請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88437完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡進發 | zh_TW |
| dc.contributor.advisor | Jing-Fa Tsai | en |
| dc.contributor.author | 蘇毓傑 | zh_TW |
| dc.contributor.author | Yu-Chieh Su | en |
| dc.date.accessioned | 2023-08-15T16:18:00Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | Abbas, H. M. "Data Reliability and Human Error Implications," The Journal of Navigation, Vol.30, pp. 373-389, 2007.
Allianz Global Corporate & Specialty, "From Titanic to Costa Concordia," The Journal of Safety and Shipping, pp. 6-7, 2012. Maritime Safety Committee (MSC), 98th session, 7-16 June 2017.https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MSC-98th-session.aspx Sharpey-Schafer. "Collison at Sea," The Journal of Navigatio, pp. 261-280, 1995. Fujii, Y., and Tanaka, K. "Traffic Capacity," Journal of Navigation, Vol.24, pp. 543-552, 1971. Goodwin, E. M. "A Statistical Study of Ship Domains," The Journal of Navigation, Vol.28, pp. 328-344, 1975. IMO, "Convention on the International Regulations for Preventing Collisions at Sea, 1972," Consolidated Edition, 2018.https://www.samgongustofa.is/media/log-og-reglur/COLREG-Consolidated-2018.pdf Davison, K.S. "On The Turning and Steering of Ships," Transaction of the Society of Naval Architects and Marine Engineers, Vol.52, 1944. Zhang, Y., Qu, D., Ke, J. and Li, X. "Dynamic Obstacle Avoidance for USV Based On Velocity Obstacle and Dynamic Window Method," Journal of Shanghai University, Vol.23, pp. 1-6, 2017. Lyu, H.G. and Yin, Y. "COLREGS-Constrained Realtime Path Planning for Autonomous Ships Using Modified Artificial Potential Fields," The Journal of Navigation, Vol.72, pp. 588-608, 2019. Shen, H.Q., Hashimoto, H. and Matsuda, A. "Automatic Collision Avoidance of Multiple Ships Based On Deep Q-learning," Applied Ocean Research, Vol.86, pp. 268-288, 2019. Kearon, J. "Computer Programs for Collision Avoidance and Track Keeping," Proceeding Mathematical Aspects of Marine Traffic, London, UK, 1979. Chen, P.F., Huang, Y.M., Mou, J.M. and Van Gelder. "Probabilistic Risk Analysis for Ship Collision," State-Of-The-Art. Safety Science, Vol.121, pp.451-473, 2019. Ma, Y., Zhao, Y., Wang, Y., Gan, L. and Zheng, Y. "Collision Avoidance Under COLREGS for Unmanned Surface Vehicles Via Deep Reinforcement Learning," Marit. Maritime Policy & Management, Vol.47, pp. 665-686, 2020. Jian Zhou, Feng Ding, Jiaxuan Yang, Zhengqiang Pei, Chenxu Wang and Anmin Zhang. "Navigation Safety Domain and Collision Risk Index for Decision Support of Collision Avoidance of USVs," International Journal of Naval Architecture and Ocean Engineering, Vol.13, pp. 340-350, 2021. 謝文記,"船舶節能自動操船系統之實驗研究,"國立台灣大學工程科學及海洋工程科學研究所碩士論文,2017。 Nomoto, K. and K. Taguchi. "On Steering Qualities of Ships," Journal of Zosen Kiokai, pp. 57-66, 1957. 李政宏,"船舶自動避碰系統之實驗研究,"國立台灣大學工程科學及海洋工程科學研究所碩士論文,2019。 美國國家電子海洋協會"The NMEA0183 Protocol," August 2001.https://www.tronico.fi/OH6NT/docs/NMEA0183.pdf 蔡易修,"應用自航試驗系統推估規則波中之能源效率設計指標之研究,"國立台灣大學工程科學及海洋工程科學研究所碩士論文,2017。 胥文,胡江強,伊建川,李可,"基于模糊理論的船舶複合碰撞危險度計算,"大連海事大學航海學院,第39卷第7期,2017。 Huang, Y.M., Chen, L.Y., Chen, P.F. "Ship Collision Avoidance Methods," State-Of-The-Art. Safety Science, Vol.121, pp.451-473, 2020. Wang, Y.L., Yu, X.M., Liang, X., Li, B.A. "A COLREGs-based Obstacle Avoidance Approach for Unmanned Surface Vehicles," Ocean Engineering, pp. 110-124, 2018. Sperry, E. A. "Automatic Steering," Society of Naval Architects and Marine Engineers, 1922. Minorsky, N. "Directional Stability of Automatically Steered Bodies," Journal of American Society of Naval Engineers, Vol.34, pp. 280-309, 1922. Zadeh, Lotfi A. "Fuzzy Sets," Information and Control, pp. 338-353, 1965. Mamdani, E. H. "Applications of Fuzzy Algorithms for Control of Simple Dynamic Plant," Proceeding of the Institution of Electrical Engineers, Vol.121, pp. 1585-1588, 1974. Van Amerongen, J., H. R. van Nauta Lemke, and J. C. T. Van der Veen. "An Autopilot for Ships Designed With Fuzzy Sets," Digital Computer Applications to Process Control, 1977. 廖坤靜,"航海力學,"中華民國海事學會海事出版社,1999。 游坤達,"不同船型船舶迴旋特性之探討,"國立臺灣海洋大學運輸與航海科學系碩士論文,2009。 岩井聰,"新訂操船論,"海文堂出版株式會社,1985。 Fossen, T.I. "Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles," Handbook of Marine Craft Hydrodynamics and Motion Control, Chapter6, Maneuvering Theory, Trondheim, Norway, 2002. 陳語涵,"自航船模之船舶操縱運動實驗研究,"國立台灣大學工程科學及海洋工程科學研究所碩士論文,2022。 IMO, "Explanatory Notes to the Standards for Ship Manoeuvrability," 16 December 2002. https://www.register-iri.com/wp-content/uploads/MSC.1-Circ.1053.pdf ABS, "Guide for Vessel Maneuverability," February 2017.https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/conventional_ocean_service/145_vesselmaneuverability/Vessel_Maneuverability_Guide_e-Feb17.pdf | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88437 | - |
| dc.description.abstract | 本研究之目的在於建置回歸原航線船舶自動避碰系統並透過實驗進行驗證,本研究由三個子系統所組成,分別為偵測系統、避碰決策系統以及控制系統。偵測系統由全球衛星定位系統搭配各儀器設備量測本船與他船的動態資訊,並將動態資訊傳送至避碰決策系統。避碰決策系統透過船舶領域以及碰撞風險指數兩者理論來判斷在符合國際海上避碰規則公約之前提下是否存在碰撞危機,一旦進入到緊急危險階段則將動態資訊傳送至控制系統計算所需操舵舵角。控制系統分為定航向控制系統與變航向控制系統,定航向控制系統使用模糊邏輯控制器以維持航向航行;變航向控制系統則透過迴旋圈試驗求得操縱性指數,藉由Nomoto一階線性近似式可計算出每一時刻的航向角速率所需之操舵舵角,並採用視線導航法航行至新避碰點以遠離來向船,待碰撞危機解除後再回到原航線航行。
根據實驗結果顯示,迎艏正遇避碰情況之兩船最近點距離為15.87m大於本船模之船舶領域範圍,表示本船可安全通過;而在回歸原航線上期間航向角在0.2°及-3.2°之間,平均航向角為1.2°;舵角在0.5°及-2.4°之間,平均舵角為0.9°;而航行過程最大位移量為1.8m,平均位移量為1.32m(約2.3倍船寬),表示航向角與舵角皆無發散現象,實現回到原航線上航行之可行性。 | zh_TW |
| dc.description.abstract | The ship autonomous collision avoidance system for returning to original route was built and validated by experiments in this study. The autonomous collision avoidance system is composed of three subsystems, which are detection system, collision avoidance decision-making system(CADMS) and control system. The detection system uses the global satellite positioning system in conjunction with various instrument devices to measure the dynamic information of the self-ship and the target ship, and transmits the dynamic information to the CADMS. The CADMS uses the theories of navigation safety domain and collision risk index to determine whether there is a collision risk while complying with the International Regulations for Preventing Collisions at Sea. Once entering the Immediate Danger Stage, the system transmits the dynamic information to the control system to calculate the required steering angle. The control system has two control logics which are fixed heading and variable heading. The fixed heading control system uses the fuzzy control to maintain the heading of the self-ship. On the other hand, the variable heading control system adopts the first-order Nomoto equation of motion model with the coefficients calculated from the ship model turning cycle test. The rudder angle which makes the ship to reach the yaw rate was then determined by the CADMS. Then, uses Line-Of-Sight, the self-ship is guided to sail towards a new collision avoidance point to sail away from the target ship. Once the immediate danger stage is resolved, the self-ship returns to the original route and continues sailing.
According to the experimental results, the distance at closest point of approach was about 15.87 meters, which is greater than the navigation safety domain range of the self-ship. This indicates that the self-ship can safely avoid the danger of collision. During the return to the original route, the course angle ranged between 0.2° and -3.2°, with an average course angle of 1.2°. The rudder angle ranged between 0.5° and -2.4°, with an average rudder angle of 0.9°. The maximum displacement during the sailing was 1.8 meters, with an average displacement of 1.32 meters (about 2.3 ship model breadth). This indicates that there were no divergence phenomena in the course angle and rudder angle, demonstrating the feasibility of returning to the original route. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:18:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:18:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 X 符號說明 XI 第一章 緒論 1 1-1前言 1 1-2文獻回顧 1 1-3研究動機 3 1-4研究方法與目的 3 1-5論文結構 4 第二章 載具設備及實驗環境 5 2-1載具介紹 5 2-2設備及校正過程 5 2-2-1電子羅盤 6 2-2-2雷射測距儀 6 2-2-3螺旋槳馬達與舵機馬達 7 2-2-4全球衛星定位系統 8 2-2-5 Ra風扇系統及其風扇馬達選用 9 2-2-6 Ra風扇系統之阻力計 9 2-2-7風速計 9 2-2-8資料擷取卡 10 2-2-9實驗環境介紹 10 第三章 系統及理論之介紹 11 3-1偵測系統 11 3-1-1 DCPA與TCPA之計算 11 3-2避碰決策系統 12 3-2-1國際海上避碰規則公約 12 3-2-2船舶領域與碰撞風險指數 14 3-3控制系統 17 3-3-1定航向控制系統 17 3-3-1-1模糊集合與歸屬函數 18 3-3-1-2模糊邏輯控制器說明 18 3-3-1-3模糊邏輯控制器實際流程 21 3-3-1-4量化因子與比例因子介紹 22 3-3-2變航向控制系統 22 3-3-2-1 Nomoto一階線性近似式 23 3-3-2-2追隨性指數與迴旋性指數介紹 23 3-3-2-3 T值與K值計算說明 24 3-4新航向距離之船舶操縱應用 26 3-5視線導航法說明 27 第四章 實驗結果與討論 29 4-1定航向控制系統之試驗 29 4-2變航向控制系統之試驗 30 4-2-1左右迴旋圈試驗之結果 31 4-2-2左右迴旋圈試驗之分析 32 4-2-3操縱性指數T值與K值之建立 32 4-3回歸原航線船舶自動避碰之實驗 33 4-3-1回歸原航線船舶自動避碰實驗之結果 33 4-3-2回歸原航線船舶自動避碰實驗之分析 34 第五章 結論與建議 36 5-1結論 36 5-2建議 36 文獻參考 38 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 視線導航法 | zh_TW |
| dc.subject | 船舶自動避碰系統 | zh_TW |
| dc.subject | 船舶領域 | zh_TW |
| dc.subject | 碰撞風險指數 | zh_TW |
| dc.subject | 迴旋圈試驗 | zh_TW |
| dc.subject | Navigation Safety Domain | en |
| dc.subject | Ship Autonomous Collision Avoidance System | en |
| dc.subject | Line-of-Sight | en |
| dc.subject | Turning Circle Test | en |
| dc.subject | Collision Risk Index | en |
| dc.title | 回歸原航線船舶自動避碰系統之實驗研究 | zh_TW |
| dc.title | Experimental Study on the Ship Autonomous Collision Avoidance System for Returning to Original Route | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林恆山;林宗岳 | zh_TW |
| dc.contributor.oralexamcommittee | Hen-Shan Lin;Zong-Yue Lin | en |
| dc.subject.keyword | 船舶自動避碰系統,船舶領域,碰撞風險指數,迴旋圈試驗,視線導航法, | zh_TW |
| dc.subject.keyword | Ship Autonomous Collision Avoidance System,Navigation Safety Domain,Collision Risk Index,Turning Circle Test,Line-of-Sight, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202301776 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-27 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
