請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88421完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖洺漢 | zh_TW |
| dc.contributor.advisor | Ming-Han Liao | en |
| dc.contributor.author | 蔡佾庭 | zh_TW |
| dc.contributor.author | Yi-Ting Tsai | en |
| dc.date.accessioned | 2023-08-15T16:13:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-01 | - |
| dc.identifier.citation | [1] R. R. Schaller, “Moore's law: past, present and future,” IEEE Spectrum, Vol. 34, no. 6, pp. 52-59, June 1997, doi: 10.1109/6.591665.
[2] Ning Hu, Yoshifumi Karube, Cheng Yan, Zen Masuda, Hisao Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, Vol. 56, no. 13, 2008, pp. 2929-2936, ISSN 1359-6454, doi: org/10.1016/j.actamat.2008.02.030. [3] “Moore Law number of transistor per device: past, present, future” (https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html#gs.zwas5t). [4] John H. Lau, “Critical Issues of TSV and 3D IC Integration,” Journal of Microelectronics and Electronic Packaging, 1 January 2010; 7 (1): 35-43. doi: https://doi.org/10.4071/1551-4897-7.1.35. [5] D. Malta et al., “Fabrication of TSV-based silicon interposers,” 2010 IEEE International 3D Systems Integration Conference (3DIC), Munich, Germany, 2010, pp. 1-6, doi: 10.1109/3DIC.2010.5751443. [6] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, “Damascene copper electroplating for chip interconnections,” in IBM Journal of Research and Development, vol. 42, no. 5, pp. 567-574, Sep. 1998, doi: 10.1147/rd.425.0567. [7] J. W. Choi, O. L. Guan, M. Yingjun, H. B. M. Yusoff, X. Jielin, C. C. Lan, W. L. Loh, B. L. Lau, L. L. H. Hong, L. G. Kian, R. Murthy, and E. T. S. Kiat, “TSV Cu Filling Failure Modes and Mechanisms Causing the Failures,” Packaging and Manufacturing Technology, Vol. 4, pp. 581-587, April, 2014, doi: 10.1109/TCPMT.2014.2298031. [8] L. Li, P. Ton, M. Nagar, and P. Chia, “Reliability Challenges in 2.5D and 3D IC Integration,” Proceeding of 67th Electronic Components and Technology Conference, pp. 1504-1509, USA, May, 2017, doi: 10.1109/ECTC.2017.208. [9] J.-P. Salvetat, J.-M. Bonard, N. Thomson, A. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Applied Physics A, vol. 69, no. 3, pp. 255-260, 1999, doi: org/10.1007/s003390050999. [10] Z. Ounaies, C. Park, K. Wise, E. Siochi, and J. Harrison, “Electrical properties of single wall carbon nanotube reinforced polyimide composites,” Composites science and technology, vol. 63, no. 11, pp. 1637-1646, 2003, doi: org/10.1016/S0266-3538(03)00067-8. [11] E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters, vol. 6, no. 1, pp. 96-100, 2006, doi: org/10.1021/nl052145f. [12] A. Szentes, C. Varga, G. Horvath, L. Bartha, Z. Kónya, H. Haspel, J. Szél, and A. Kukovecz, “Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites,” Express Polymer Letters, vol. 6, no. 6, 2012, doi: 10.3144/expresspolymlett.2012.52. [13] S. Das, “A review on Carbon nano-tubes - A new era of nanotechnology,” IJETAE, Vol. 3, March, 2013. [14] J. Cumings, and A. Zettl, “Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes,” Science, Vol. 289, pp. 602-604, July, 2000, doi: 10.1126/science.289.5479.602. [15] Devi, R., Gill, S.S., “A squared bossed diaphragm piezoresistive pressure sensor based on CNTs for low pressure range with enhanced sensitivity,” Microsyst Technol, Vol. 27, pp. 3225-3233 (2021), doi: org/10.1007/s00542-020-05208-7. [16] C. Wei, D. Srivastava, and K. Cho, “Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites,” American Chemical Society, Vol. 2, No. 6, pp. 647-650, April, 2002, doi: org/10.1021/nl025554+. [17] E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature,” Nano Letters, Vol. 6, pp. 96-100, December, 2006, doi: org/10.1021/nl052145f. [18] R. Sharma, and A. K. Sharma, “Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristic,” Cogent Engineering, Vol. 2, October, 2015, doi: org/10.1080/23311916.2015.1094017. [19] S. Arepalli, “Laser Ablation Process for Single-Walled Carbon Nanotube Production,” Nanoscience and Nanotechnology, pp. 317-328, April, 2004, doi: org/10.1166/jnn.2004.072. [20] S .B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letters, Vol. 315, pp. 25-30, December, 1999, doi: org/10.1016/S0009-2614(99)01216-6. [21] Sivakumar, V.M., Mohamed, A.R., Abdullah, A.Z. et al., “Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes,” Chem. Pap. , Vol. 64, pp. 799-805 (2010), doi: org/10.2478/s11696-010-0066-y. [22] Sun, X. H. et al., “The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures,” Nanotechnology, Vol. 21, pp. 045201 (2010), doi: 10.1088/0957-4484/21/4/045201. [23] J. C. Kotz, P. M. Treichel, and J. Townsend, “Chemistry and Chemical Reactivity. Cengage Learning,” pp. 695-697, ISBN 978-0840048288, 2011. [24] Lim S. C. et al., “Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability,” Appl. Phys. Lett., Vol. 95, no. 26, p. 4103, Dec. 2009, doi: org/10.1063/1.3255016. [25] S. Li, Y. Liu, S. Zhou, C. Zhou, M. Chan, “Contact resistance reduction of carbon nanotube via through O2 plasma post-synthesis treatment,” J. Mater. Chem. C, Vol. 6, no. 18, pp. 5039-5045, Apr. 2018, doi: org/10.1039/C8TC00770E. [26] Dong, S., Li, T., Zhang, Z., Sun, M., An, L., “Improving electrical contact properties of carbon nanotubes by Co doping using metal-organic framework as template,” Mater. Lett., Vol. 253, pp. 420- 423, Oct. 2019, doi: org/10.1016/j.matlet.2019.07.130. [27] J. Lee et al., “Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method,” J. Phys. D, Vol. 33, no. 16 (2000), doi: 10.1088/0022-3727/33/16/303. [28] S. Srividya et al., “Titanium buffer layer for improved field emission of CNT based cold cathode,” Appl. Surf. Sci., Vol. 256, no. 11, pp. 3563-3566, Mar. 2010, doi: org/10.1016/j.apsusc.2009.12.155. [29] Peng-Xiang Hou, Feng Zhang, Lili Zhang, Chang Liu, Hui-Ming Cheng, “Synthesis of Carbon Nanotubes by Floating Catalyst Chemical Vapor Deposition and Their Applications,” Advanced Functional Materials, Vol. 32, no. 11, Nov. 2021, doi:org/10.1002/adfm.202108541. [30] P.-Y. Lu, C.-M. Yen, S.-Y. Chang, Y.-J. Feng, C. Lien, C.-W. Hu, C.-W. Yao, M.-H. Lee, and M.-H. Liao, “The demonstration of carbon nano-tubes (CNTs) as a promising high aspect ratio (> 25) through silicon vias (TSVs) material for the vertical connection in the high dense 3DICs,” in 2020 IEEE International Electron Devices Meeting (IEDM), 2020: IEEE, pp. 12.6.1-12.6.4. [31] Anshul A. Vyas, Changjian Zhou, Patrick Wilhite, Phillip Wang, Cary Y. Yang, “Electrical properties of carbon nanotube via interconnects for 30nm linewidth and beyond,” Microelectronics Reliability, Vol. 61, 2016, pp. 35-42, ISSN 0026-2714, doi: org/10.1016/j.microrel.2015.10.019. [32] Georg Haberfehlner, “3D nanoimaging of semiconductor devices and materials by electron tomography”, 2013. [33] “The Principle of the BOSCH Process.” https://www.samcointl.com/what-is-the-bosch-process-deep-reactive-ion-etching/. [34] “Kpro7 film thickness vs spin speed.” https://www.kemlab.com/product-page/k-pro-advanced-packaging-thick-positive-photoresist. [35] M.I.I. Ramli, M.A.A. Mohd Salleh, H. Yasuda, J. Chaiprapa, K. Nogita, “The effect of Bi on the microstructure, electrical, wettability and mechanical properties of Sn-0.7Cu-0.05Ni alloys for high strength soldering,” Elsevier Sci., Vol. 186, no. 108, p. 281, Oct. 2019, doi: org/10.1016/j.matdes.2019.108281. [36] M. Ahmad et al., “High Quality Carbon Nanotubes on Conductive Substrates Grown at Low Temperatures,” Adv. Funct. Mater., Vol. 25, no. 28, pp. 4419-4429, Jun. 2015, doi: org/10.1002/adfm.201501214. [37] N. Chiodarelli et al., “Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects,” Nanotechnology, Vol. 22, no. 8, p. 5302, Jan. 2011, doi: 10.1088/0957-4484/22/8/085302. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88421 | - |
| dc.description.abstract | 本篇論文研究在化學氣相沉積法(Chemical Vapor Deposition, CVD)成長奈米碳管(Carbon Nanotubes, CNTs)中,催化劑種類對於其產物與金屬間接觸電阻的影響。為取代銅做為三維積體電路(3DIC)中矽穿孔(TSV)的填充材料,奈米碳管與金屬接合點間的高接觸電阻一直都是需要被克服的難題之一。作為成長奈米碳管最普遍的方法,化學氣相沉積法,其原理為在高溫下利用催化劑將碳源氣體分解,並在催化劑表面成長出奈米碳管。而在矽基板上鍍上一層金屬催化層薄膜是最常見的催化劑類型,但此種催化劑類型會使矽基板與金屬催化層薄膜在預熱至奈米碳管生長溫度時發生交互作用,產生出金屬矽化物,此種金屬矽化物會毒化奈米碳管的成長,劣化奈米碳管的電性。
本篇論文提出以浮動式催化劑化學氣相沉積法(Floating Catalyst CVD, FCCVD )成長之奈米碳管能得到更低的與金屬間的接觸電阻。FCCVD方法藉由氣流將熱裂解的金屬催化奈米顆粒帶至矽基板上進行奈米碳管成長,避免了金屬與矽基板在預熱階段時的交互作用,預防金屬矽化物的產生,從而劣化奈米碳管的電性。實驗進行金屬催化層薄膜CVD與FCCVD方法成長之奈米碳管與不同金屬鉻(Cr)、銦(In)、銅(Cu)、鎳(Ni)、鎢(W)間的接觸電阻比較。藉由不同高度的金屬—奈米碳管—金屬結構與兩點探針系統測量電阻,可以推算出奈米碳管與金屬間的接觸電阻,而實驗也結果確實了以FCCVD方法成長之奈米碳管有著與金屬間更低的接觸電阻。此外,濕潤性佳的金屬還能提供更低的接觸電阻,如本篇論文選用的金屬鉍,測量到了與奈米碳管間的接觸電阻可以低至835Ω×μm2。此結果為解決金屬和奈米碳管間高接觸電阻提供了一個新的想法,使奈米碳管在3DIC結構中取代銅成為填充TSV的材料更進一步。 | zh_TW |
| dc.description.abstract | This work focuses on the effect of the catalyst type on the contact resistance between the metal and carbon nanotubes (CNTs) grown by chemical vapor deposition (Chemical Vapor Deposition, CVD).
In order to replace copper as the material for filling through-silicon vias (TSVs) in three dimensional integrated circuit(3DIC), the high contact resistance between CNTs and metal electrodes is one of the challenges that need to be overcome. The most common method of growing CNTs, CVD method, uses a catalyst to decompose the carbon source gas at high temperature, and grows CNTs on the surface of the catalyst, and a catalyst metal film on the silicon substrate is the most common type of catalyst, but this type of catalyst will produce metal silicides between the silicon substrate and the catalyst metal film during the heating stage, which will poison the growth of CNTs and lower the electrical properties of CNTs. This work proposes that CNTs grown by Floating Catalyst CVD (FCCVD) can obtain lower contact resistance with metals. FCCVD uses gas flow to bring metal catalytic nanoparticles to the silicon substrate for CNTs growth, avoiding the generation of metal silicides. Experiments were carried out to compare the contact resistance between different metals (Cr, In, Cu, Ni, W) and CNTs grown by catalyst metal film and the floating catalyst, through the different heights of metal-CNTs-metal structure and the electrical measurement by two-probe method, we can obtain that the CNTs grown by FCCVD method have lower contact resistance with the metal. In addition, metals with good wettability can provide further low contact resistance, such as bismuth selected in this work, the contact resistance can be as low as 835Ω×μm2. This result provides a new idea for solving the high contact resistance between metal and CNTs, and it is a further step for CNTs to replace copper in the 3DIC structure as the material for filling TSVs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:13:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:13:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書i
致謝ii 摘要iii ABSTRACTiv 目錄vi 圖目錄viii 表目錄xi 第一章 緒論1 1-1.摩爾定律1 1-2.三維積體電路2 1-3.奈米碳管簡介3 1-4.論文架構4 第二章 文獻回顧5 2-1.奈米碳管成長方法5 2-2.接觸電阻簡介7 2-3.浮動式催化劑CVD簡介12 2-4.接觸電阻量測13 第三章 實驗設備與原理15 3-1.曝光機17 3-2.反應離子蝕刻機18 3-3.真空高溫爐管系統19 3-4.化學機械研磨系統20 3-5.電子束蒸鍍系統21 3-6.電性I-V量測系統22 3-7.掃描式電子顯微鏡22 第四章 實驗流程24 4-1.實驗流程設計24 4-2.矽穿孔結構製成24 4-2-1.試片清潔24 4-2-2.光阻圖案化25 4-2-3.矽穿孔乾蝕刻製程27 4-3.奈米碳管成長製程28 4-3-1.催化劑製備28 4-3-2.奈米碳管成長30 4-4.奈米碳管平坦化製程32 4-5.金屬電極圖案化製程33 4-5-1.光阻圖案化33 4-5-2.金屬電極蒸鍍34 4-5-3.Lift-off 35 4-6.矽穿孔顯露製程36 4-7.第二面金屬化製程38 4-8.電性I-V量測38 第五章 實驗結果與接觸電阻計算40 5-1.奈米碳管成長結果40 5-2.I-V電性量測41 5-3.接觸電阻計算42 5-4.文獻比較45 第六章 結論與未來展望47 6-1.結論47 6-2.未來展望48 參考文獻50 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 浮動式催化劑 | zh_TW |
| dc.subject | 接觸電阻 | zh_TW |
| dc.subject | 化學氣相沉積法 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 矽穿孔 | zh_TW |
| dc.subject | TSV | en |
| dc.subject | chemical vapor deposition | en |
| dc.subject | floating catalyst | en |
| dc.subject | carbon nanotubes | en |
| dc.subject | contact resistance | en |
| dc.title | 浮動式催化劑成長法降低奈米碳管金屬間接觸電阻 | zh_TW |
| dc.title | Reduction of Metal/Carbon Nanotubes Interface Contact Resistance by Floating Catalyst Growing Method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;李敏鴻 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Min-Hung Lee | en |
| dc.subject.keyword | 奈米碳管,矽穿孔,化學氣相沉積法,浮動式催化劑,接觸電阻, | zh_TW |
| dc.subject.keyword | carbon nanotubes,TSV,chemical vapor deposition,floating catalyst,contact resistance, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202301838 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
