請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88431
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何東垣 | zh_TW |
dc.contributor.advisor | Tung-Yuan Ho | en |
dc.contributor.author | 謝志強 | zh_TW |
dc.contributor.author | Chih-Chiang Hsieh | en |
dc.date.accessioned | 2023-08-15T16:16:23Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-29 | - |
dc.identifier.citation | 1.2 References
Baker, A.R. and Jickells, T.D., 2006. Mineral particle size as a control on aerosol iron solubility. Geophysical Research Letters, 33(17) DOI: 10.1029/2006gl026557. Baker, A.R. et al., 2016. Trace element and isotope deposition across the air-sea interface: progress and research needs. Philos Trans A Math Phys Eng Sci, 374(2081) DOI: 10.1098/rsta.2016.0190. Baker, A.R., Li, M. and Chance, R., 2020. Trace Metal Fractional Solubility in Size‐Segregated Aerosols From the Tropical Eastern Atlantic Ocean. Global Biogeochemical Cycles, 34(6) DOI: 10.1029/2019gb006510. Beard, B.L., Johnson, C.M., Von Damm, K.L. and Poulson, R.L., 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology, 31(7) DOI: 10.1130/0091-7613(2003)031<0629:Iicofc>2.0.Co;2. Berger, C.J.M., Lippiatt, S.M., Lawrence, M.G. and Bruland, K.W., 2008. Application of a chemical leach technique for estimating labile particulate aluminum, iron, and manganese in the Columbia River plume and coastal waters off Oregon and Washington. Journal of Geophysical Research, 113 DOI: 10.1029/2007jc004703. Buck, C.S., Landing, W.M. and Resing, J., 2013. Pacific Ocean aerosols: Deposition and solubility of iron, aluminum, and other trace elements. Marine Chemistry, 157: 117-130 DOI: 10.1016/j.marchem.2013.09.005. Buck, C.S., Landing, W.M. and Resing, J.A., 2010. Particle size and aerosol iron solubility: A high-resolution analysis of Atlantic aerosols. Marine Chemistry, 120(1-4): 14-24 DOI: 10.1016/j.marchem.2008.11.002. Buck, C.S., Landing, W.M., Resing, J.A. and Lebon, G.T., 2006. Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise. Geochemistry, Geophysics, Geosystems, 7(4) DOI: 10.1029/2005gc000977. Chen, C.C. et al., 2022. Nickel superoxide dismutase protects nitrogen fixation in Trichodesmium. Limnology and Oceanography Letters, 7(4): 363-371 DOI: 10.1002/lol2.10263. Conway, T.M. et al., 2019. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat Commun, 10(1): 2628 DOI: 10.1038/s41467-019-10457-w. Conway, T.M. and John, S.G., 2014. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 511(7508): 212-5 DOI: 10.1038/nature13482. Duce, R.A. et al., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5(3): 193-259 DOI: 10.1029/91gb01778. Fitzsimmons, J.N. and Conway, T.M., 2023. Novel Insights into Marine Iron Biogeochemistry from Iron Isotopes. Ann Rev Mar Sci, 15: 383-406 DOI: 10.1146/annurev-marine-032822-103431. Fitzsimmons, J.N. et al., 2016. Dissolved iron and iron isotopes in the southeastern Pacific Ocean. Global Biogeochemical Cycles, 30(10): 1372-1395 DOI: 10.1002/2015gb005357. Foret, G., Bergametti, G., Dulac, F. and Menut, L., 2006. An optimized particle size bin scheme for modeling mineral dust aerosol. Journal of Geophysical Research, 111(D17) DOI: 10.1029/2005jd006797. Gao, Y. et al., 2020. Particle‐Size Distributions and Solubility of Aerosol Iron Over the Antarctic Peninsula During Austral Summer. Journal of Geophysical Research: Atmospheres, 125(11) DOI: 10.1029/2019jd032082. Ho, T.Y. et al., 2003. The elemental composition of some marine phytoplankton. Journal of Phycology, 39(6): 1145-1159 DOI: DOI 10.1111/j.0022-3646.2003.03-090.x. Homoky, W.B. et al., 2011. Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochimica et Cosmochimica Acta, 75(17): 5032-5048 DOI: 10.1016/j.gca.2011.06.019. Ito, A., Ye, Y., Baldo, C. and Shi, Z., 2021. Ocean fertilization by pyrogenic aerosol iron. npj Climate and Atmospheric Science, 4(1) DOI: 10.1038/s41612-021-00185-8. Jickells, T.D. et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718): 67-71 DOI: 10.1126/science.1105959. Jickells, T.D., Baker, A.R. and Chance, R., 2016. Atmospheric transport of trace elements and nutrients to the oceans. Philos Trans A Math Phys Eng Sci, 374(2081) DOI: 10.1098/rsta.2015.0286. Kurisu, M. and Takahashi, Y., 2019. Testing Iron Stable Isotope Ratios as a Signature of Biomass Burning. Atmosphere, 10(2) DOI: 10.3390/atmos10020076. Kurisu, M., Takahashi, Y., Iizuka, T. and Uematsu, M., 2016. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean. Journal of Geophysical Research: Atmospheres, 121(18): 11,119-11,136 DOI: 10.1002/2016jd024957. Longo, A.F. et al., 2016. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust. Environ Sci Technol, 50(13): 6912-20 DOI: 10.1021/acs.est.6b02605. Mackey, K.R., Chien, C.T., Post, A.F., Saito, M.A. and Paytan, A., 2015. Rapid and gradual modes of aerosol trace metal dissolution in seawater. Front Microbiol, 5: 794 DOI: 10.3389/fmicb.2014.00794. Mahowald, N.M. et al., 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 19(4): n/a-n/a DOI: 10.1029/2004gb002402. Martin, J.H. et al., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371(6493): 123-129 DOI: 10.1038/371123a0. Martin, J.H. and Fitzwater, S.E., 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331(6154): 341-343 DOI: 10.1038/331341a0. Mead, C., Herckes, P., Majestic, B.J. and Anbar, A.D., 2013. Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophysical Research Letters, 40(21): 5722-5727 DOI: 10.1002/2013gl057713. Meskhidze, N. et al., 2019. Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface. Marine Chemistry, 217 DOI: 10.1016/j.marchem.2019.103704. Moore, C.M. et al., 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6(9): 701-710 DOI: 10.1038/ngeo1765. Morel, F.M.M., Lam, P.J. and Saito, M.A., 2020. Trace Metal Substitution in Marine Phytoplankton. Annual Review of Earth and Planetary Sciences, 48(1): 491-517 DOI: 10.1146/annurev-earth-053018-060108. Morton, P.L. et al., 2013. Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnology and Oceanography: Methods, 11(2): 62-78 DOI: 10.4319/lom.2013.11.62. Paytan, A. et al., 2009. Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 106(12): 4601-4605 DOI: 10.1073/pnas.0811486106. Perron, M.M.G. et al., 2020. Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta, 208: 120377 DOI: 10.1016/j.talanta.2019.120377. Pinedo-Gonzalez, P. et al., 2020. Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean. Proc Natl Acad Sci U S A, 117(45): 27862-27868 DOI: 10.1073/pnas.2010315117. Radic, A., Lacan, F. and Murray, J.W., 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth and Planetary Science Letters, 306(1-2): 1-10 DOI: 10.1016/j.epsl.2011.03.015. Raiswell, R. and Canfield, D.E., 2012. The Iron Biogeochemical Cycle Past and Present. Geochemical Perspectives, 1(1): 1-220 DOI: 10.7185/geochempersp.1.1. Sakata, K. et al., 2018. Custom-made PTFE filters for ultra-clean size-fractionated aerosol sampling for trace metals. Marine Chemistry, 206: 100-108 DOI: 10.1016/j.marchem.2018.09.009. Sarthou, G. et al., 2003. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(10-11): 1339-1352 DOI: 10.1016/s0967-0637(03)00126-2. Shelley, R.U., Landing, W.M., Ussher, S.J., Planquette, H. and Sarthou, G., 2018. Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach. Biogeosciences, 15(7): 2271-2288 DOI: 10.5194/bg-15-2271-2018. Shi, Z.B. et al., 2012. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review. Aeolian Research, 5: 21-42 DOI: 10.1016/j.aeolia.2012.03.001. Takahashi, Y., Higashi, M., Furukawa, T. and Mitsunobu, S., 2011. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan. Atmospheric Chemistry and Physics, 11(21): 11237-11252 DOI: 10.5194/acp-11-11237-2011. Waeles, M., Baker, A.R., Jickells, T. and Hoogewerff, J., 2007. Global dust teleconnections: aerosol iron solubility and stable isotope composition. Environmental Chemistry, 4(4) DOI: 10.1071/en07013. Wang, B.-S. and Ho, T.-Y., 2020. Aerosol Fe cycling in the surface water of the Northwestern Pacific ocean. Progress in Oceanography, 183 DOI: 10.1016/j.pocean.2020.102291. Yang, T. et al., 2020. Solubilities and deposition fluxes of atmospheric Fe and Cu over the Northwest Pacific and its marginal seas. Atmospheric Environment, 239 DOI: 10.1016/j.atmosenv.2020.117763. 2.6 References ATSDR, 1999. Toxicological profile for cadmium. U.S. Department of Health and Human Services. Public Health Service. Agency for Toxic Substances and Disease Registry. Baker, A.R. and Jickells, T.D., 2006. Mineral particle size as a control on aerosol iron solubility. Geophysical Research Letters, 33(17) DOI: 10.1029/2006gl026557. Baker, A.R., Jickells, T.D., Witt, M. and Linge, K.L., 2006. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Marine Chemistry, 98(1): 43-58 DOI: 10.1016/j.marchem.2005.06.004. Baker, A.R. et al., 2021. Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry. Sci Adv, 7(28) DOI: 10.1126/sciadv.abd8800. Baker, A.R. et al., 2016. Trace element and isotope deposition across the air-sea interface: progress and research needs. Philos Trans A Math Phys Eng Sci, 374(2081) DOI: 10.1098/rsta.2016.0190. Berger, C.J.M., Lippiatt, S.M., Lawrence, M.G. and Bruland, K.W., 2008. Application of a chemical leach technique for estimating labile particulate aluminum, iron, and manganese in the Columbia River plume and coastal waters off Oregon and Washington. Journal of Geophysical Research, 113 DOI: 10.1029/2007jc004703. Bonnet, S. and Guieu, C., 2004. Dissolution of atmospheric iron in seawater. Geophysical Research Letters, 31(3) DOI: 10.1029/2003gl018423. Buck, C.S., Landing, W.M., Resing, J.A. and Lebon, G.T., 2006. Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise. Geochemistry, Geophysics, Geosystems, 7(4) DOI: 10.1029/2005gc000977. Chen, C.C. et al., 2022. Nickel superoxide dismutase protects nitrogen fixation in Trichodesmium. Limnology and Oceanography Letters, 7(4): 363-371 DOI: 10.1002/lol2.10263. Cheng, M.-C., You, C.-F., Cao, J. and Jin, Z., 2012. Spatial and seasonal variability of water-soluble ions in PM2.5 aerosols in 14 major cities in China. Atmospheric Environment, 60: 182-192 DOI: 10.1016/j.atmosenv.2012.06.037. Clough, R., Lohan, M.C., Ussher, S.J., Nimmo, M. and Worsfold, P.J., 2019. Uncertainty associated with the leaching of aerosol filters for the determination of metals in aerosol particulate matter using collision/reaction cell ICP-MS detection. Talanta, 199: 425-430 DOI: 10.1016/j.talanta.2019.02.067. Cutter, G. et al., 2017. Sampling and Sample-handling Protocols for GEOTRACES Cruises. 3 DOI: 10.25607/OBP-2. Duce, R.A. et al., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5(3): 193-259 DOI: 10.1029/91gb01778. Eggimann, D.W. and Betzer, P.R., 1976. Decomposition and Analysis of Refractory Oceanic Suspended Materials. Analytical Chemistry, 48(6): 886-890 DOI: DOI 10.1021/ac60370a005. Félix‐Bermúdez, A., Delgadillo‐Hinojosa, F., Torres‐Delgado, E.V. and Muñoz‐Barbosa, A., 2020. Does Sea Surface Temperature Affect Solubility of Iron in Mineral Dust? The Gulf of California as a Case Study. Journal of Geophysical Research: Oceans, 125(9) DOI: 10.1029/2019jc015999. Fishwick, M.P. et al., 2014. The impact of changing surface ocean conditions on the dissolution of aerosol iron. Global Biogeochemical Cycles, 28(11): 1235-1250 DOI: 10.1002/2014gb004921. Fishwick, M.P. et al., 2018. Impact of surface ocean conditions and aerosol provenance on the dissolution of aerosol manganese, cobalt, nickel and lead in seawater. Marine Chemistry, 198: 28-43 DOI: 10.1016/j.marchem.2017.11.003. Foret, G., Bergametti, G., Dulac, F. and Menut, L., 2006. An optimized particle size bin scheme for modeling mineral dust aerosol. Journal of Geophysical Research, 111(D17) DOI: 10.1029/2005jd006797. Gunchin, G., Osan, J., Migliori, A., Shagjjamba, D. and Streli, C., 2021. Chromium and Zinc Speciation in Airborne Particulate Matter Collected in Ulaanbaatar, Mongolia, by X-Ray Absorption Near-edge Structure Spectroscopy. Aerosol and Air Quality Research, 21(8) DOI: 10.4209/aaqr.210018. Ho, T.Y. et al., 2003. The elemental composition of some marine phytoplankton. Journal of Phycology, 39(6): 1145-1159 DOI: DOI 10.1111/j.0022-3646.2003.03-090.x. Hsieh, C.-C., Chen, H.-Y. and Ho, T.-Y., 2022. The effect of aerosol size on Fe solubility and deposition flux: A case study in the East China Sea. Marine Chemistry, 241 DOI: 10.1016/j.marchem.2022.104106. Hu, Z.C. and Gao, S., 2008. Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253(3-4): 205-221 DOI: 10.1016/j.chemgeo.2008.05.010. Jickells, T.D. et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718): 67-71 DOI: 10.1126/science.1105959. Jickells, T.D., Baker, A.R. and Chance, R., 2016. Atmospheric transport of trace elements and nutrients to the oceans. Philos Trans A Math Phys Eng Sci, 374(2081) DOI: 10.1098/rsta.2015.0286. Kessler, N., Kraemer, S.M., Shaked, Y. and Schenkeveld, W.D.C., 2020. Investigation of Siderophore-Promoted and Reductive Dissolution of Dust in Marine Microenvironments Such as Trichodesmium Colonies. Frontiers in Marine Science, 7 DOI: 10.3389/fmars.2020.00045. Li, R. et al., 2023. Evaluating the effects of contact time and leaching solution on measured solubilities of aerosol trace metals. Applied Geochemistry, 148 DOI: 10.1016/j.apgeochem.2022.105551. Li, W. et al., 2017. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems. Sci Adv, 3(3): e1601749 DOI: 10.1126/sciadv.1601749. Longo, A.F. et al., 2016. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust. Environ Sci Technol, 50(13): 6912-20 DOI: 10.1021/acs.est.6b02605. Mackey, K.R., Chien, C.T., Post, A.F., Saito, M.A. and Paytan, A., 2015. Rapid and gradual modes of aerosol trace metal dissolution in seawater. Front Microbiol, 5: 794 DOI: 10.3389/fmicb.2014.00794. Mahowald, N.M. et al., 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 19(4): n/a-n/a DOI: 10.1029/2004gb002402. Martin, J.H. and Fitzwater, S.E., 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331(6154): 341-343 DOI: 10.1038/331341a0. Meskhidze, N. et al., 2019. Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface. Marine Chemistry, 217 DOI: 10.1016/j.marchem.2019.103704. Morel, F.M.M., Lam, P.J. and Saito, M.A., 2020. Trace Metal Substitution in Marine Phytoplankton. Annual Review of Earth and Planetary Sciences, 48(1): 491-517 DOI: 10.1146/annurev-earth-053018-060108. Morton, P.L. et al., 2013. Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnology and Oceanography: Methods, 11(2): 62-78 DOI: 10.4319/lom.2013.11.62. Myriokefalitakis, S. et al., 2018. Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences, 15(21): 6659-6684 DOI: 10.5194/bg-15-6659-2018. Nicholls, G.D., 1963. Environmental Studies in Sedimentary Geochemistry. Science Progress, 51(201): 12-31 Ohta, A. et al., 2006. Chemical compositions and XANES speciations of Fe, Mn and Zn from aerosols collected in China and Japan during dust events. Geochemical Journal, 40(4): 363-376 DOI: 10.2343/geochemj.40.363. Paytan, A. et al., 2009. Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 106(12): 4601-4605 DOI: 10.1073/pnas.0811486106. Perron, M.M.G. et al., 2020. Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta, 208: 120377 DOI: 10.1016/j.talanta.2019.120377. Raiswell, R. and Canfield, D.E., 2012. The Iron Biogeochemical Cycle Past and Present. Geochemical Perspectives, 1(1): 1-220 DOI: 10.7185/geochempersp.1.1. Sakata, K. et al., 2022. Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility. Atmos. Chem. Phys., 22(14): 9461-9482 DOI: 10.5194/acp-22-9461-2022. Sakata, K. et al., 2014. Identification of sources of lead in the atmosphere by chemical speciation using X-ray absorption near-edge structure (XANES) spectroscopy. Journal of Environmental Sciences, 26(2): 343-352 DOI: 10.1016/s1001-0742(13)60430-1. Sakata, K., Sakaguchi, A., Yokoyama, Y., Terada, Y. and Takahashi, Y., 2017. Lead speciation studies on coarse and fine aerosol particles by bulk and micro X-ray absorption fine structure spectroscopy. Geochemical Journal, 51(3): 215-225 DOI: 10.2343/geochemj.2.0456. Sarthou, G. et al., 2003. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(10-11): 1339-1352 DOI: 10.1016/s0967-0637(03)00126-2. Seinfeld, J.H. and Pandis, S.N., 2016. Atmospheric Chemistry And Physics: From Air Pollution to Climate Change. (Wiley-interscience, ed. 3, 2016): 1326 Shelley, R.U., Landing, W.M., Ussher, S.J., Planquette, H. and Sarthou, G., 2018. Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach. Biogeosciences, 15(7): 2271-2288 DOI: 10.5194/bg-15-2271-2018. Shelley, R.U., Morton, P.L. and Landing, W.M., 2015. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Research Part II: Topical Studies in Oceanography, 116: 262-272 DOI: 10.1016/j.dsr2.2014.12.005. Shi, Z.B. et al., 2012. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review. Aeolian Research, 5: 21-42 DOI: 10.1016/j.aeolia.2012.03.001. Slinn, S.A. and Slinn, W.G.N., 1980. Predictions for particle deposition on natural waters. Atmospheric Environment (1967), 14(9): 1013-1016 DOI: 10.1016/0004-6981(80)90032-3. Takahashi, Y., Higashi, M., Furukawa, T. and Mitsunobu, S., 2011. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan. Atmospheric Chemistry and Physics, 11(21): 11237-11252 DOI: 10.5194/acp-11-11237-2011. Wang, B.-S. and Ho, T.-Y., 2020. Aerosol Fe cycling in the surface water of the Northwestern Pacific ocean. Progress in Oceanography, 183 DOI: 10.1016/j.pocean.2020.102291. Hsin-Yen Wu, Chih-Chiang Hsieh, Tung-Yuan Ho,Trace metal dissolution kinetics of East Asian size-fractionated aerosols in seawater: The effect of a model siderophore, Marine Chemistry, 2023, 104277, ISSN 0304-4203, DOI:10.1016/j.marchem.2023.104277. 3.4 References Baker, A.R., Jickells, T.D., Witt, M. and Linge, K.L., 2006. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Marine Chemistry, 98(1): 43-58 DOI: 10.1016/j.marchem.2005.06.004. Baker, A.R. et al., 2021. Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry. Sci Adv, 7(28) DOI: 10.1126/sciadv.abd8800. Baker, A.R. et al., 2016. Trace element and isotope deposition across the air-sea interface: progress and research needs. Philos Trans A Math Phys Eng Sci, 374(2081) DOI: 10.1098/rsta.2016.0190. Baker, A.R., Li, M. and Chance, R., 2020. Trace Metal Fractional Solubility in Size‐Segregated Aerosols From the Tropical Eastern Atlantic Ocean. Global Biogeochemical Cycles, 34(6) DOI: 10.1029/2019gb006510. Black, E.E. et al., 2020. Ironing Out Fe Residence Time in the Dynamic Upper Ocean. Global Biogeochemical Cycles, 34(9) DOI: 10.1029/2020gb006592. Buck, C.S., Landing, W.M. and Resing, J., 2013. Pacific Ocean aerosols: Deposition and solubility of iron, aluminum, and other trace elements. Marine Chemistry, 157: 117-130 DOI: 10.1016/j.marchem.2013.09.005. Buck, C.S., Landing, W.M. and Resing, J.A., 2010. Particle size and aerosol iron solubility: A high-resolution analysis of Atlantic aerosols. Marine Chemistry, 120(1-4): 14-24 DOI: 10.1016/j.marchem.2008.11.002. Buck, C.S., Landing, W.M., Resing, J.A. and Lebon, G.T., 2006. Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise. Geochemistry, Geophysics, Geosystems, 7(4) DOI: 10.1029/2005gc000977. Chou, C.C.K. et al., 2008. Implications of the chemical transformation of Asian outflow aerosols for the long-range transport of inorganic nitrogen species. Atmospheric Environment, 42(32): 7508-7519 DOI: 10.1016/j.atmosenv.2008.05.049. Clough, R., Lohan, M.C., Ussher, S.J., Nimmo, M. and Worsfold, P.J., 2019. Uncertainty associated with the leaching of aerosol filters for the determination of metals in aerosol particulate matter using collision/reaction cell ICP-MS detection. Talanta, 199: 425-430 DOI: 10.1016/j.talanta.2019.02.067. Cutter, G. et al., 2017. Sampling and Sample-handling Protocols for GEOTRACES Cruises. 3 DOI: 10.25607/OBP-2. Duce, R.A. et al., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5(3): 193-259 DOI: 10.1029/91gb01778. Emerson, E.W. et al., 2020. Revisiting particle dry deposition and its role in radiative effect estimates. Proc Natl Acad Sci U S A, 117(42): 26076-26082 DOI: 10.1073/pnas.2014761117. Foret, G., Bergametti, G., Dulac, F. and Menut, L., 2006. An optimized particle size bin scheme for modeling mineral dust aerosol. Journal of Geophysical Research, 111(D17) DOI: 10.1029/2005jd006797. Gao, Y. et al., 2019. Particle-Size Variability of Aerosol Iron and Impact on Iron Solubility and Dry Deposition Fluxes to the Arctic Ocean. Sci Rep, 9(1): 16653 DOI: 10.1038/s41598-019-52468-z. Gao, Y. et al., 2020. Particle‐Size Distributions and Solubility of Aerosol Iron Over the Antarctic Peninsula During Austral Summer. Journal of Geophysical Research: Atmospheres, 125(11) DOI: 10.1029/2019jd032082. Ho, T.Y., Chien, C.T., Wang, B.N. and Siriraks, A., 2010. Determination of trace metals in seawater by an automated flow injection ion chromatograph pretreatment system with ICPMS. Talanta, 82(4): 1478-84 DOI: 10.1016/j.talanta.2010.07.022. Hsu, S.-C. et al., 2010. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Marine Chemistry, 120(1-4): 116-127 DOI: 10.1016/j.marchem.2008.10.003. Hu, Z.C. and Gao, S., 2008. Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253(3-4): 205-221 DOI: 10.1016/j.chemgeo.2008.05.010. Jickells, T.D. et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718): 67-71 DOI: 10.1126/science.1105959. Jickells, T.D., Baker, A.R. and Chance, R., 2016. Atmospheric transport of trace elements and nutrients to the oceans. Philos Trans A Math Phys Eng Sci, 374(2081) DOI: 10.1098/rsta.2015.0286. Kessler, N., Kraemer, S.M., Shaked, Y. and Schenkeveld, W.D.C., 2020. Investigation of Siderophore-Promoted and Reductive Dissolution of Dust in Marine Microenvironments Such as Trichodesmium Colonies. Frontiers in Marine Science, 7 DOI: 10.3389/fmars.2020.00045. Kurisu, M., Takahashi, Y., Iizuka, T. and Uematsu, M., 2016. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean. Journal of Geophysical Research: Atmospheres, 121(18): 11,119-11,136 DOI: 10.1002/2016jd024957. Lam, P.J., Ohnemus, D.C. and Auro, M.E., 2015. Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect. Deep Sea Research Part II: Topical Studies in Oceanography, 116: 303-320 DOI: 10.1016/j.dsr2.2014.11.020. Martin, J.H., 1990. Glacial-interglacial CO2change: The Iron Hypothesis. Paleoceanography, 5(1): 1-13 DOI: 10.1029/PA005i001p00001. Martin, J.H. and Fitzwater, S.E., 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331(6154): 341-343 DOI: 10.1038/331341a0. Matsui, H. et al., 2018. Anthropogenic combustion iron as a complex climate forcer. Nat Commun, 9(1): 1593 DOI: 10.1038/s41467-018-03997-0. Mead, C., Herckes, P., Majestic, B.J. and Anbar, A.D., 2013. Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophysical Research Letters, 40(21): 5722-5727 DOI: 10.1002/2013gl057713. Meskhidze, N., Chameides, W.L., Nenes, A. and Chen, G., 2003. Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters, 30(21) DOI: 10.1029/2003gl018035. Meskhidze, N., Hurley, D., Royalty, T.M. and Johnson, M.S., 2017. Potential effect of atmospheric dissolved organic carbon on the iron solubility in seawater. Marine Chemistry, 194: 124-132 DOI: 10.1016/j.marchem.2017.05.011. Meskhidze, N. et al., 2019. Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface. Marine Chemistry, 217 DOI: 10.1016/j.marchem.2019.103704. Ohnemus, D.C. et al., 2014. Laboratory intercomparison of marine particulate digestions including Piranha: a novel chemical method for dissolution of polyethersulfone filters. Limnology and Oceanography-Methods, 12(8): 530-547 DOI: 10.4319/lom.2014.12.530. Perron, M.M.G. et al., 2020a. Origin, transport and deposition of aerosol iron to Australian coastal waters. Atmospheric Environment, 228 DOI: 10.1016/j.atmosenv.2020.117432. Perron, M.M.G. et al., 2020b. Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta, 208: 120377 DOI: 10.1016/j.talanta.2019.120377. Quinn, T.L. and Ondov, J.M., 1998. Influence of temporal changes in relative humidity on dry deposition velocities and fluxes of aerosol particles bearing trace elements. Atmospheric Environment, 32(20): 3467-3479 DOI: 10.1016/s1352-2310(98)00047-8. Raiswell, R. and Canfield, D.E., 2012. The Iron Biogeochemical Cycle Past and Present. Geochemical Perspectives, 1(1): 1-220 DOI: 10.7185/geochempersp.1.1. Sakata, K. et al., 2018. Custom-made PTFE filters for ultra-clean size-fractionated aerosol sampling for trace metals. Marine Chemistry, 206: 100-108 DOI: 10.1016/j.marchem.2018.09.009. Sarthou, G. et al., 2003. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(10-11): 1339-1352 DOI: 10.1016/s0967-0637(03)00126-2. Schroth, A.W., Crusius, J., Sholkovitz, E.R. and Bostick, B.C., 2009. Iron solubility driven by speciation in dust sources to the ocean. Nature Geoscience, 2(5): 337-340 DOI: 10.1038/ngeo501. Shelley, R.U., Morton, P.L. and Landing, W.M., 2015. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Research Part II: Topical Studies in Oceanography, 116: 262-272 DOI: 10.1016/j.dsr2.2014.12.005. Shelley, R.U. et al., 2017. Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean (>40°N; GEOVIDE, GEOTRACES GA01) during spring 2014. Deep Sea Research Part I: Oceanographic Research Papers, 119: 34-49 DOI: 10.1016/j.dsr.2016.11.010. Sholkovitz, E.R., Sedwick, P.N. and Church, T.M., 2009. Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North Atlantic. Geochimica et Cosmochimica Acta, 73(14): 3981-4003 DOI: 10.1016/j.gca.2009.04.029. Slinn, S.A. and Slinn, W.G.N., 1980. Predictions for particle deposition on natural waters. Atmospheric Environment (1967), 14(9): 1013-1016 DOI: 10.1016/0004-6981(80)90032-3. Tagliabue, A. et al., 2017. The integral role of iron in ocean biogeochemistry. Nature, 543(7643): 51-59 DOI: 10.1038/nature21058. Wang, B.S., Lee, C.P. and Ho, T.Y., 2014. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca. Talanta, 128: 337-44 DOI: 10.1016/j.talanta.2014.04.077. Yang, T. et al., 2020. Solubilities and deposition fluxes of atmospheric Fe and Cu over the Northwest Pacific and its marginal seas. Atmospheric Environment, 239 DOI: 10.1016/j.atmosenv.2020.117763. Zhu, X., Prospero, J.M., Millero, F.J., Savoie, D.L. and Brass, G.W., 1992. The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities. Marine Chemistry, 38(1-2): 91-107 DOI: 10.1016/0304-4203(92)90069-m. 4.6 References Andreae, M.O., 1983. Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science, 220(4602): 1148-51 DOI: 10.1126/science.220.4602.1148. Baker, A.R. and Jickells, T.D., 2006. Mineral particle size as a control on aerosol iron solubility. Geophysical Research Letters, 33(17) DOI: 10.1029/2006gl026557. Basha, S.I. et al., 2020. Characterization, Processing, and Application of Heavy Fuel Oil Ash, an Industrial Waste Material - A Review. Chem Rec, 20(12): 1568-1595 DOI: 10.1002/tcr.202000100. Beard, B.L., Johnson, C.M., Von Damm, K.L. and Poulson, R.L., 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology, 31(7) DOI: 10.1130/0091-7613(2003)031<0629:Iicofc>2.0.Co;2. Buck, C.S., Aguilar-Islas, A., Marsay, C., Kadko, D. and Landing, W.M., 2019. Trace element concentrations, elemental ratios, and enrichment factors observed in aerosol samples collected during the US GEOTRACES eastern Pacific Ocean transect (GP16). Chemical Geology, 511: 212-224 DOI: 10.1016/j.chemgeo.2019.01.002. Buck, C.S., Landing, W.M., Resing, J.A. and Lebon, G.T., 2006. Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise. Geochemistry, Geophysics, Geosystems, 7(4) DOI: 10.1029/2005gc000977. Conway, T.M. et al., 2019. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat Commun, 10(1): 2628 DOI: 10.1038/s41467-019-10457-w. Cutter, G. et al., 2017. Sampling and Sample-handling Protocols for GEOTRACES Cruises. 3 DOI: 10.25607/OBP-2. Dauphas, N., John, S.G. and Rouxel, O., 2017. Iron Isotope Systematics. Reviews in Mineralogy and Geochemistry, 82(1): 415-510 DOI: 10.2138/rmg.2017.82.11. Eggimann, D.W. and Betzer, P.R., 1976. Decomposition and Analysis of Refractory Oceanic Suspended Materials. Analytical Chemistry, 48(6): 886-890 DOI: DOI 10.1021/ac60370a005. Gong, Y., Xia, Y., Huang, F. and Yu, H., 2016. Average iron isotopic compositions of the upper continental crust: constrained by loess from the Chinese Loess Plateau. Acta Geochimica, 36(2): 125-131 DOI: 10.1007/s11631-016-0131-5. Hsieh, C.-C., Chen, H.-Y. and Ho, T.-Y., 2022. The effect of aerosol size on Fe solubility and deposition flux: A case study in the East China Sea. Marine Chemistry, 241 DOI: 10.1016/j.marchem.2022.104106. Hsieh, C.-C., You, C.-F. and Ho, T.-Y., 2023. The solubility and deposition flux of East Asian aerosol metals in the East China Sea: The effects of aeolian transport processes. Marine Chemistry DOI: 10.1016/j.marchem.2023.104268. Hu, Z.C. and Gao, S., 2008. Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253(3-4): 205-221 DOI: 10.1016/j.chemgeo.2008.05.010. Kurisu, M., Adachi, K., Sakata, K. and Takahashi, Y., 2019. Stable Isotope Ratios of Combustion Iron Produced by Evaporation in a Steel Plant. ACS Earth and Space Chemistry, 3(4): 588-598 DOI: 10.1021/acsearthspacechem.8b00171. Kurisu, M. et al., 2016. Variation of Iron Isotope Ratios in Anthropogenic Materials Emitted through Combustion Processes. Chemistry Letters, 45(8): 970-972 DOI: 10.1246/cl.160451. Kurisu, M. and Takahashi, Y., 2019. Testing Iron Stable Isotope Ratios as a Signature of Biomass Burning. Atmosphere, 10(2) DOI: 10.3390/atmos10020076. Mead, C., Herckes, P., Majestic, B.J. and Anbar, A.D., 2013. Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophysical Research Letters, 40(21): 5722-5727 DOI: 10.1002/2013gl057713. Morton, P.L. et al., 2013. Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment. Limnology and Oceanography: Methods, 11(2): 62-78 DOI: 10.4319/lom.2013.11.62. Nriagu, J.O. and Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169): 134-9 DOI: 10.1038/333134a0. Perron, M.M.G. et al., 2020. Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta, 208: 120377 DOI: 10.1016/j.talanta.2019.120377. Pinedo-Gonzalez, P. et al., 2020. Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean. Proc Natl Acad Sci U S A, 117(45): 27862-27868 DOI: 10.1073/pnas.2010315117. Sarthou, G. et al., 2003. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(10-11): 1339-1352 DOI: 10.1016/s0967-0637(03)00126-2. Sholkovitz, E.R., Sedwick, P.N. and Church, T.M., 2009. Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North Atlantic. Geochimica et Cosmochimica Acta, 73(14): 3981-4003 DOI: 10.1016/j.gca.2009.04.029. Streibel, T. et al., 2017. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environ Sci Pollut Res Int, 24(12): 10976-10991 DOI: 10.1007/s11356-016-6724-z. Waeles, M., Baker, A.R., Jickells, T. and Hoogewerff, J., 2007. Global dust teleconnections: aerosol iron solubility and stable isotope composition. Environmental Chemistry, 4(4) DOI: 10.1071/en07013. 5.5 References Beard, B.L., Johnson, C.M., Von Damm, K.L. and Poulson, R.L., 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology, 31(7) DOI: 10.1130/0091-7613(2003)031<0629:Iicofc>2.0.Co;2. Bishop, J.K.B., 1999. Transmissometer measurement of POC. Deep Sea Research Part I: Oceanographic Research Papers, 46(2): 353-369 DOI: 10.1016/s0967-0637(98)00069-7. Bishop, J.K.B. and Edmond, J.M., 1976. A new large volume filtration system for the sampling of oceanic particulate matter. J. Marine Res., 34: 181-198 Boyd, P.W. et al., 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature, 428(6982): 549-53 DOI: 10.1038/nature02437. Bruland, K.W., Donat, J.R. and Hutchins, D.A., 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): 1555-1577 DOI: 10.4319/lo.1991.36.8.1555. Conway, T.M. et al., 2019. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat Commun, 10(1): 2628 DOI: 10.1038/s41467-019-10457-w. Conway, T.M. and John, S.G., 2014. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 511(7508): 212-5 DOI: 10.1038/nature13482. Cutter, G. et al., 2017. Sampling and Sample-handling Protocols for GEOTRACES Cruises. 3 DOI: 10.25607/OBP-2. Ellwood, M.J. et al., 2015. Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proc Natl Acad Sci U S A, 112(1): E15-20 DOI: 10.1073/pnas.1421576112. Fitzsimmons, J.N. and Conway, T.M., 2023. Novel Insights into Marine Iron Biogeochemistry from Iron Isotopes. Ann Rev Mar Sci, 15: 383-406 DOI: 10.1146/annurev-marine-032822-103431. Fitzsimmons, J.N. et al., 2016. Dissolved iron and iron isotopes in the southeastern Pacific Ocean. Global Biogeochemical Cycles, 30(10): 1372-1395 DOI: 10.1002/2015gb005357. Gardner, W.D., 1977. Incomplete extraction of rapidly settling particles from water samplers1. Limnology and Oceanography, 22(4): 764-768 DOI: 10.4319/lo.1977.22.4.0764. Ho, T.-Y., Wen, L.-S., You, C.-F. and Lee, D.-C., 2007. The trace metal composition of size-fractionated plankton in the South China Sea: Biotic versus abiotic sources. Limnology and Oceanography, 52(5): 1776-1788 DOI: 10.4319/lo.2007.52.5.1776. Ho, T.Y., 2006. The trace metal composition of marine microalgae in cultures and natural assemblages. 271-299 Ho, T.Y. et al., 2003. The elemental composition of some marine phytoplankton. Journal of Phycology, 39(6): 1145-1159 DOI: DOI 10.1111/j.0022-3646.2003.03-090.x. Homoky, W.B. et al., 2011. Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochimica et Cosmochimica Acta, 75(17): 5032-5048 DOI: 10.1016/j.gca.2011.06.019. Ito, A., Ye, Y., Baldo, C. and Shi, Z., 2021. Ocean fertilization by pyrogenic aerosol iron. npj Climate and Atmospheric Science, 4(1) DOI: 10.1038/s41612-021-00185-8. Kurisu, M., Adachi, K., Sakata, K. and Takahashi, Y., 2019. Stable Isotope Ratios of Combustion Iron Produced by Evaporation in a Steel Plant. ACS Earth and Space Chemistry, 3(4): 588-598 DOI: 10.1021/acsearthspacechem.8b00171. Kurisu, M., Takahashi, Y., Iizuka, T. and Uematsu, M., 2016. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean. Journal of Geophysical Research: Atmospheres, 121(18): 11,119-11,136 DOI: 10.1002/2016jd024957. Lam, P.J. and Bishop, J.K.B., 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophysical Research Letters, 35(7): n/a-n/a DOI: 10.1029/2008gl033294. Liao, W.-H., Yang, S.-C. and Ho, T.-Y., 2017. Trace metal composition of size-fractionated plankton in the Western Philippine Sea: The impact of anthropogenic aerosol deposition. Limnology and Oceanography, 62(5): 2243-2259 DOI: 10.1002/lno.10564. Martin, J.H. et al., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371(6493): 123-129 DOI: 10.1038/371123a0. Martin, J.H. and Fitzwater, S.E., 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331(6154): 341-343 DOI: 10.1038/331341a0. Martin, J.H. and Knauer, G.A., 1973. The elemental composition of plankton. Geochimica et Cosmochimica Acta, 37(7): 1639-1653 DOI: 10.1016/0016-7037(73)90154-3. Mead, C., Herckes, P., Majestic, B.J. and Anbar, A.D., 2013. Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophysical Research Letters, 40(21): 5722-5727 DOI: 10.1002/2013gl057713. Moore, C.M. et al., 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6(9): 701-710 DOI: 10.1038/ngeo1765. Nishioka, J. et al., 2020. Subpolar marginal seas fuel the North Pacific through the intermediate water at the termination of the global ocean circulation. Proc Natl Acad Sci U S A, 117(23): 12665-12673 DOI: 10.1073/pnas.2000658117. Nishioka, J. et al., 2007. Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk. Journal of Geophysical Research, 112(C10) DOI: 10.1029/2006jc004055. Pinedo-Gonzalez, P. et al., 2020. Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean. Proc Natl Acad Sci U S A, 117(45): 27862-27868 DOI: 10.1073/pnas.2010315117. Radic, A., Lacan, F. and Murray, J.W., 2011. Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth and Planetary Science Letters, 306(1-2): 1-10 DOI: 10.1016/j.epsl.2011.03.015. Tsuda, A. et al., 2003. A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science, 300(5621): 958-61 DOI: 10.1126/science.1082000. Waeles, M., Baker, A.R., Jickells, T. and Hoogewerff, J., 2007. Global dust teleconnections: aerosol iron solubility and stable isotope composition. Environmental Chemistry, 4(4) DOI: 10.1071/en07013. Wen, L.S., Lee, C.P., Lee, W.H. and Chuang, A., 2018. An Ultra-clean Multilayer Apparatus for Collecting Size Fractionated Marine Plankton and Suspended Particles. J Vis Exp(134) DOI: 10.3791/56811. Wong, K.H., Nishioka, J., Kim, T. and Obata, H., 2022. Long‐Range Lateral Transport of Dissolved Manganese and Iron in the Subarctic Pacific. Journal of Geophysical Research: Oceans, 127(2) DOI: 10.1029/2021jc017652. Zheng, L. and Sohrin, Y., 2019. Major lithogenic contributions to the distribution and budget of iron in the North Pacific Ocean. Sci Rep, 9(1): 11652 DOI: 10.1038/s41598-019-48035-1. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88431 | - |
dc.description.abstract | 生物可利用的溶解氣膠金屬沉降會影響海洋浮游生物的生長與組成,以及海洋中物質的循環。由於氣膠沉降前後經過了複雜的過程,因此要精準估算溶解氣膠金屬的通量是極具挑戰的!本研究我們於東海採集了5種不同粒徑的氣膠和亞北極太平洋採集了表水的懸浮顆粒,並利用元素間比值和鐵同位素來量化天然性和人為性氣膠對於西北太平洋的貢獻,與了解大氣傳播過程對氣膠的影響。
為了調查大氣傳輸對氣膠溶解度和通量的影響,我們沿用了國際常用的氣膠溶出方法來比較氣膠和中國沙漠的沙子中可溶出金屬的差異,其中包含了超純水(Ultrapure water)、醋酸銨緩衝溶液(acetate buffer)和柏格(Berger)等溶出方法。結果顯示東海氣膠的金屬經過大氣傳輸後其溶解度都有顯著的提升。整體而言,氣膠金屬的沉降通量隨著粒徑越大而越高,意旨氣膠中的粗顆粒是氣膠金屬對於海洋的主要貢獻者。從鎘、鋅和鉛的高富集因子得知,就算是粗粒徑的氣膠某些金屬(鎘、鋅、鉛)的主要來源還是有可能來自人為氣膠。此外,我們還發現岩石性元素(如:鋁、鐵和鈦)於不同溶出方法所得到的濃度或溶解度都有較大的差異,因此,若沒有事先研究金屬濃度於不同粒徑氣膠上的分布來得到較精準的平均氣膠沉降速率,岩石性的金屬通量會導致嚴重高估的現象。至於金屬濃度隨粒徑的分布或大氣傳輸的影響可能有地區性的差異,為了更精準估算全球氣膠金屬的通量,在其他大洋區域的類似研究是有必要至少調查一次的! 我們還特別使用鐵同位素組成來精準調查氣膠溶解鐵來源對鄰近海洋及亞北極太平洋表水層水的貢獻,其結果觀察到岩石性氣膠和人為性氣膠的鐵同位素值分別為0.2和-4.5‰。假設人為性氣膠鐵同位素的端點為-4.5‰,那麼其對東海的超純水及醋酸銨緩衝溶液溶出的鐵通量的貢獻分別為30%和8.7%,至於亞北極太平洋收集到的懸浮顆粒的貢獻也是低於10%。簡言而之,雖然東亞陸地傳輸大量高溶解的人為氣膠鐵至西北太平洋,但岩石性氣膠仍然是東海、西北太平洋和亞北極太平洋溶解性氣膠鐵的主要來源。 | zh_TW |
dc.description.abstract | Aerosol dissolvable metals are considered to be readily bioaccessible so that their input would influence the growth and composition of marine phytoplankton and thus material cycling globally. However, it is highly challenging to measure or estimate reliable deposition fluxes of aerosol dissolvable metals in the ocean due to the impacts of complicated processes involved in pre- and post-deposition of aerosols. In this study, we applied the elemental and isotopic composition of size-fractionated aerosol metals collected in the East China Sea (ECS) and the suspended particulate matter (SPM) in the surface water of the subarctic North Pacific Ocean (SNPO) to quantify the contribution of East Asian anthropogenic and lithogenic aerosols in the oceans and also to understand their transformation processes during the transport processes.
To investigate the impacts of the aeolian transport processes on the solubilities and fluxes of aerosol metals in the ocean, we first collected lithogenic dust from major Chinese deserts and size-fractionated aerosols from the ECS to determine the variations of their dissolvable metals by using three operationally defined leaching protocols (pure water, buffer, and Berger leaches). Referred by the solubility differences between the desert dusts and the ECS largest size aerosols, atmospheric transport processes tremendously enhance all of the three solubilities for most elements in the ECS aerosols. Overall, the metal fluxes of each aerosol treatment increased with increasing particle sizes, indicating coarse aerosol is the primary metal supplier into the surface ocean. Due to the high metal enrichment factor, Cd, Zn, and Pb elements in coarse aerosols could come from anthropogenic aerosol aggregation. In addition, we found highly divergent variations for lithogenic type elements with all aerosol sizes among the three leaching treatments. Without knowing aerosol size-fractionated information, the deposition fluxes of lithogenic type elements would be significantly overestimated. The mass distribution or impacts of the transport processes could be region specific so that similar field studies are essential in other regions to obtain reliable aerosol dissolvable metal data for global modeling. Specifically, we have applied Fe isotopic composition to investigate the contribution of East Asian aerosol Fe to the surface water of the adjacent oceanic regions and the SNPO. We observed that the isotopic value of lithogenic and anthropogenic aerosols ranged from 0.2 to -4.5 ‰. Assuming the value of anthropogenic aerosol Fe to be -4.5 ‰, the contribution of anthropogenic aerosols were 30% and 8.7% of the fluxes of dissolved Fe and buffer Fe in the ECS, respectively; the contribution to the SPM collected in the SNPO and WPS were both less than 10%. In brief, lithogenic aerosol is still the major sources of aeolian Fe for dissolvable aerosol Fe in the ECS, the WPS, and the SNPO. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:16:23Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T16:16:23Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 ...... ii
Acknowledgements ...... iii Abstract ...... iv 摘要 ...... vi List of Figures ...... x List of Tables ...... xii Chapter 1 Introduction ......1 1.1 Introduction ...... 2 1.2 Reference ...... 6 Chapter 2 The solubility and deposition flux of East Asian aerosol metals in the East China Sea: the effects of aeolian transport processes ...... 10 2.0 Abstract ...... 11 2.1 Introduction ...... 12 2.2 Method ...... 14 2.2.1 Sampling sites and method ...... 14 2.2.2 Leaching procedures and quantification of aerosol metals ...... 15 2.3 Result ...... 16 2.3.1 The variations of concentration and solubility ...... 16 2.3.2 Enrichment Factor ...... 18 2.4 Discussion ...... 19 2.4.1 EF and leaching solubility ...... 19 2.4.2 Reflecting the impacts of the transport processes on solubilities ...... 20 2.4.3 Element specific deposition velocity and flux ...... 22 2.4.4 The implication to aerosol Fe flux estimate by models in the global ocean ...... 25 2.5 Conclusion ...... 26 2.6 References ...... 28 2.7 Figures ...... 33 2.8 Tables ...... 41 2.9 Supplementary ...... 42 Chapter 3 The effect of aerosol size on Fe solubility and deposition flux:a case study in the East China Sea ...... 67 3.0 Abstract ...... 68 3.1 Introduction ...... 69 3.2 Method ...... .70 3.2.1 Sampling sites and methods ...... 70 3.2.2 Quantification of DFe, LFe, and TFe ...... 71 3.2.3 The calculation of fluxes, enrichment factors, and non-sea-salt sulfur ...... 73 3.3 Result and Discussion ...... .74 3.3.1 The distribution patterns of aerosol Fe concentrations ...... 74 3.3.2 The solubility of DFe and the sources ...... 75 3.3.3 The solubility of LFe and the sources ...... 76 3.3.4 The fluxes of DFe and LFe and the overestimate ...... 78 3.3.5 Implications to the estimates of global Fe fluxes ...... 79 3.4 References ...... 82 3.5 Figures ...... 86 3.6 Tables ...... 92 3.7 Supplementary ...... 96 Chapter 4 Contribution of anthropogenic and lithogenic aerosol Fe in the Northwestern Pacific Ocean: The evidence of elemental and isotopic composition ...... 107 4.0 Abstract ...... 108 4.1 Introduction ...... 109 4.2 Method ...... 111 4.2.1 Sampling sites and method ...... 111 4.2.2 Quantification of dissolvable and total Fe concentration ...... 113 4.2.3 Quantification of Fe isotopic composition ...... 114 4.3 Result ...... 115 4.3.1 The seasonal variations of δ56Fe in size-fractionated aerosols ...... 115 4.4 Discussion ...... 116 4.4.1 Evidence for two end member mixing: from elemental ratios and δ56Fe ...... 116 4.4.2 δ56Fe vs Fe solubility ...... 118 4.4.3 Quantitative estimate for the contribution of AN-Fe: δ56Fe vs Cd/Ti ratio ...... 120 4.5 Conclusion ...... 121 4.6 References ...... 122 4.7 Figures ...... 125 4.8 Supplementary ...... 130 Chapter 5 The concentration and isotopic feature of particulate Fe in the Subarctic Pacific Ocean: spatial distribution and sources ...... 133 5.0 Abstract ...... 134 5.1 Introduction ...... 135 5.2 Method ...... 137 5.2.1 Sampling site and method ...... 137 5.2.2 Quantification of Fe concentration and isotopic composition ...... 137 5.3 Result ...... 138 5.3.1 Particulate Fe concentration… ...... 138 5.3.2 δ56Fe distribution in SPM ...... 139 5.4 Discussion ...... 139 5.4.1 Biotic vs abiotic particles: delayed vs not-delayed filtration data ...... 139 5.4.2 The patterns of the spatial distribution of PFe, δ56Fe, and DFe: tracing sources ...... 141 5.5 References ...... 143 5.6 Figures ...... 146 Chapter 6 Conclusion ...... 153 | - |
dc.language.iso | en | - |
dc.title | 東亞氣膠金屬對海洋的貢獻:來源、轉變以及沉降通量 | zh_TW |
dc.title | The Contribution of East Asian Aerosol Metals in the Ocean: Sources, Transformation Processes and Deposition Fluxes | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 白書禎;游鎮烽;陳怡均;謝玉德 | zh_TW |
dc.contributor.oralexamcommittee | Su-Cheng Pai;Chen-Feng You;Yi-Chun Chen;Yu-Te Hsieh | en |
dc.subject.keyword | 微量金屬,氣膠粒徑分級,溶解度,沉降通量,鐵同位素, | zh_TW |
dc.subject.keyword | trace metal,size-fractionated aerosol,solubility,deposition flux,Fe isotopes, | en |
dc.relation.page | 155 | - |
dc.identifier.doi | 10.6342/NTU202302200 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-01 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 6.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。