜訊號強度則會越低,增加電壓可以使低導電於電漿產生時間的氣泡脫離頻率下降,因此於低導電度下,若要於電漿產生階段有穩定電漿產生,需要拉高電壓使氣膜或氣泡附著,從而使電漿光譜穩定且訊號增強。 第三部分則是利用不同導電度與不同濃度進行金屬鉛之線性回歸,透過兩種不同的定量方式進行線性度與偵測極限的比較,最後利用兩種未知導電度與金屬鉛濃度的水溶液,進行導電度與濃度的預測,並探討其差異原因。 | zh_TW |
| dc.description.abstract | The contact between aqueous solution and plasma generates numerous chemical reactions, leading to its extensive application in multiple fields. In recent years, it has attracted significant attention from many people. And this study aims to generate plasma under solution by using the high-voltage direct current pulse module which is synchronized with a spectrometer through a microcomputer and microcontroller. Finally, we establishing an online, continuous platform for heavy metal detection. This study consists of three parts: system establishment, spectroscopic and electrical diagnostics, and quantitative analysis of heavy metals.
The first part involves system establishment. Two different single-chip microcomputer capable of generating the shortest pulse duration were tested in this study. The advantages of both boards were combined to establish a control system for plasma in liquid. The most critical component of heavy detection system is the plasma generation unit. This study optimized the light collection system for plasma emission by designing three different optical paths and finally selected bare optical fibers for radial light collection for testing. The second part focuses on spectroscopic and electrical diagnostics. By utilizing the synchronization feature between the spectrometer and high-voltage pulse module, the relationship between current waveforms and spectra was investigated. The characteristic current waveform of plasma in solution can be divided into two parts: bubble generation time in the first half and plasma generation time in the second half. Under the condition of multiple high-voltage pulses in a single spectrum, a shorter pulse interval leads to a more severe thermal history from the previous pulse, resulting in a shorter bubble generation time and a longer plasma generation time. Consequently, the spectral signal intensity becomes stronger as the pulse interval becomes shorter. Under low conductivity, the current waveform during plasma generation time exhibits a peak similar to when bubbles are generated. We believe this is related to bubble detachment. As the conductivity decreases under the same voltage, the frequency of bubble detachment increases, resulting in lower spectral signal intensity. Increasing the voltage can decrease the frequency of bubble detachment during the plasma generation time for low conductivity, thereby achieving stable plasma generation and enhancing the stability and signal intensity of plasma spectra. The third part involves linear regression of metallic element lead using different conductivities and concentrations. The linearity and detection limits were compared using two different quantitative methods. Finally, we predict two unknown aqueous solutions for conductivities and lead concentrations and results show that the prediction of conductivities and concentration is closed to the reality. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:26:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:26:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xv 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 3 第 2 章 文獻探討 4 2.1 電漿之簡介 4 2.1.1 電漿產生機制與反應 4 2.1.2 電漿產生之崩潰電壓 5 2.1.3 電漿之分類 7 2.2 微電漿系統與水溶液電漿系統之簡介 9 2.2.1 微電漿系統簡介 9 2.2.2 水溶液電漿系統之簡介 17 2.2.3 水溶液電漿系統之架構 19 2.2.4 水溶液電漿系統之應用 23 2.3 重金屬檢測方法與目前技術 27 2.3.1 光譜法應用於重金屬檢測 27 2.3.2 電化學法應用於重金屬檢測 30 2.3.3 光學法應用於重金屬檢測 35 2.3.4 微電漿光譜法 37 2.3.5 市售重金屬檢測儀器 45 第 3 章 實驗設備與架構 50 3.1 脈衝式電源驅動之水溶液電漿光譜檢測 50 3.1.1 水溶液電漿產生單元之架構 52 3.1.2 微型電腦與光譜儀之連結 53 3.1.3 調控式脈衝電源模組之架構 53 3.1.4 脈衝與光譜儀同步系統 54 3.1.5 脈衝式電源操作模式 56 3.1.6 水溶液成分 58 3.1.7 放流水標準與實驗參數條件 59 3.2 檢測設備 61 3.2.1 溶液性質量測 61 3.2.2 電性診斷 61 3.2.3 光學診斷 61 第 4 章 實驗結果與討論 64 4.1 實驗裝置可靠性測試 64 4.1.1 微型電腦與微型控制器之最短脈衝比較 64 4.1.2 光路系統可靠性測試 67 4.2 水溶液電漿系統實驗參數分析 72 4.2.1 多重脈衝與歷史效應之光譜分析 72 4.2.2 多重脈衝與歷史效應之電性分析 75 4.2.3 導電度之電流與電漿光譜分析 82 4.2.4 峰值電流與氣泡脫離頻率之關係 87 4.3 重金屬檢測與參數快速優化平台之建立 90 4.3.1 重金屬探測與光譜特徵峰 90 4.3.2 重金屬檢測參數快速優化 94 4.3.3 水溶液導電度定量分析 100 4.3.4 重金屬定量分析 104 4.4 水溶液重金屬檢測方法之建立 110 4.4.1 導電度與濃度線性回歸 110 4.4.2 未知溶液預測 115 第 5 章 結論與未來展望 119 第 6 章 參考文獻 122 第 7 章 附錄 131 7.1 水溶液電漿重金屬檢測參數優化 131 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 重金屬定量分析 | zh_TW |
| dc.subject | 氣泡動態 | zh_TW |
| dc.subject | 電性診斷 | zh_TW |
| dc.subject | 水溶液電漿 | zh_TW |
| dc.subject | 電漿同步系統 | zh_TW |
| dc.subject | 電漿放射光譜 | zh_TW |
| dc.subject | plasma synchronization system | en |
| dc.subject | optical emission spectroscopy | en |
| dc.subject | bubble dynamics | en |
| dc.subject | electric diagnostics | en |
| dc.subject | plasma in solution | en |
| dc.subject | element quantitative analysis | en |
| dc.title | 微電漿光譜法應用於水溶液中重金屬之高速檢測平台之建立 | zh_TW |
| dc.title | Development of Rapid Analysis of Heavy Metal Detection Using Plasma in Solution with Optical Emission Spectroscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝之真;陳奕君 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Chen Hsieh;I-Chun Cheng | en |
| dc.subject.keyword | 水溶液電漿,電漿同步系統,電性診斷,電漿放射光譜,氣泡動態,重金屬定量分析, | zh_TW |
| dc.subject.keyword | plasma in solution,plasma synchronization system,electric diagnostics,optical emission spectroscopy,bubble dynamics,element quantitative analysis, | en |
| dc.relation.page | 133 | - |
| dc.identifier.doi | 10.6342/NTU202302405 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 12.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
