Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88449
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱雅萍zh_TW
dc.contributor.advisorYa-Ping Chiuen
dc.contributor.author李奕含zh_TW
dc.contributor.authorYi-Han Leeen
dc.date.accessioned2023-08-15T16:21:13Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citation1 Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nature Physics 16, 1093-1096, doi:10.1038/s41567-020-0958-x (2020).
2 Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nature Nanotechnology 15, 592-597, doi:10.1038/s41565-020-0682-9 (2020).
3 Yeh, P.-C. et al. Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist. Nano Letters 16, 953-959, doi:10.1021/acs.nanolett.5b03883 (2016).
4 Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nature Physics 17, 720-725, doi:10.1038/s41567-021-01174-7 (2021).
5 Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology 15, 750-754, doi:10.1038/s41565-020-0728-z (2020).
6 Xuefei Li et al. Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices Science Advances 9, doi:10.1126/sciadv.ade5706 (2023).
7 Li, E. et al. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat Commun 12, 5601, doi:10.1038/s41467-021-25924-6 (2021).
8 Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Materials 19, 861-866, doi:10.1038/s41563-020-0708-6 (2020).
9 Scuri, G. et al. Electrically Tunable Valley Dynamics in Twisted WSe2/WSe2 Bilayers. Physical Review Letters 124, doi:10.1103/physrevlett.124.217403 (2020).
10 Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nature Materials 20, 480-487, doi:10.1038/s41563-020-00873-5 (2021).
11 Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat Nanotechnol 15, 592-597, doi:10.1038/s41565-020-0682-9 (2020).
12 Kundu, S., Naik, M. H., Krishnamurthy, H. R. & Jain, M. Moiré induced topology and flat bands in twisted bilayer WSe2: A first-principles study. Physical Review B 105, doi:10.1103/PhysRevB.105.L081108 (2022).
13 Ferreira, F., Enaldiev, V. V., Fal’Ko, V. I. & Magorrian, S. J. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Scientific Reports 11, doi:10.1038/s41598-021-92710-1 (2021).
14 Enaldiev, V. V., Ferreira, F., Magorrian, S. J. & Fal’Ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Materials 8, 025030, doi:10.1088/2053-1583/abdd92 (2021).
15 Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat Nanotechnol 17, 367-371, doi:10.1038/s41565-021-01059-z (2022).
16 Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat Nanotechnol 17, 390-395, doi:10.1038/s41565-022-01072-w (2022).
17 Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Materials and Applications 2, doi:10.1038/s41699-018-0063-5 (2018).
18 Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nature Electronics 2, 580-586, doi:10.1038/s41928-019-0338-7 (2019).
19 Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458-1462, doi:doi:10.1126/science.abd3230 (2021).
20 Pei-Chuen Jiang, Yi-Sheng Lai & Chen, J. S. Dependence of crystal structure and work function of WNx films on the nitrogen content. Applied Physics Letters 89, doi:https://doi.org/10.1063/1.2349313 (2006).
21 FJ Giessibl, S Hembacher, MHerz, Ch Schiller & Mannhart, J. Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. Nanotechnology 15, S79-S86, doi:10.1088/0957-4484/15 (2004).
22 Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Review of Scientific Instruments 90, doi:https://doi.org/10.1063/1.5052264 (2019).
23 Meza, J. A. M. et al. Reverse electrochemical etching method for fabricating ultra-sharp platinum/iridium tips for combined scanning tunneling microscope/atomic force microscope based on a quartz tuning fork. Current Applied Physics 15, 1015-1021, doi:10.1016/j.cap.2015.05.015 (2015).
24 LT STM User’s Guide ver.4.2 19 August 2015.
25 Guan, Y. et al. Optoelectronic properties and strain regulation of the 2D WS2/ZnO van der Waals heterostructure. RSC Advances 11, 14085-14092, doi:10.1039/d1ra01877a (2021).
26 Dodd Gray, Adam McCaughan & Mookerji, B. Crystal Structure of Graphite, Graphene and Silicon. Physics for Solid State Applications (2009).
27 Modtland, B. J., Navarro‐Moratalla, E., Ji, X., Baldo, M. & Kong, J. Monolayer Tungsten Disulfide (WS2) via Chlorine‐Driven Chemical Vapor Transport. Small 13, 1701232, doi:10.1002/smll.201701232 (2017).
28 Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nature Nanotechnology 17, 227-238, doi:10.1038/s41565-021-01068-y (2022).
29 Pan, Y. et al. Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS2–WSe2 Heterobilayers. Nano Letters 18, 1849-1855, doi:10.1021/acs.nanolett.7b05125 (2018).
30 Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nature Materials 20, 945-950, doi:10.1038/s41563-021-00923-6 (2021).
31 Zhang, C. et al. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe<sub>2</sub>. Nano Letters 15, 6494-6500, doi:10.1021/acs.nanolett.5b01968 (2015).
32 Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’Ko, V. I. Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. Physical Review Letters 124, doi:10.1103/physrevlett.124.206101 (2020).
33 Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nature Materials 20, 956-963, doi:10.1038/s41563-021-00973-w (2021).
34 Angeli, M. & Macdonald, A. H. Γ valley transition metal dichalcogenide moiré bands. Proceedings of the National Academy of Sciences 118, e2021826118, doi:10.1073/pnas.2021826118 (2021).
35 Zhang, Y., Liu, T. & Fu, L. Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers. Physical Review B 103, doi:10.1103/physrevb.103.155142 (2021).
36 Waters, D. et al. Flat Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS2-WSe2 Heterobilayers. ACS Nano 14, 7564-7573, doi:10.1021/acsnano.0c03414 (2020).
37 Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted WSe2 bilayers. Physical Review B 104, doi:10.1103/physrevb.104.125440 (2021).
38 Leung, T. C., Kao, C. L., Su, W. S., Feng, Y. J. & Chan, C. T. Relationship between surface dipole, work function and charge transfer:  Some exceptions to an established rule. Physical Review B 68, doi:10.1103/physrevb.68.195408 (2003).
39 Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465-469, doi:10.1038/s41586-022-05341-5 (2022).
40 I Demeridou et al. Spatially selective reversible charge carrier density tuning in WS2 monolayers via photochlorination. 2D Materials 6, doi:10.1088/2053-1583/aae45c (2019).
41 Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nature Nanotechnology 17, 367-371, doi:10.1038/s41565-021-01059-z (2022).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88449-
dc.description.abstract透過控制堆疊條件,扭轉雙層過渡金屬二硫化物提供了額外的自由度能夠操控其原子結構和電子性質,為其增添更多元的應用潛能,因而引起各方高度的研究興趣。當上下兩層材料之間因晶格常數或堆疊角度差異而產生晶格錯位時,就會產生莫列超晶格(moiré superlattice)。當兩層材料之間的相對角度小於3.5度時,扭轉雙層過渡金屬二硫化物的組成原子會產生微小位移以達到更低能量的堆疊狀態,並在材料上產生應變,此過程稱為晶格重構。晶格重構可能包含水平和垂直方向之位移,並且能夠改變材料的能帶結構。因此,探討晶格重構和材料電子性質之間的關聯對於調控雙層 TMD 裝置十分重要。
本研究利用掃描穿隧顯微鏡(STM)和非接觸式原子力顯微鏡(nc-AFM),探討高定向熱解石墨(HOPG)基板上之小角度扭轉雙層二硫化鎢(WS2)原子結構。實驗結果展示了樣品的晶格重構現象,以及重構所形成的菱面堆疊 (XM與MX 堆疊) 之三角形區域、域壁 (Domain wall, DW) 和縮小的XX堆疊區域。此外,藉由分析底層二硫化鎢與基板所形成之莫列圖紋,我們觀測到集中於域壁的剪應變 (shear strain),和XX堆疊附近產生約5度之額外旋轉 (rotation) 角度。
我們利用掃描穿隧能譜(STS)量測不同堆疊區域的電子結構,觀測到價帶的Γ谷能量呈現高低變化,其能量主要受到層間間距影響。然而,理論計算顯示XM與MX堆疊具有相同的層間間距,與量測結果矛盾。為了解此問題的原因,我們藉由量測穿隧電流隨針尖-樣品距離的衰減常數來獲取樣品功函數資訊,並發現XM與MX區域之功函數相差21.3毫電子伏特(meV),此為造成兩區域的Γ谷能量差之主因。功函數的變化可歸因於扭轉雙層二硫化鎢中固有的局部偏極化,而此偏極化之方向是由兩層二硫化鎢中原子的相對位置所決定。偏極化現象也代表著樣品具有鐵電性質,而我們藉由觀測偏極化區域隨電場而擴張及縮小之鐵電反應,再次驗證MX與XM區域具有局部偏極化之特徵。
本研究為扭轉雙層過度金屬二硫化物之應變行為提供更全面的理解,並展示了三維晶格重構行為與材料電子性質之間的相關性。
zh_TW
dc.description.abstractTwisted bilayer transition metal dichalcogenides (tb-TMD) have recently attracted tremendous interest because they offer new opportunities for modulating their atomic structures and electronic properties via controlling the stacking conditions, providing a more diverse application on semiconductor devices. The lattice misalignment, caused by the difference of lattice constant or aligned angle between two layers, results in the moiré superlattice. When the relative angle between two layers is small (<3.5°), the structure of tb-TMD is expected to undergo a reconstruction process, in which the atoms of the TMD lattice slightly adjust their arrangement to attain lower stacking energy and induce strain on the constituent layers. This rearrangement can involve in-plane and out-of-plane directions. The lattice reconstruction can alter the band structure of tb-TMD. Hence, exploring the correlation between lattice reconstruction and electronic properties is important for engineering bilayer TMD devices.
In this study, we investigate the atomic structure of marginally twisted bilayer WS2 (tb-WS2) on the highly ordered pyrolytic graphite (HOPG) substrate by utilizing scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). The results reveal lattice reconstruction, which leads to the triangular domains exhibiting rhombohedral stacking (i.e., XM and MX stackings), the domain wall (DW), and the shrunk XX stacking regions. Additionally, by analyzing the displacement of the bottom WS2/HOPG moiré pattern, we identify localized shear strain at the domain walls and an additional 5° rotation at XX staking sites.
The local electronic structures of different stacking probed by scanning tunneling spectroscopy (STS) present the undulating Γ peak energy, which results mainly from the fluctuating interlayer separation (ILS). However, theoretical calculations suggest the same ILS in XM and MX domains, which contradicts our STS result. To explore this contradiction, we investigate the work function of tb-WS2 by measuring the decay constants of the tunneling current. Our results show a 21.3 meV difference in the work functions between XM and MX domains, which results in the Γ peaks difference between them. The work function change is attributed to the local polarizations in tb-TMD, determined by the relative positions of atoms in the two WS2 layers. We additionally observe the ferroelectric response of tb-WS2, reconfirming the polarizations in XM and MX domains.
Our work provides a more complete understanding of strain behavior in the tb-TMD and demonstrates the correlation between 3-dimensional lattice reconstruction and the electronic properties of tb-TMD.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:21:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:21:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 iii
ABSTRACT v
CONTENTS viii
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xiii
Chapter 1 Introduction and Motivation 1
1.1 Transition Metal Dichalcogenide Bilayer System 1
1.2 Lattice Reconstruction 2
1.3 Layer Polarization and Ferroelectric Domains 4
1.4 Motivations 5
Chapter 2 Experiment Method 7
2.1 Scanning Tunneling Microscopy 7
2.1.1 Tunneling Mechanism 7
2.1.2 Local Density of States (LDOS) 9
2.1.3 Work Function 10
2.1.4 Scanning Modes of STM 11
2.2 Non-Contact Atomic Force Microscopy (nc-AFM) 15
2.2.1 Experimental Principle 15
2.2.2 Scanning Modes of Nc-AFM 16
Chapter 3 Experimental Instrument 18
3.1 Low-Temperature STM (LT-STM) 18
3.2 Ultra-High Vacuum (UHV) System 19
3.2.1 Vacuum pump 19
3.3 STM Scanning System 21
3.3.1 Scanner 21
3.3.2 Stepper 22
3.3.3 Tip 22
3.3.4 QPlus sensor 23
3.3.5 Sample Holder 24
3.3.6 Vibration isolation 24
Chapter 4 Experimental Results and Discussion 26
4.1 Sample Information and Identification 26
4.2 Moiré Superlattice of Twisted Bilayer WS2 30
4.2.1 STM Topography 30
4.2.2 STS measurements of the moiré superlattice 31
4.3 Atomic Structure of tb-WS2 34
4.3.1 Nc-AFM Topographies and In-situ Current Images 34
4.4 Γ Peaks in dI/dV Curves and Interlayer Separation (ILS) 45
4.5 Layer Polarization and Work Function 48
4.6 Ferroelectric Response to External Electric Field 54
Chapter 5 Conclusion 57
Reference 59
Supporting Information 63
-
dc.language.isoen-
dc.subject功函數zh_TW
dc.subject鐵電域zh_TW
dc.subject扭轉雙層二硫化鎢zh_TW
dc.subject二維過渡金屬二硫化物zh_TW
dc.subject莫列能帶結構zh_TW
dc.subject晶格重構zh_TW
dc.subjectmoiré band structureen
dc.subjectlattice reconstructionen
dc.subjectferroelectric domainen
dc.subjecttwisted bilayer WS2en
dc.subjectTransition metal dichalcogenidesen
dc.subjectwork functionen
dc.title探討小角度堆疊之雙層二硫化鎢的晶格重構現象、電子結構及鐵電效應zh_TW
dc.titleLattice Reconstruction, Electronic Structure, and Ferroelectricity of Marginally Twisted Bilayer WS2en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張嘉升;魏金明;陳宜君;李明洋zh_TW
dc.contributor.oralexamcommitteeChia-Seng Chang;Ching-Ming Wei;Yi-Chun Chen;Ming-Yang Lien
dc.subject.keyword二維過渡金屬二硫化物,莫列能帶結構,扭轉雙層二硫化鎢,晶格重構,鐵電域,功函數,zh_TW
dc.subject.keywordTransition metal dichalcogenides,moiré band structure,twisted bilayer WS2,lattice reconstruction,ferroelectric domain,work function,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202302252-
dc.rights.note未授權-
dc.date.accepted2023-08-02-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved