請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88423完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張景宏 | zh_TW |
| dc.contributor.advisor | Ching-Hung Chang | en |
| dc.contributor.author | 黃世漳 | zh_TW |
| dc.contributor.author | Shi Zhang Ooi | en |
| dc.date.accessioned | 2023-08-15T16:14:10Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-26 | - |
| dc.identifier.citation | Bao, Y., Ke, B., Li, B., Yu, Y. J., & Zhang, J. (2020). Detecting accounting fraud in publicly traded US firms using a machine learning approach. Journal of Accounting Research, 58(1), 199-235.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. Brown, N. C., Crowley, R. M., & Elliott, W. B. (2020). What Are You Saying? Using topic to Detect Financial Misreporting. Journal of Accounting Research, 58(1), 237-291. https://doi.org/10.1111/1475-679x.12294 Chen, F.-H., Chi, D.-J., & Wang, Y.-C. (2015). Detecting biotechnology industry's earnings management using Bayesian network, principal component analysis, back propagation neural network, and decision tree. Economic Modelling, 46, 1-10. Chiong, R., Fan, Z., Hu, Z., & Dhakal, S. (2022). A novel ensemble learning approach for stock market prediction based on sentiment analysis and the sliding window method. IEEE Transactions on Computational Social Systems. Cohen, D. A., & Zarowin, P. (2010). Accrual-based and real earnings management activities around seasoned equity offerings. Journal of Accounting and economics, 50(1), 2-19. Cook, J., & Ramadas, V. (2020). When to consult precision-recall curves. The Stata Journal, 20(1), 131-148. Dechow, P., Ge, W., & Schrand, C. (2010). Understanding earnings quality: A review of the proxies, their determinants and their consequences. Journal of Accounting and economics, 50(2-3), 344-401. Dechow, P. M. (1994). Accounting earnings and cash flows as measures of firm performance: The role of accounting accruals. Journal of Accounting and economics, 18(1), 3-42. Dechow, P. M., & Dichev, I. D. (2002). The quality of accruals and earnings: The role of accrual estimation errors. The accounting review, 77(s-1), 35-59. Dechow, P. M., Ge, W., Larson, C. R., & Sloan, R. G. (2011). Predicting Material Accounting Misstatements*. Contemporary accounting research, 28(1), 17-82. https://doi.org/10.1111/j.1911-3846.2010.01041.x Dechow, P. M., & Skinner, D. J. (2000). Earnings management: Reconciling the views of accounting academics, practitioners, and regulators. Accounting horizons, 14(2), 235-250. Dechow, P. M., Sloan, R. G., & Sweeney, A. P. (1995). Detecting earnings management. Accounting review, 193-225. Dyer, T., Lang, M., & Stice-Lawrence, L. (2017). The evolution of 10-K textual disclosure: Evidence from Latent Dirichlet Allocation. Journal of Accounting and economics, 64(2-3), 221-245. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. Francis, J., LaFond, R., Olsson, P., & Schipper, K. (2005). The market pricing of accruals quality. Journal of Accounting and economics, 39(2), 295-327. Hammami, A., & Hendijani Zadeh, M. (2022). Predicting earnings management through machine learning ensemble classifiers. Journal of Forecasting, 41(8), 1639-1660. Healy, P. M., & Wahlen, J. M. (1999). A review of the earnings management literature and its implications for standard setting. Accounting horizons, 13(4), 365-383. Hoberg, G., & Lewis, C. (2017). Do fraudulent firms produce abnormal disclosure? Journal of Corporate Finance, 43, 58-85. https://doi.org/10.1016/j.jcorpfin.2016.12.007 Hoffman, M., Bach, F., & Blei, D. (2010). Online learning for latent dirichlet allocation. advances in neural information processing systems, 23. Hoffman, M. D. (2010). ONLINE VARIATIONAL BAYES FOR LATENT DIRICHLET ALLOCATION. https://github.com/blei-lab/onlineldavb.git Huang, A. H., Lehavy, R., Zang, A. Y., & Zheng, R. (2018). Analyst information discovery and interpretation roles: A topic modeling approach. Management science, 64(6), 2833-2855. Jad Chaar, K. S. (2021). sec-edgar-downloader. https://github.com/jadchaar/sec-edgar-downloader.git Jaspersen, J. G., Richter, A., & Zoller, S. (2021). Predicting Earnings Management from Qualitative Disclosures. Munich Risk and Insurance Center Working Paper, 40. Javid, A. M., Liang, X., Venkitaraman, A., & Chatterjee, S. (2020). Predictive analysis of COVID-19 time-series data from Johns Hopkins University. arXiv preprint arXiv:2005.05060. Jensen, M. C., & Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of financial economics, 3(4), 305-360. Jones, J. J. (1991). Earnings management during import relief investigations. Journal of Accounting Research, 29(2), 193-228. Kaur, J., & Buttar, P. K. (2018). A systematic review on stopword removal algorithms. International Journal on Future Revolution in Computer Science & Communication Engineering, 4(4), 207-210. Khan, A. T., Cao, X., Li, S., Katsikis, V. N., Brajevic, I., & Stanimirovic, P. S. (2022). Fraud detection in publicly traded US firms using Beetle Antennae Search: A machine learning approach. Expert Systems with Applications, 191, 116148. Kothari, S. P., Leone, A. J., & Wasley, C. E. (2005). Performance matched discretionary accrual measures. Journal of Accounting and economics, 39(1), 163-197. Li, F. (2006). Do stock market investors understand the risk sentiment of corporate annual reports? Available at SSRN 898181. Li, F. (2008). Annual report readability, current earnings, and earnings persistence. Journal of Accounting and economics, 45(2-3), 221-247. Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: A survey. Journal of Accounting Research, 54(4), 1187-1230. Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology, 5(9), 1315-1316. McVay, S. E. (2006). Earnings management using classification shifting: An examination of core earnings and special items. The accounting review, 81(3), 501-531. Pearson, K., & Blakeman, J. (1904). Mathematical contributions to the theory of evolution. XIII. On the theory of contingency and its relation to association and normal correlation. Perols, J. L., & Lougee, B. A. (2011). The relation between earnings management and financial statement fraud. Advances in Accounting, 27(1), 39-53. Rahman, M. J., & Zhu, H. (2023a). Predicting accounting fraud using imbalanced ensemble learning classifiers–evidence from China. Accounting & Finance. Rahman, M. J., & Zhu, H. (2023b). Predicting accounting fraud using imbalanced ensemble learning classifiers – evidence from China. Accounting & Finance. https://doi.org/10.1111/acfi.13044 Rahul, K., Seth, N., & Dinesh Kumar, U. (2018). Spotting earnings manipulation: using machine learning for financial fraud detection. Artificial Intelligence XXXV: 38th SGAI International Conference on Artificial Intelligence, AI 2018, Cambridge, UK, December 11–13, 2018, Proceedings 38, Ryans, J. P. (2021). Textual classification of SEC comment letters. Review of Accounting Studies, 26(1), 37-80. Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3), e0118432. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118432&type=printable Schipper, K. (1989). Earnings management. Accounting horizons, 3(4), 91. Silge, J., & Robinson, D. (2017). Text Mining with R: A Tidy Approach. O'Reilly Media. https://books.google.com.tw/books?id=qtcnDwAAQBAJ Yang, S., & Berdine, G. (2017). The receiver operating characteristic (ROC) curve. The Southwest Respiratory and Critical Care Chronicles, 5(19), 34-36. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88423 | - |
| dc.description.abstract | 在已知Brown et al. (2020)的方法可以有效預測財務舞弊案的情況下,我們探討該方法是否也可以用於預測盈餘管理。該方法主要是把一種稱爲隱含狄利克雷分布演算法 (Latent Dirichlet Allocation) 的機器學習方法應用於日漸複雜至人類難以理解的公司年報上。盈餘管理預測能讓公司真正的財務狀況更清楚地展示出來。這可以提供有效的資訊于投資者、債權人、審計師、立法委員等等以便他們可以做出更好的決策。此爲,利用該方式來同時預測盈餘管理以及財務舞弊可以降低成本及時間。 | zh_TW |
| dc.description.abstract | We examine whether the Brown et al. (2020) method that can predict financial fraud using annual report filings is also able to predict earnings management. This model applies Latent Dirichlet Allocation (LDA) an advanced machine learning tool to the annual reports’ qualitative disclosures that have become incomprehensible to humans over time. Predicting earnings management paints a clearer picture of the firm’s financial position. This will allow the investors, creditors, auditors, legislators, and other stakeholders to make higher-quality decisions. Besides, using the proposed approach in the context of both abnormal accruals and financial misreport can save time and money. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:14:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:14:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 1. Introduction and Literature Review 1
1.1 Earnings Management 1 1.1.1 Earnings 1 1.1.2 Types of Earnings Management 1 1.2 Latent Dirichlet Allocation 2 2. Contribution 4 3. Research Method 5 3.1 Modified Jones Model Measure 5 3.2 Main Methodology 6 4. Results and Analysis 9 4.1 AUC 12 4.2 Yearly-basis ROC & PRC 14 4.3 Cutoff Percentile 15 4.4 Cumulative Distribution 17 5. Robustness 18 6. Conclusion 19 7. Future Research & Limitations 19 8. References 21 | - |
| dc.language.iso | en | - |
| dc.subject | 隱含狄利克雷分布演算法 | zh_TW |
| dc.subject | 主題模型 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | 年度報告 | zh_TW |
| dc.subject | 盈餘管理 | zh_TW |
| dc.subject | Latent Dirichlet Allocation | en |
| dc.subject | Earnings Management | en |
| dc.subject | 10-K | en |
| dc.subject | Natural Language Processing | en |
| dc.subject | Machine Learning | en |
| dc.subject | Topic Modeling | en |
| dc.title | 通過隱含狄利克雷分布演算法預測盈餘管理 | zh_TW |
| dc.title | Earnings Management Prediction via Latent Dirichlet Allocation on 10-K | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 盧信銘 | zh_TW |
| dc.contributor.coadvisor | Hsin-Min Lu | en |
| dc.contributor.oralexamcommittee | 陳建錦;徐愛恩 | zh_TW |
| dc.contributor.oralexamcommittee | Chien Chin Chen;AI-AN TSUI | en |
| dc.subject.keyword | 隱含狄利克雷分布演算法,盈餘管理,年度報告,自然語言處理,機器學習,主題模型, | zh_TW |
| dc.subject.keyword | Latent Dirichlet Allocation,Earnings Management,10-K,Natural Language Processing,Machine Learning,Topic Modeling, | en |
| dc.relation.page | 25 | - |
| dc.identifier.doi | 10.6342/NTU202302092 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-28 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 652.14 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
