Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾惠斌zh_TW
dc.contributor.advisorHUI-PING TSERNGen
dc.contributor.author黃秀珍zh_TW
dc.contributor.authorXiu-Zhen Huangen
dc.date.accessioned2023-08-15T16:16:55Z-
dc.date.available2024-01-20-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citationAbdelhamid, T. S., & Everett, J. G. (2002). Physiological demands during construction work. Journal of construction engineering and management, 128(5), 427-437.
Alharbi, A., Alosaimi, W., Sahal, R., & Saleh, H. (2021). Real-time system prediction for heart rate using deep learning and stream processing platforms. Complexity,2021, 1-9.
Alvanchi, A., Lee, S., & AbouRizk, S. (2012). Dynamics of working hours in construction. Journal of construction engineering and management, 138(1), 66-77.
Anwer, S., Li, H., Antwi-Afari, M. F., Umer, W., & Wong, A. Y. (2020). Cardiorespiratory and thermoregulatory parameters are good surrogates for measuring physical fatigue during a simulated construction task. International Journal of Environmental Research and Public Health, 17(15), 5418.
Åstrand, P.-O., Rodahl, K., Dahl, H., & StrÃ, S. B. (2003).Textbook of work physiology: physiological bases of exercise. Human kinetics. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
Burger, G. (1969). Heart rate and the concept of circulatory load. Ergonomics, 12(6), 857-864. Canley. (2022). Exam pass logistic curve.https://commons.wikimedia.org/wiki/File:Exam_pass_logistic_curve.svg
Chen, W.-C., & Tserng, H. P. (2022). Real-time individual workload management at tunnel worksite using wearable heart rate measurement devices. Automation in Construction, 134, 104051.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.https://link.springer.com/article/10.1007/BF00994018
Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a methodology review. Journal of biomedical informatics, 35(5-6), 352-359.
Durairaj, M., & Revathi, V. (2015). Prediction of heart disease using back propagation MLP algorithm. International Journal of Scientific & Technology Research, 4(8), 235-239.
Escobar-Linero, E., Domínguez-Morales, M., & Sevillano, J. L.(2022). Worker’s physical fatigue classification using neural networks. Expert systems with applications, 198, 116784.
Fellrnr. (2019). Heart Rate Simplified.https://fellrnr.com/wiki/File:HeartRateSimplified.svg
Hwang, S., & Lee, S. (2017). Wristband-type wearable health devices to measure construction workers' physical demands. Automation in Construction, 83, 330-340.
Jackson, A. S. (2007). Estimating Maximum Heart Rate From Age: Is It a Linear Relationship? Medicine & Science in Sports & Exercise, 39(5), 821. https://doi.org/10.1249/mss.0b013e318054d3ca
javatpoint. (2021). K-Nearest Neighbor(KNN) Algorithm for Machine Learning. https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
Jeremybeauchamp. (2020). Decision Tree vs. Random Forest. https://commons.wikimedia.org/wiki/File:Decision_Tree_vs._Random_Forest.png
Karvekar, S., Abdollahi, M., & Rashedi, E. (2019). A Data-Driven Model to Identify Fatigue Level Based on the Motion Data from a Smartphone. bioRxiv, 796854. https://doi.org/10.1101/796854
Karvonen, J., & Vuorimaa, T. (1988). Heart rate and exercise intensity during sports activities: practical application. Sports medicine, 5, 303-311.
Kramer, O. (2013). K-nearest neighbors.
Lamooki, S. R., Kang, J., Cavuoto, L. A., Megahed, F. M., & Jones-Farmer, L. A. (2020). Challenges and opportunities for statistical monitoring of gait cycle acceleration observed from IMU data for fatigue detection. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob),
Larhmam. (2022). SVM margin. https://commons.wikimedia.org/wiki/File:SVM_margin.png
Maman, Z. S., Yazdi, M. A. A., Cavuoto, L. A., & Megahed, F. M. (2017). A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Applied ergonomics, 65, 515-529.
Menard, S. (2002). Applied logistic regression analysis. Sage.
Merkus, S. L., Coenen, P., Forsman, M., Knardahl, S., Veiersted, K. B., & Mathiassen, S. E. (2022). An Exploratory Study on the Physical Activity Health Paradox—Musculoskeletal Pain and Cardiovascular Load during Work and Leisure in Construction and Healthcare Workers. International Journal of Environmental Research and Public Health, 19(5), 2751.
Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE access, 7, 81542-81554.
Nasirzadeh, F., Mir, M., Hussain, S., Tayarani Darbandy, M., Khosravi, A., Nahavandi, S., & Aisbett, B. (2020). Physical fatigue detection using entropy analysis of heart rate signals. Sustainability, 12(7), 2714.
Oyeleye, M., Chen, T., Titarenko, S., & Antoniou, G. (2022). A predictive analysis of heart rates using machine learning techniques. International Journal of Environmental Research and Public Health, 19(4), 2417.
Panton, L. B., Graves, J. E., Pollock, M. L., Garzarella, L., Carroll, J. F., Leggett, S. H., Lowenthal, D. T., & Guillen, G. J. (1996). Relative heart rate, heart rate reserve, and VO2 during submaximal exercise in the elderly. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 51(4), M165-M171.
Song, Y.-Y., & Ying, L. (2015). Decision tree methods:applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert systems with applications, 134, 93-101.
TseKiChun. (2021). Random forest explain. https://commons.wikimedia.org/wiki/File:Random_forest_explain.png
Wu, H.-C., & Wang, M.-J. J. (2002). Relationship between maximum acceptable work time and physical workload. Ergonomics, 45(4), 280-289.
山口達輝, & 松田洋之 (2022)。圖解 AI:機器學習和深度學習的技術與原理 (衛宮紘, Trans.)。
文淵閣工作室 (2022)。 Python 資料科學自學聖經:不只是建模!用實戰帶你預測趨勢、找出問題與發現價值。基峰資訊股份有限公司。
吳慶輝. (2005). 下水道潛盾施工遭遇礫石層案例探討與防災對策研究。碩士論文,國立交通大學工學院工程技術與管理學程。
李穎灝, & 鄭浩民. (2021). 人工智慧於心臟衰竭的應用。臨床醫學月刊, 87(2), 92-96. https://doi.org/10.6666/ClinMed.202102_87(2).0014
秋庭伸也, 杉山阿聖, & 寺田學(2020)。零基礎入門的機器學習圖鑑 (周若珍, Trans.)。
陳柏均 (2010)。重度工作負荷下不同環境溫度與最大允許工作時間關係之研究。碩士論文,朝陽科技大學營建工程系,台中市。https://hdl.handle.net/11296/m5rpqj
陳美蓮, 黃如瑋, 陳秋蓉, 鄭淑芳, & 毛義方(1998)。高溫作業作息時間與工作負荷量對心率之影響研究. 勞工安全衛生研究季刊, 6:2 卷, 頁 115-129。
陳維政 (2022)。應用穿戴裝置即時生理感測系統發展營建個人化工作負荷管理。博士論文,國立臺灣大學土木工程學系,臺北市。https://doi.org/10.6342/NTU202202170
勞動部 (2021)。 國際勞動統計。https://www.mol.gov.tw/1607/2458/2464/2470/statisticalReportList
勞動部職業安全衛生署. (2023). 職業安全衛生法適用行業工作場所重大職業災害死亡人數(年度). https://data.gov.tw/dataset/43257
勞動部職業安全衛生屬. (2022). 局限空間作業危害介紹. https://www.osha.gov.tw/48110/48207/48299/48301/50484/
楊震 (2020)。基於傳感設備和機器學習算法的施工疲勞研究。博士論文,大連理工大學工程管理學系。
蔡俊宇 (2010)。台灣營建勞工作業時工作耗能之調查研究-以泥作粉刷及防水修護作業為例。碩士論文,朝陽科技大學營建工程系,台中市。https://hdl.handle.net/11296/bsduk2
鄭其恒 (2019)。 以現場連續心率監測評估高架作業環境工作負荷。碩士論文,國立臺灣大學土木工程學系,臺北市。https://hdl.handle.net/11296/zmr5ea
鄭慶武, & 林楨中. (2016). 行為安全活動介入營造業勞工行為改變之初探. 工業安全衛生(327), 25-40.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88433-
dc.description.abstract營建業的施工環境變化快速、多樣性高,勞工常因需要暴露在烈陽高溫、侷限空間或臨空作業等高風險的作業環境,而承受較高的職災風險。工程期間發生的職業災害不僅會造成排程延宕,衍生出額外的工程成本,給罹難家庭帶來無可抹去的傷痛,而且還要面臨被社會檢討的負面名聲成本,增加剩餘員工之心理壓力。因此營造建設產業的工程災害是各界應注意並改善的問題。

本研究以潛盾隧道環境為例,將過去潛盾施工隧道收集的勞工原始工作心率和基本身體條件問卷數據做為資料集建置疲勞預測模型,結合機器學習發展出儲備心率百分比預測系統,擬定兩項研究目標:施工前的安全評估和個人化的安全管理,希望做為往後相關勞工安全管理研究與應用之參考。在施工前綜合安全評估中,比較5種監督式機器學習演算法,在邏輯迴歸、支撐向量機、K鄰近、決策樹和隨機森林中,以決策樹預測模型在按照各%HRR 分類區間數量比例分割 80%訓練集和20%測試集下的準確率、精確率、召回率和F1值的表現最好,分別為 0.7879、0.7740、0.7879、0.7801,接近0.8,具有一定預測可靠度。而在個人化安全管理中,採用 3 項未知數的S曲線方程式(Sigmoid function)可以得到高解釋性和低誤差的當日個人工作累積工時百分比和對應%HRR的擬合曲線,得到的%HRR反曲點最大值即可作為該名工人的疲勞警示值,當日後超過警示值,可適度關心該位勞工的工作負荷情形,調整工班安排減少疲勞發生。研究結果顯示以機器學習作為施工前的安全評估和個人化安全區間的建置方法具有一定程度的可信力和解釋力,可作為日後相關研究的發想與延伸應用參考。
zh_TW
dc.description.abstractThe construction environment in the construction industry changes rapidly and has high diversity. Workers are often exposed to high-risk working environments such as hot sun, confined space, or airport work, and thus suffer from high risk of occupational accidents. Occupational accidents that occur during the construction period will not only cause delays in scheduling, generate additional construction costs, and bring indelible pain to the families of the victims, but also face negative reputation costs from social censorship, and increase the psychological stress of the remaining employees. Therefore, the engineering disasters caused by the construction industry are critical issues that all sectors should pay attention to and improve.

In this study, taking the shield tunnel environment as an example, the original working heart rate and basic physical condition questionnaire data of laborers collected in the past shield construction tunnels were used as data sets to build a fatigue prediction model, and a reserve heart rate percentage prediction system was developed in combination with machine learning. Two research objectives: pre-work safety assessment and personalized safety management, hope to serve as a reference for future research and application of labor safety management. In the pre-work comprehensive safety assessment, comparing 5 kinds of supervised machine learning algorithms: logistic regression, support vector machines(SVM), k-nearest neighbors (KNN), decision tree and random forest. using the decision tree prediction model to predict the proportion of the number of classification intervals according to each %HRR.The accuracy rate, precision rate, recall rate and F1-score under the 80% training set and 20% test set performed best, respectively 0.7879, 0.7740, 0.7879, 0.7801, the result closed to 0.8, with a certain degree of predictive reliability. In personal safety management, the Sigmoid function with three unknowns can be used to obtain a highly interpretable and low-error personal cumulative working hours percentage and %HRR fitting curve of the day, and the obtained %HRR inflection point maximum value is enough As the worker's fatigue warning value, if it exceeds the warning value after the day, you can properly care about the worker's workload and adjust the work shift arrangement to reduce the occurrence of fatigue. The research results show that using machine learning as a method of pre-work safety assessment and construction of personalized safety intervals has a certain degree of credibility and explanatory power, and can be used as a reference for future related research ideas and extended applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:16:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T16:16:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 ix
第 一 章 緒論 1
1.1 研究背景與動機 1
1.2 研究目標 2
1.3 研究範圍與限制 3
第 二 章 文獻回顧 4
2.1 營建業危害作業環境 4
2.2 心率與體能負荷的關係 6
2.3 心率與疲勞安全預測 10
2.3.1 心率預測模型的相關研究 10
2.3.2 工作者疲勞預測模型 12
2.3.3 儲備心率區間與疲勞程度關係 13
2.4 機器學習預測方法 14
2.4.1 邏輯迴歸 15
2.4.2 支撐向量機 16
2.4.3 K 近鄰 17
2.4.4 決策樹 18
2.4.5 隨機森林 19
2.5 預測模型的效能檢驗 20
2.5.1 模型性能 20
2.5.2 模型效能度量指標 20
2.6 機器學習開發工具 21
2.7 個人化安全區間 22
2.8 小結 24
第 三 章 研究方法與模型建立 25
3.1 研究架構 25
3.2 數據預處理 28
3.2.1 收斂數據與合併檔案 28
3.2.2 非數值資料轉換 31
3.3 機器學習分類預測模型建置 32
3.3.1 資料集分割 32
3.3.2 羅吉斯回歸模型建置 32
3.3.3 支撐向量機模型建置 33
3.3.4 K 近鄰模型建置 33
3.3.5 決策樹模型建置 34
3.3.6 隨機森林模型建置 34
3.3.7 交叉驗證與特徵挑選 35
3.4 個人安全區間擬合模型建置 36
3.5 小結 37
第 四 章 模型預測結果與比較 38
4.1 機器學習分類模型性能 38
4.1.1 邏輯迴歸 39
4.1.2 支撐向量機 42
4.1.3 K 最鄰近 45
4.1.4 決策樹 47
4.1.5 隨機森林 50
4.2 分類預測模型性能比較 53
4.2.1 各模型準確度、精確度、召回率與 F 值 53
4.2.2 分類表現 55
4.3 個人安全區間擬合效果 58
4.4 小結 69
第 五 章 結論與建議 70
5.1 結論 70
5.2 未來建議 71
參考文獻 72
-
dc.language.isozh_TW-
dc.title以營建業勞工儲備心率為基礎之機器學習分類模式與個人化安全管理之研究zh_TW
dc.titleHeart-Rate-Reserve Based Machine Learning for Fatigue Classification of Construction Workers and Individual Safety Managementen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭明淵;黃榮堯;郭斯傑zh_TW
dc.contributor.oralexamcommitteeMING-YUAN ZHENG;RONG-YAO HUANG;SI-JIE GUOen
dc.subject.keyword工作負荷,疲勞預測,儲備心率,機器學習,安全管理,zh_TW
dc.subject.keywordworkload,fatigue prediction,heart rate reserve,machine learning,safety management,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202301978-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2028-12-31-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
2.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved