請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張翠玉 | zh_TW |
| dc.contributor.advisor | Emmy T.-Y. Chang | en |
| dc.contributor.author | 許啟群 | zh_TW |
| dc.contributor.author | Chi-Chun Hsu | en |
| dc.date.accessioned | 2023-08-09T16:50:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-09 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-28 | - |
| dc.identifier.citation | Beroza, G. C., & Ellsworth, W. L. (1996). Properties of the seismic nucleation phase. Tectonophysics, 261(1-3), 209-227.
Byerlee, J. (1978). Friction of rocks. Pageoph, 116. Chen, W., Yen, I., Fengler, K., Rubin, C., Yang, C., Yang, H., Chang, H., Lin, C., Lin, W., & Liu, Y. (2007). Late Holocene paleoearthquake activity in the middle part of the Longitudinal Valley fault, eastern Taiwan. Earth and Planetary Science Letters, 264(3-4), 420-437. https://doi.org/10.1016/j.epsl.2007.09.043 Chen, W. S., Yen, Y. C., Fengler, K. P., Rubin, C. M., Yang, C. C., Yang, H. C., Chang, C., Lin, C., W., L., S., W., Liu, Y. C., & Lin , Y. H. (2007b). Late Holocene Paleoearthquake Activity along the Juisui Fault of the Middle Longitudinal Valley Fault, Eastern Taiwan. Earth Planet Science Letter. Cheng, S.-N., & Wang, T.-P. (2009, 2010). 台灣地區地震目錄的建置。中央氣象局地震技術報告彙編,第54、64卷。 Cheng, S. N., & Yeh, Y. T. (1989). Catalogue of Earthquakes in Taiwan from 1604 to 1988. Open-File Rept., Institute of Earth Sciences, Academia Sinica, 255pp. (in Chinese). Chuang, R. Y., Johnson, K. M., Kuo, Y.-T., Wu, Y.-M., Chang, C.-H., & Kuo, L.-C. (2014). Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge? Geophysical Research Letters, 41(10), 3464-3470. https://doi.org/10.1002/2014gl060097 Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21, 768-769. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188. Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research: Solid Earth, 111. Hauksson, E., & Jones, L. M. (2020). Seismicity, Stress State, and Style of Faulting of the Ridgecrest-Coso Region from the 1930s to 2019: Seismotectonics of an Evolving Plate Boundary Segment. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120200051 Hsu, M.-T. (1971). Seismicity Of Taiwan And Some Related Problems. Bulletin of the International Institute of Seismology and Earthquake Engineering, Tokyo, 8, 41-160. Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., & Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. https://doi.org/10.1016/j.tecto.2008.11.016 Hu, J.-C., Cheng, L.-W., Chen, H.-Y., Wu, Y.-M., Lee, J.-C., Chen, Y.-G., Lin, K.-C., Rau, R.-J., Kuochen, H., Chen, H.-H., Yu, S.-B., & Angelier, J. (2007). Coseismic deformation revealed by inversion of strong motion and GPS data: the 2003 Chengkung earthquake in eastern Taiwan. Geophysical Journal International, 169(2), 667-674. https://doi.org/10.1111/j.1365-246X.2007.03359.x Huang, H.-H., & Wang, Y. (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model. Terrestrial, Atmospheric and Oceanic Sciences, 33(1). https://doi.org/10.1007/s44195-022-00017-z Huang, Q. (2004). Seismicity Pattern Changes Prior to Large Earthquakes-An Approach of the RTL Algorithm. Terrestrial, Atmospheric and Oceanic Sciences (TAO), 15, 469-491. Hyndman, R. D., & Wang, K. (1995). The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. Journal of Geophysical Research: Solid Earth, 100(B11), 22133-22154. https://doi.org/10.1029/95jb01970 Institute of Earth Sciences, A. S., Taiwan. (1996). Broadband Array in Taiwan for Seismology. Other/Seismic Network. https://doi.org/10.7914/SN/TW Jian, P. R., Tseng, T. L., Liang, W. T., & Huang, P. H. (2018). A New Automatic Full‐Waveform Regional Moment Tensor Inversion Algorithm and Its Applications in the Taiwan Area. Bulletin of the Seismological Society of America, 108(2), 573-587. https://doi.org/10.1785/0120170231 Kuochen, H., Wu, Y.-M., & Chang, C.-H. (2004). Relocation of Eastern Taiwan Earthquakes and Tectonic Implications. Terrestrial, Atmospheric and Oceanic Sciences, 15(4), 647-666. Leclère, H., Fabbri, O., Daniel, G., & Cappa, F. (2012). Reactivation of a strike-slip fault by fluid overpressuring in the southwestern French-Italian Alps. Geophysical Journal International, 189(1), 29-37. https://doi.org/10.1111/j.1365-246X.2011.05345.x Lee, S.-J., Huang, H.-H., Shyu, J. B. H., Yeh, T.-Y., & Lin, T.-C. (2014). Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation. Journal of Asian Earth Sciences, 96, 374-385. https://doi.org/10.1016/j.jseaes.2014.09.020 Lund, B., & Townend, J. (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal International, 170. Martinez-Garzon, P., Kwiatek, G., Ickrath, M., & Bohnhoff, M. (2014). MSATSI: A MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New Simplified User-Handling, and a Visualization Tool. Seismological Research Letters, 85(4), 896-904. https://doi.org/10.1785/0220130189 Miyamura, S. (1962). Magnitude-Frequency Relation of Earthquakes and its Bearing on Geotectonics. Proceedings of the Japan Academy, 38, 27-30. Pelleg, D., & Moore, A. (1999). Accelerating exact k-means algorithms with geometric reasoning. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, 277-281. Reid, H. F. (1910). The mechanism of an earthquake, The California earthquake of April 18, 1906. Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539-542. https://doi.org/10.1038/nature04094 Shyu, J. B. H. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8). https://doi.org/10.1029/2004jb003251 Shyu, J. B. H., Sieh, K., Avouac, J.-P., Chen, W.-S., & Chen, Y.-G. (2006). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research, 111(B8). https://doi.org/10.1029/2005jb003971 Shyu, J. B. H., Sieh, K., Chen, Y. G., & Chung, L. H. (2006). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11-12), 1447-1462. https://doi.org/10.1130/b25905.1 Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7(6), 751-754. https://doi.org/10.1016/0191-8141(85)90150-6 Sibson, R. H. (1994). An assessment of field evidence for ?Byerlee? friction. Pure and Applied Geophysics PAGEOPH, 142(3-4), 645-662. https://doi.org/10.1007/bf00876058 Toda, Shinji, Stein, R.S., Sevilgen, Volkan, & Lin, J. (2011). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide. U.S. Geological Survey Open-File Report 2011–1060, 63 p., available at https://pubs.usgs.gov/of/2011/1060/. Trifonov, V. G. (1995). World map of active faults (preliminary results of studies). Quaternary International, 25, 3-12. Tsai, Y. B., Liaw, Z. S., Lee, T. Q., Lin, M. T., & Yeh, Y. H. (1981). Seismological evidence of an active plate boundary in the Taiwan area. Memoir of the Geological Society of China, 4, 143-154. Wang, J. H. (1988). b-values of shallow earthquakes in Taiwan. Bulletin of the Seismological Society of America, 78, 1243-1254. Wells, D. L., & Coppersmith, K. J. (1994). New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 40, 974-1002. Wu, Y.-M., Chen, Y.-G., Chang, C.-H., Chung, L.-H., Teng, T.-L., Wu, F. T., & Wu, C.-F. (2006). Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6.1 Taitung earthquake. Geophysical Research Letters, 33(22). https://doi.org/10.1029/2006gl027572 Wu, Y. M., & Chiao, L. Y. (2006). Seismic Quiescence before the 1999 Chi-Chi, Taiwan, Mw 7.6 Earthquake. Bulletin of the Seismological Society of America, 96(1), 321-327. https://doi.org/10.1785/0120050069 Wyss, M., & Wiemer, S. (1994). Seismic Quiescence before the Landers (M = 7.5) and Big Bear (M = 6.5) 1992 Earthquakes. Bulletin of the Seismological Society of America, 84, 900-916. Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59. https://doi.org/https://doi.org/10.1016/S0040-1951(96)00297-1 Yu, S. B., & Kuo, L.-C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217. Yue, H., Sun, J., Wang, M., Shen, Z., Li, M., Xue, L., Lu, W., Zhou, Y., Ren, C., & Lay, T. (2021). The 2019 Ridgecrest, California earthquake sequence: Evolution of seismic and aseismic slip on an orthogonal fault system. Earth and Planetary Science Letters, 570. https://doi.org/10.1016/j.epsl.2021.117066 石瑞銓、陳平護、呂明達、陳文山(2004)。 地震地質調查及活動斷層資料庫建置計畫-淺層地球物理探勘(3/5)。經濟部中央地質調查所報告第93-7號。 呂新民、徐友鎔、施楠(1972)。中華民國六十一年四月廿四日花蓮縣瑞穗強震調查報告。中央氣象局。 林祖慰、陳達毅、辛在勤(2008)。台灣地區背景地震活動分析與應用。氣象學報,47。 林啟文、劉彥求、周稟珊、林燕慧(2021)。臺灣活動斷層調查的近期發展。經濟部中央地質調查所彙刊,34,1-40。 林啟文、劉彥求、林燕慧、梁勝雄、周稟珊、陳盈璇、李忠勳、陳建良、石同生、王怡方(2022)。20220917關山地震、0918池上地震地質調查報告。經濟部中央地質調查所。 陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱(2018)。臺灣東部碰撞帶孕震構造。經濟部中央地質調查所彙刊,33,123-155。 陳文山、顏一勤、楊志成、紀權窅、黃能偉(2008)。從古地震研究與GPS資料探討縱谷斷層的分段意義。經濟部中央地質調查所特刊,20,165-191。 經濟部中央地質調查所(2014)。20131031瑞穗地震地質調查報告。 鄧屬予(2002)。 台灣新生代大地構造:二十世紀台灣地球科學之回顧。中國地質學會,台北,1,1-57。 鄭世楠、葉永田、黃文紀、辛在勤、張建興(1996)。1898年至1995年台灣地區地震目錄(未出版)。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88388 | - |
| dc.description.abstract | 台灣東部花東縱谷是歐亞板塊和菲律賓海板塊的板塊縫合帶,具有高度的地震活動。前人研究透過地質調查、大地測量和同震地表變形特徵等分析將縱谷斷層劃分為數個斷層段,分別是嶺頂、瑞穗、池上、奇美、利吉。本研究分析縱谷地區地震活動度,根據地震震源分佈以及構造斷層的空間相關性,本研究將地震分為四個地震群(N1、N2、S1和S2)來討論可能對應的斷層區段的發震特性。
本研究使用中央氣象局的地震目錄和中央研究院地球科學所AutoBATS的震源機制解,分析1995年至2022年的台灣地區的地震。研究結果可分為兩部分:(1)計算b值、z值和地震頻率進行地震參數的統計分析;(2)擬合每個地震群相關的斷層面,討論最大主應力方向與斷層面,以計算斷層活動角,進階討論與構造應力的比值(最大與最小主應力R-ratio)的關係,從而檢測斷層活動狀態。 第一部分顯示了在分析時段中,縱谷斷層中段S1區域相對較低地震活動。而位於N1、N2和S2的分群展現較高的地震活動,且1995年至2022年之總體b值均介於0.85~0.87。S1群於1995年至2022年累積之地震資料顯示b值低至0.73,然而若將2022年之地震資料排除,b值會回升至0.857,顯示S1群在2022年大規模地震之比例明顯高於過往,可能肇因於小規模之地震資料尚未完備。 第二部分結果顯示北段N1和N2地震群呈現連續向西傾斜之擬合斷層面,當摩擦係數(µ)假設為0.75時,大部分規模大於5.5之主要地震事件處於有利活動的狀態。縱谷南段S1和S2地震群則呈現不同的擬合結果。南段東側的S2地震群顯示了池上斷層向東傾斜的鏟狀斷層面,西側S1地震群在中央山脈下方顯示了一個陡峭且向西傾斜的斷層面,當µ = 0.75時,2022年關山-池上地震事件的主震處於不利活動的狀態。 透過係數測試,當µ降至0.59時,上述2022年之地震事件將轉為有利活動的狀態,推測地層荷重改變或較高的孔隙水壓等會降低摩擦係數之條件皆可能是觸發中央山脈斷層活動的關鍵作用。 | zh_TW |
| dc.description.abstract | The Longitudinal Valley is a suture zone between the Eurasian Plate and the Philippine Sea Plate and exhibits a high seismicity in eastern Taiwan. Previous researches and field surveys have led to the division of the Longitudinal Valley Fault (LVF, eastern side of the Longitudinal Valley) into several segments, namely Lingding, Rueyshui, Chihshang, Chimei, Lichi. According to the distribution of earthquakes and their spatial correlation with tectonic faults, this study divides earthquakes into four clusters (N1, N2, S1, and S2) and discusses their seismogenic characteristics accordingly.
This study employed the earthquake catalog from the Central Weather Bureau and the focal mechanism solutions provided by AutoBATS (Institute of Earth Sciences, Academia Sinica) for the period of 1995 to 2022. The results were conducted from: (1) A comprehensive analysis of the b-value, z-value, and earthquake frequency; (2) Fitting fault planes associated with each group, and applying the stress state inverted by MSATSI to the fault planes in order to calculate the fault activation angles and the tectonic-stress ratio (maximum over minimum stresses, R-ratio), thereby examining fault activity. The first part of the study reveals a relatively low seismicity in the middle segment of the LVF(S1). The N1, N2 and S2, exhibit higher seismicity and share a similar b-value of 0.85~0.87, on the other hand, the S1 group display a lower b-value of 0.73 while if we move out the earthquakes in 2022, the b-value of S1 will raise to 0.857. It shows that the proportion of large-scale earthquakes in the S1 group in 2022 is significantly higher than in the past, which may be due to the incomplete data of small-scale earthquakes in the catalog. The second part of the study reveals the fault planes at northern groups N1 and N2 beneath the Central Range and the Coastal Range, and most of the main earthquake events are in the favorable orientations when the friction coefficient (µ) is set to 0.75. In contrast, the southern groups S1 and S2 present different convergent results. S2 shows a clearly east-dipping listric fault plane of Chihshang fault, S1 demonstrates a steep and west-dipping fault plane beneath the Central Range with the mainshocks of 2022 Guanshan-Chihshang earthquake events in unfavorable orientation when µ = 0.75. Our study revealed that the 2022 earthquake sequence resulted from the reactivation of the fault of the fault on the western side of the Longitudinal Valley. mechanically, this reactivation shall occur when the friction coefficient decreases to as low as 0.59. This finding suggests that either reducing strata loading or increasing fluid pressure may play a crucial role in triggering the faulting on the western side of the Longitudinal Valley. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:50:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-09T16:50:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xiii 第 1 章 緒論 1 1.1 前言 1 1.2 前人研究──地震統計以及R-ratio 5 1.3 縱谷地區斷層以及地質背景 11 1.3.1 北段:米崙斷層、嶺頂斷層 11 1.3.2 中段:瑞穗斷層 14 1.3.3 南段:池上斷層 17 1.3.4 中央山脈東翼:中央山脈斷層 19 1.3.5 臺灣東部縱谷斷層GPS速度場 22 1.4 論文內容簡介 25 第 2 章 資料及分析方法 26 2.1 地震資料 26 2.1.1 中央氣象局地震目錄 26 2.1.2 震源機制解 27 2.2 分析方法 29 2.2.1 b值分析 29 2.2.2 z值分析 31 2.2.3 應力反演 34 2.2.4 地震分群與斷層面擬合 35 2.2.5 斷層活動角計算 36 2.2.6 R-ratio計算 39 第 3 章 結果 40 3.1 地震分群定義 40 3.2 地震活動度 44 3.2.1 分群b值結果 47 3.2.2 縱谷地區z值分析 52 3.3 應力反演結果 62 3.4 斷層面幾何型態與活動角計算 63 第 4 章 討論 71 4.1 地震分群之活動度 71 4.2 R-ratio與斷層活動程度 72 4.3 縱谷北段之斷層系統討論 76 4.4 2022年9月關山-池上地震之庫侖應力討論 77 第 5 章 結論 82 參考文獻 84 附錄A 本研究使用之震源機制解 89 附錄B 不同地震分群之逐年b值計算結果 90 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | z值 | zh_TW |
| dc.subject | 斷層活動角 | zh_TW |
| dc.subject | b值 | zh_TW |
| dc.subject | z-value | en |
| dc.subject | activation angle | en |
| dc.subject | b-value | en |
| dc.title | 臺灣東部縱谷地區斷層活動特性 | zh_TW |
| dc.title | Faulting Characteristics in the Longitudinal Valley, East Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳燕玲;王昱 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Ling Chen;Wang Yu | en |
| dc.subject.keyword | b值,z值,斷層活動角, | zh_TW |
| dc.subject.keyword | b-value,z-value,activation angle, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202301537 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 45.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
