請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88443完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝伯讓 | zh_TW |
| dc.contributor.advisor | Po-Jang Hsieh | en |
| dc.contributor.author | 李宇昕 | zh_TW |
| dc.contributor.author | Yu-Hsin Lee | en |
| dc.date.accessioned | 2023-08-15T16:19:37Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-28 | - |
| dc.identifier.citation | Abeles, D., Amit, R., Tal-Perry, N., Carrasco, M., & Yuval-Greenberg, S. (2020). Oculomotor inhibition precedes temporally expected auditory targets. Nature Communications, 11(1), 3524. https://doi.org/10.1038/s41467-020-17158-9
Amit, R., Abeles, D., Carrasco, M., & Yuval-Greenberg, S. (2019). Oculomotor inhibition reflects temporal expectations. NeuroImage, 184, 279–292. https://doi.org/10.1016/j.neuroimage.2018.09.026 Badde, S., Myers, C. F., Yuval-Greenberg, S., & Carrasco, M. (2020). Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nature Communications, 11(1), 3341. https://doi.org/10.1038/s41467-020-17160-1 Dankner, Y., Shalev, L., Carrasco, M., & Yuval-Greenberg, S. (2017). Prestimulus inhibition of saccades in adults with and without attention-deficit/hyperactivity disorder as an index of temporal expectations. Psychological Science, 28(7), 835–850. https://doi.org/10.1177/0956797617694863 Denison, R. N., Yuval-Greenberg, S., & Carrasco, M. (2019). Directing voluntary temporal attention increases fixational stability. The Journal of Neuroscience, 39(2), 353–363. https://doi.org/10.1523/jneurosci.1926-18.2018 Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43(9), 1035–1045. https://doi.org/10.1016/s0042-6989(03)00084-1 Erlick, D., & Landis, C. (1952). The effect of intensity, light-dark ratio, and age on the flicker-fusion threshold. The American Journal of Psychology, 65(3), 375–388. https://doi.org/10.2307/1418759 Graaf, T. A., & Duecker, F. (2022). No effects of rhythmic visual stimulation on target discrimination: An online alpha entrainment experiment. European Journal of Neuroscience, 55(11–12), 3340–3351. https://doi.org/10.1111/ejn.15483 Gulbinaite, R., Viegen, T. van, Wieling, M., Cohen, M. X., & VanRullen, R. (2017). Individual alpha peak frequency predicts 10 Hz flicker effects on selective attention. Journal of Neuroscience, 37(42), 10173–10184. https://doi.org/10.1523/JNEUROSCI.1163-17.2017 Helfrich, R. F., Breska, A., & Knight, R. T. (2019). Neural entrainment and network resonance in support of top-down guided attention. Current Opinion in Psychology, 29, 82–89. https://doi.org/10.1016/j.copsyc.2018.12.016 Hermens, F. (2015). Dummy eye measurements of microsaccades: Testing the influence of system noise and head movements on microsaccade detection in a popular video-based eye tracker. Journal of Eye Movement Research, 8. https://doi.org/10.16910/jemr.8.1.1 Herrmann, C. S. (2001). Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3–4), 346–353. https://doi.org/10.1007/s002210100682 Krauzlis, R. J., Goffart, L., & Hafed, Z. M. (2017). Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1718), 20160205. https://doi.org/10.1098/rstb.2016.0205 Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology : CB, 29(18), R890–R905. https://doi.org/10.1016/j.cub.2019.07.075 Lam, N. H. L., Hultén, A., Hagoort, P., & Schoffelen, J.-M. (2018). Robust neuronal oscillatory entrainment to speech displays individual variation in lateralisation. Language, Cognition and Neuroscience, 33(8), 943–954. https://doi.org/10.1080/23273798.2018.1437456 Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63(8), 1279–1292. https://doi.org/10.3758/bf03194543 Lv, X., Cheng, S., Wang, Z., & Jia, J. (2022). The dynamics of microsaccade amplitude reflect shifting of covert attention. Consciousness and Cognition, 101, 103322. https://doi.org/10.1016/j.concog.2022.103322 Mantiuk, R. K., Ashraf, M., & Chapiro, A. (2022). stelaCSF: A unified model of contrast sensitivity as the function of spatio-temporal frequency, eccentricity, luminance and area. ACM Transactions on Graphics, 41(4), 145:1-145:16. https://doi.org/10.1145/3528223.3530115 Martinez-Conde, S., Otero-Millan, J., & Macknik, S. L. (2013). The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience, 14(2), Article 2. https://doi.org/10.1038/nrn3405 Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89(1), 133–162. https://doi.org/10.1037/0033-2909.89.1.133 Nokia, M. S., & Penttonen, M. (2022). Rhythmic memory consolidation in the hippocampus. Frontiers in Neural Circuits, 16. https://www.frontiersin.org/articles/10.3389/fncir.2022.885684 Ono, H., & Barbeito, R. (1985). Utrocular discrimination is not sufficient for utrocular identification. Vision Research, 25, 289–299. https://doi.org/10.1016/0042-6989(85)90121-X Parris, B. A., Dienes, Z., & Hodgson, T. L. (2012). Temporal constraints of the word blindness posthypnotic suggestion on stroop task performance. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 833–837. https://doi.org/10.1037/a0028131 Robson, J. (1966). Spatial and temporal contrast-sensitivity functions of the visual system. Journal of The Optical Society of America, 56. https://doi.org/10.1364/JOSA.56.001141 Seibold, V. C., Stepper, M. Y., & Rolke, B. (2020). Temporal attention boosts perceptual effects of spatial attention and feature-based attention. Brain and Cognition, 142, 105570. https://doi.org/10.1016/j.bandc.2020.105570 Snowden, R. J., Hess, R. F., & Waugh, S. J. (1995). The processing of temporal modulation at different levels of retinal illuminance. Vision Research, 35(6), 775–789. https://doi.org/10.1016/0042-6989(94)00158-I Spaak, E., Lange, F. P. de, & Jensen, O. (2014). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. The Journal of Neuroscience, 34(10), 3536–3544. https://doi.org/10.1523/jneurosci.4385-13.2014 Tal-Perry, N., & Yuval-Greenberg, S. (2020). Pre-target oculomotor inhibition reflects temporal orienting rather than certainty. Scientific Reports, 10(1), 21478. https://doi.org/10.1038/s41598-020-78189-2 Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8(8), 1096–1101. https://doi.org/10.1038/nn1500 Vetter, P., Badde, S., Phelps, E. A., & Carrasco, M. (2019). Emotional faces guide the eyes in the absence of awareness. ELife, 8, e43467. https://doi.org/10.7554/elife.43467 Yamashita, J., Terashima, H., Yoneya, M., Maruya, K., Oishi, H., & Kumada, T. (2022). Pupillary fluctuation amplitude preceding target presentation is linked to the variable foreperiod effect on reaction time in Psychomotor Vigilance Tasks. PLOS ONE, 17(10), e0276205. https://doi.org/10.1371/journal.pone.0276205 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88443 | - |
| dc.description.abstract | 節律(rhythm)在生物系統中俯拾即是。人類神經系統亦不例外,過去有許多研究顯示大腦節律會受到外在刺激所影響,隨著相位變化而震盪(oscillate),並可見到同步化(entrainment)之現象。同時,大腦無時無刻都在處理來自外界各種訊息,然而,在眾多訊息中僅有少數能夠被主體所主觀知覺到。於是,本研究利用人類雙眼視覺之特性將節律訊息隱藏於單眼中,使此類訊息無法由受試者主觀察覺,以嘗試理解意識在節律訊息處理中所扮演之角色。實驗一之行為實驗結果顯示在1Hz、10Hz與30Hz之視覺閃爍刺激下,皆有強烈前時距效應(foreperiod effect),並無明確證據支持無意識資訊處理之現象。承接前述實驗,基於過去節律與前時距效應之眼動文獻,發現微跳視 (microsaccade)之頻率會隨著時間迫近預期刺激出現時間點而逐漸降低。實驗二即利用眼球追蹤技術作為輔助測量,搭配連續閃光抑制 (continuous flash suppression, CFS),控制前時距效應後,發現在同步化後雖仍然無法發現證據支持無意識資訊處理,然而在同步化期間透過觀察微跳視之頻率,我們發現節律性之刺激能誘導出較低之微跳視頻率之潛在證據。據此,我們推論意識可能並非處理節律訊息之必要條件。 | zh_TW |
| dc.description.abstract | The ability to unconsciously process sensory information is one of the key capabilities possessed by cognitive systems. In vision, it has been demonstrated that stable fusion can prevent conscious access to information regarding the eye-of-origin. By exploiting this lack of awareness, periodicity can be effectively hidden monocularly outside of consciousness. Meanwhile, rhythm is ubiquitous in biological systems, neural oscillation in particular has been implicated in orchestrating cognitive processes. Previous studies indicated that human subjects could be readily entrained by external periodic events, and their performance oscillated with the different phases of rhythm. However, it is still unclear to what extent and at what level of processing rhythmic entrainment can occur when the rhythmic entrainer is unconsciously presented monocularly. In the present study, we entrained our participants unconsciously with superimposed grating flickers, then probed with tilted Gabor at different phases. In experiment one, we first identified a strong foreperiod effect across the tested frequencies (i.e., 1Hz, 10Hz and 30Hz). However, results revealed no concrete evidence of entrainment. In subsequent experiment two, we adopted continuous flash suppression (CFS) to tease apart the foreperiod effect from possible entrainment. Additionally, we utilized eye-tracking as an auxiliary measurement, since reduction in microsaccade rate and oculomotor dynamics in general has been linked to reflect temporal information processing. After controlling for the foreperiod effect with experiment two. We still cannot find behavioral evidence for post-entrainment unconscious rhythmic information processing. Conversely, we observed evidence for unconscious information processing during-entrainment, as evidence from a local lowered microsaccade rate for periodic flicker stimulation versus non-periodic flicker stimulation. The current study demonstrated potential evidence for invisible rhythmic entrainment eliciting a similar microsaccade inhibition response as conscious stimuli. In a broader context, our results suggested that the human nervous system possesses the ability to process rhythmic information without conscious awareness. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:19:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:19:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
Chinese Abstract ii English Abstract iii 1. Introduction 1 2. Materials and Methods 4 2.1 Observers 4 2.2 Stimuli 4 2.3 Experiment One 4 2.4 Experiment Two 6 2.5 Apparatus 9 2.6 Data Analysis 13 3. Results 17 3.1 Experiment One 17 3.2 Experiment Two 18 4. Discussion 21 4.1 Experiment One 21 4.2 Experiment Two 22 5. Reference 48 | - |
| dc.language.iso | en | - |
| dc.subject | 節律 | zh_TW |
| dc.subject | 同步化 | zh_TW |
| dc.subject | 無意識資訊處理 | zh_TW |
| dc.subject | 微跳視 | zh_TW |
| dc.subject | Rhythm | en |
| dc.subject | Microsaccade | en |
| dc.subject | Entrainment | en |
| dc.subject | Unconscious Information Processing | en |
| dc.title | 無意識單眼節律訊息處理 | zh_TW |
| dc.title | Unconscious Rhythmic Information Processing Under Monocular Entrainment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪紹閔;曾祥非 | zh_TW |
| dc.contributor.oralexamcommittee | Shao-Min Hung;Philip Tseng | en |
| dc.subject.keyword | 無意識資訊處理,節律,同步化,微跳視, | zh_TW |
| dc.subject.keyword | Unconscious Information Processing,Rhythm,Entrainment,Microsaccade, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202302203 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 心理學系 | - |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 1.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
