Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88379
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬鴻文zh_TW
dc.contributor.advisorHwong-Wen Maen
dc.contributor.author黃梓恩zh_TW
dc.contributor.authorTzu-En Huangen
dc.date.accessioned2023-08-09T16:48:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-09-
dc.date.issued2023-
dc.date.submitted2023-07-19-
dc.identifier.citationAbril Ortiz, A., Sucozhañay, D., Vanegas, P., & Martínez-Moscoso, A. (2020). A Regional Response to a Global Problem: Single Use Plastics Regulation in the Countries of the Pacific Alliance. Sustainability, 12(19). https://doi.org/10.3390/su12198093
Andrady, A. L. (2015). Persistence of Plastic Litter in the Oceans. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-16510-3_3
Beaumont, N. J., Aanesen, M., Austen, M. C., Borger, T., Clark, J. R., Cole, M., Hooper, T., Lindeque, P. K., Pascoe, C., & Wyles, K. J. (2019). Global ecological, social and economic impacts of marine plastic. Mar Pollut Bull, 142, 189-195. https://doi.org/10.1016/j.marpolbul.2019.03.022
Blasing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Sci Total Environ, 612, 422-435. https://doi.org/10.1016/j.scitotenv.2017.08.086
Borrelle, S. B., Ringma, J., Law, K. L., Monnahan, C. C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G. H., Hilleary, M. A., Eriksen, M., Possingham, H. P., De Frond, H., Gerber, L. R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., & Rochman, C. M. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515-1518. https://doi.org/10.1126/science.aba3656
Bureecam, C., Chaisomphob, T., & Sungsomboon, P.-Y. (2018). Material flows analysis of plastic in Thailand. Thermal Science, 22(6 Part A), 2379-2388.
Catarino, A. I., Kramm, J., Völker, C., Henry, T. B., & Everaert, G. (2021). Risk posed by microplastics: Scientific evidence and public perception. Current Opinion in Green and Sustainable Chemistry, 29. https://doi.org/10.1016/j.cogsc.2021.100467
Eriksen, M. K., Pivnenko, K., Faraca, G., Boldrin, A., & Astrup, T. F. (2020). Dynamic Material Flow Analysis of PET, PE, and PP Flows in Europe: Evaluation of the Potential for Circular Economy. Environ Sci Technol, 54(24), 16166-16175. https://doi.org/10.1021/acs.est.0c03435
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Sci Adv, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
Hansen, C. L. a. E. (2000). Paradigm for Substance Flow Analyses. Environmental Project, No. 577.
Heller, M. C., Mazor, M. H., & Keoleian, G. A. (2020). Plastics in the US: toward a material flow characterization of production, markets and end of life. Environmental Research Letters, 15(9). https://doi.org/10.1088/1748-9326/ab9e1e
Kawecki, D., Scheeder, P. R. W., & Nowack, B. (2018). Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe. Environ Sci Technol, 52(17), 9874-9888. https://doi.org/10.1021/acs.est.8b01513
Klotz, M., & Haupt, M. (2022). A high-resolution dataset on the plastic material flows in Switzerland. Data Brief, 41, 108001. https://doi.org/10.1016/j.dib.2022.108001
Klotz, M., Haupt, M., & Hellweg, S. (2022). Limited utilization options for secondary plastics may restrict their circularity. Waste Manag, 141, 251-270. https://doi.org/10.1016/j.wasman.2022.01.002
Knoblauch, D., & Mederake, L. (2021). Government policies combatting plastic pollution. Current Opinion in Toxicology, 28, 87-96. https://doi.org/10.1016/j.cotox.2021.10.003
Lange, J.-P. (2021). Managing Plastic Waste─Sorting, Recycling, Disposal, and Product Redesign. ACS Sustainable Chemistry & Engineering, 9(47), 15722-15738. https://doi.org/10.1021/acssuschemeng.1c05013
Lourens J. J. Meijer, T. v. E., Ruud van der Ent, Christian Schmidt, and Laurent Lebreton. (2021). More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv., 7 (18), eaaz5803. https://doi.org/0.1126/sciadv.aaz5803
MacLeod, M., Arp, H. P. H., Tekman, M. B., & Jahnke, A. (2021). The global threat from plastic pollution. Science, 373(6550), 61-65.
Martinez Sanz, V., Morales Serrano, A., & Schlummer, M. (2022). A mini-review of the physical recycling methods for plastic parts in end-of-life vehicles. Waste Manag Res, 40(12), 1757-1765. https://doi.org/10.1177/0734242X221094917
Matthew MacLeod, H. P. H. A., Mine B. Tekman and Annika Jahnke. (2021). The global threat from plastic pollution. 61 - 65. https://doi.org/https://doi.org/10.1126/science.abg5433 (American Association for the Advancement of Science)
Nakatani, J., Maruyama, T., & Moriguchi, Y. (2020). Revealing the intersectoral material flow of plastic containers and packaging in Japan. Proceedings of the National Academy of Sciences, 117(33), 19844-19853.
Nielsen, T. D., Hasselbalch, J., Holmberg, K., & Stripple, J. (2019). Politics and the plastic crisis: A review throughout the plastic life cycle. WIREs Energy and Environment, 9(1). https://doi.org/10.1002/wene.360
Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. Macromol Rapid Commun, 42(3), e2000415. https://doi.org/10.1002/marc.202000415
Syberg, K., Nielsen, M. B., Westergaard Clausen, L. P., van Calster, G., van Wezel, A., Rochman, C., Koelmans, A. A., Cronin, R., Pahl, S., & Hansen, S. F. (2021). Regulation of plastic from a circular economy perspective. Current Opinion in Green and Sustainable Chemistry, 29. https://doi.org/10.1016/j.cogsc.2021.100462
Van Eygen, E., Feketitsch, J., Laner, D., Rechberger, H., & Fellner, J. (2017). Comprehensive analysis and quantification of national plastic flows: The case of Austria. Resources, Conservation and Recycling, 117, 183-194. https://doi.org/10.1016/j.resconrec.2016.10.017
Van Eygen, E., Laner, D., & Fellner, J. (2018). Circular economy of plastic packaging: Current practice and perspectives in Austria. Waste Manag, 72, 55-64. https://doi.org/10.1016/j.wasman.2017.11.040
van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M., Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A., Delandmeter, P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy, L., Hardesty, B. D., Hoffman, M. J., Isobe, A., Jongedijk, C. E., . . . Wichmann, D. (2020). The physical oceanography of the transport of floating marine debris. Environmental Research Letters, 15(2). https://doi.org/10.1088/1748-9326/ab6d7d
Wang, C. H., & Lin, H. T. (2022). Quantification of food packaging generation and material loss from major retailers in Taipei, Taiwan. Waste Manag, 137, 139-149. https://doi.org/10.1016/j.wasman.2021.10.038
Winnie W. Y. Lau, Y. S., Richard M. Bailey, Ed Cook, Martin R. Stuchtey, Julia Koskella, Costas A. Velis, Linda Godfrey, Julien Boucher, Margaret B. Murphy, Richard C. Thompson, Emilia Jankowska, Arturo Castillo Castillo, Toby D. Pilditch, Ben Dixon, Laura Koerselman, Edward Kosior, Enzo Favoino, Jutta Gutberlet, Sarah Baulch, Meera E. Atreya, David Fischer, Kevin K. He, Milan M. Petit, U. Rashid Sumaila, Emily Neil, Mark V. Bernhofen, Keith Lawrence and James E. Palardy. (2020). Evaluating scenarios toward zero plastic pollution. Science, 369(6510), 1455 - 1461. https://doi.org/10.1126/science.aba
OECD (2022), Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options, OECD Publishing, Paris, https://doi.org/10.1787/de747aef-en.
Plastic Europe (2022), Plastics – the Facts 2022, https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
Statista (2023), Annual production of plastics worldwide from 1950 to 2021, https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/
瞿宛文、黃秋燕(1998)。政策與連鎖效果:台灣塑膠原料業的發展因素。台灣社會研究季刊產業,第23期。
台灣區石油化學同業公會(2022)。中華民國的石油化學工業 2022 年刊。
呂詠惠(2022)。以IO-MFN模型評估聚酯產品聯盟對經濟與環境之影響。碩士論文,國立臺灣大學。臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/42ssw5
行政院環境保護署(2020a)。2019年資源回收再利用年報
行政院環境保護署(2022a)。111年環境保護統計年報。檢自: https://www.epa.gov.tw/Page/B84B65A4FDDF5864
行政院環境保護署(2021a)。110年各事業廢棄物代碼申報流向統計年報。檢自: https://waste.epa.gov.tw/RWD/Statistics/?page=Year1
行政院環境保護署(2021b)。110年再生資源申報量統計年報。檢自: https://waste.epa.gov.tw/RWD/Statistics/?page=Year1
行政院環境保護署(2022b)。111年資源循環政策規劃與物質流管理專案計畫
行政院環境保護署(2022c)。110年至113年資源循環行動計畫
行政院環境保護署(2023)。網際網路購物包裝限制使用對象及實施方式。檢自:https://oaout.epa.gov.tw/law/LawContent.aspx?id=GL007834
行政院環境保護署(2022d)。限制含聚氯乙烯之平板包材、公告應回收容器及非平板類免洗餐具不得製造、輸入及販賣。檢自:https://oaout.epa.gov.tw/law/LawContent.aspx?id=GL007807
行政院環境保護署(2017)。廢棄物清理法。檢自:https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015604
行政院環境保護署(2022e)。非填充食品之塑膠再生商品推動作業要點。檢自:https://oaout.epa.gov.tw/law/LawContent.aspx?id=GL007825
行政院衛生福利部(2022)。供作食品容器具包裝製造使用之PET再製酯粒原料適宜性申請作業流程。檢自:https://www.fda.gov.tw/Tc/siteContent.aspx?sid=12179
行政院環境保護署(2019)。建構塑膠資源循環經濟模式策略專案工作計畫
行政院環境保護署(2020b)。資源循環策略規劃與跨部會循環資訊介接推動計畫
行政院經濟部統計處(2021)。工業產銷存動態調查產品統計資料庫。檢自:https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx
台灣塑膠工業股份有限公司(2022)。110年度年報。
台灣聚合化學品股份有限公司(2022)。110年度年報。
南亞塑膠工業股份有限公司(2022)。110年度年報。
行政院環境保護署(2021c)。事業廢棄物申報及管理系統。
行政院財政部關務署(2021)。海關進出口統計資料庫。檢自:https://portal.sw.nat.gov.tw/APGA/GA30
行政院經濟部能源局(2022)。110年度我國燃料燃燒二氧化碳排放統計與分析
行政院環境保護署(2021d)。產品碳足跡資訊網。檢自:https://cfp-calculate.tw/cfpc/WebPage/LoginPage.aspx
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88379-
dc.description.abstract  塑膠是現代社會中不可或缺的材料之一,低成本、易塑形、重量輕、不易產生反應等特性使其被大量的生產使用,卻也造成極大的廢棄物污染問題。各國針對塑膠聚合物提出許多的管理方法,其中大部分成效有限,主要原因是因為塑膠的種類及用途過於繁雜,管理策略難以了解塑膠使用的實際情況。因此本研究針對回收編號1-6號,世界上最廣泛使用及回收的六種通用塑膠:聚酯粒、高密度聚乙烯、聚氯乙烯、低密度聚乙烯、聚丙烯、聚苯乙烯進行研究,盤查政府機關、供應商及文獻的資料,再透過物質流分析方法(Material Flow Analysis),繪製通用塑膠桑基圖(Sankey Diagram),幫助提供塑膠管理的數據參考。
  台灣110年生產的六類通用塑膠共9,437,017噸,塑膠種類以PET最多,占比高達43%。原料進口700,536噸,出口4,667,879噸。製造投入共5,484,214噸,假設5.07%的製造損失,1,475,161噸產品出口,剩餘3,704,764噸在台灣使用。使用的用途以包裝占比(35%)最高,其次是電機電子設備(19%)、紡織品(17%)、家用與其他(7%)、自動車(6%)、農業(3%)。預估當年度生產使用的塑膠會有1,606,952噸在同一年被廢棄,占使用的35%。廢棄物管理系統方面,110年共收集1,909,496噸的廢棄塑膠(包含非通用塑膠),分離的廢棄塑膠占比僅18.44%,皆來自於塑膠包裝或容器,其中還有一部分來自進口塑膠廢棄物。收集的廢棄塑膠有39.85%進入回收處理,剩餘50.11%進入焚化處理、3.28%進入掩埋處理、0.86%進入其他處理。利用塑膠包裝使用需求及回收的分離塑膠量計算包裝回收率及評估2025年25%再生塑膠包裝目標,結果顯示目前包裝的回收率約16%。回收的廢棄塑膠最大可提供約15%包裝需求的再生塑膠,需仰賴進口塑膠廢棄物才能達成2025年的目標。
  由研究結果可以顯示台灣在一次性塑膠製品的大量使用,尤其是在包裝方面,且塑膠廢棄物的分離收集率低,可能造成再生塑膠的原料污染及產品品質不佳,進而導致再生塑膠的使用意願降低。
zh_TW
dc.description.abstractPlastic is an indispensable material in modern society due to its low cost, pliability, lightweight, and non-reactivity. However, these characteristics have also led to significant problems of plastic waste pollution. Many countries have implemented various management methods for plastic polymers, but their effectiveness has been limited mainly due to the complexity of plastic types and applications, making it difficult to understand the actual usage of plastic. Therefore, this study focuses on the six most widely used and recycled general plastic types: polyester (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS). By examining data from government agencies, suppliers, and literature, this research utilizes Material Flow Analysis (MFA) and Sankey Diagrams, aiming to provide data references for plastic management.
In Taiwan, a total of 9,437,017 metric tons of the six general plastic types were produced in 2021, with PET being the most prevalent, accounting for 43%. There were 700,536 metric tons of plastic material imports and 4,667,879 metric tons of exports. The total input for manufacturing was 5,484,214 metric tons, assuming 5.07% manufacturing losses and 1,475,161 metric tons of product exports, leaving 3,704,764 metric tons for domestic use in Taiwan. The major uses of plastic were packaging (35%), followed by electrical and electronic equipment (19%), textiles (17%), household and others (7%), automotive (6%), and agriculture (3%). It is estimated that 1,606,952 metric tons of plastic used in the same year would become waste, accounting for 35% of usage. In terms of waste management, a total of 1,909,496 metric tons of plastic waste (including non-general plastics) were collected in 2021. Only 18.44% of the collected plastic waste was sorted, and it mainly came from plastic packages or containers. Some of the collected plastic waste also originated from imported plastic waste. Of the collected plastic waste, 39.85% went for recycling, while 50.11% went for incineration, 3.28% for landfilling, and 0.86% for other treatments. By considering the demand for plastic packaging usage and the amount of separated plastic waste for recycling, the packaging recycling rate was calculated to be approximately 16%, and it was evaluated that achieving the 25% target of recycled plastic packaging by 2025 would require relying on imported plastic waste.
The research findings indicate that Taiwan has a significant reliance on disposable plastic products, especially in packaging, and the separated collecting rate of plastic is low. This may lead to contamination of recycled plastic raw materials and poor product quality, resulting in a decreased willingness to use recycled plastic. The data results can provide a numerical foundation for further research and strategy development by management agencies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:48:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-09T16:48:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與架構 4
第二章 文獻回顧 6
2.1 全球塑膠現況 6
2.1.1 全球塑膠生產及使用 6
2.1.2 全球塑膠廢棄物 8
2.1.3 全球塑膠管理策略 12
2.2 台灣塑膠現況 18
2.2.1 台灣塑膠製造 18
2.2.2 台灣塑膠廢棄物 20
2.2.3 台灣塑膠管理策略 22
2.3 物質流分析方法 24
2.3.1 物質流概論 24
2.3.2 全球塑膠物質流分析 26
2.3.3 台灣物質流分析 30
第三章 材料及方法 35
3.1 物質流分析 35
3.1.1 目標及範疇界定 35
3.1.2 物質流模型 36
3.1.3 使用部門定義 38
3.2 材料 40
3.3 原料階段 41
3.3.1 原料製造 41
3.3.2 原料進出口 42
3.4 產品製造階段 44
3.4.1 產品製造 44
3.4.2 產品進出口 47
3.5 產品使用階段 51
3.6 廢棄物 51
3.6.1 產品壽命推估 51
3.6.2 廢棄物處理系統盤查 52
3.7 塑膠包裝回收及再生量估計 54
第四章 結果與討論 55
4.1 物質流分析結果及討論 55
4.1.1 通用塑膠物質流 55
4.1.2 PET物質流 58
4.1.3 HDPE物質流 61
4.1.4 PVC物質流 63
4.1.5 LDPE物質流 66
4.1.6 PP物質流 68
4.1.7 PS物質流 70
4.1.8 產品壽命推估結果 72
4.1.9 廢棄物管理系統 74
4.2 台灣通用塑膠使用情形分析 75
4.2.1 生命週期階段之流量 75
4.2.2 台灣通用塑膠用途分析 77
4.2.3 台灣通用塑膠使用熱點 79
4.3 台灣塑膠管理探討 81
4.3.1 包裝廢棄物及25%再生料目標 81
4.3.2 分離與混合塑膠廢棄物 82
第五章 結論與建議 83
5.1 結論 83
5.2 建議 84
參考文獻 86
附錄 92
-
dc.language.isozh_TW-
dc.title台灣通用塑膠物質流分析zh_TW
dc.titleA Material Flow Analysis of General Plastics in Taiwanen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee闕蓓德;胡憲倫zh_TW
dc.contributor.oralexamcommitteePei-Te Chiueh;Allen H. Huen
dc.subject.keyword通用塑膠,物質流分析,循環經濟,塑膠包裝回收,塑膠廢棄物管理,zh_TW
dc.subject.keywordGeneral Plastic,Material Flow Analysis,Circular Economy,Plastic Packaging Recycling,Plastic Waste Management,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202301659-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2024-01-01-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved